

CO₂ Capture and Reuse

Kelly Thambimuthu
CANMET Energy Technology Centre
Natural Resources Canada

John Davison IEA Greenhouse Gas R&D Programme Murlidhar Gupta
CANMET Energy Technology Centre
Natural Resources Canada

Overview of the Presentation

CAS CONTROLL OF CONTROL OF CONTRO

- Where to capture CO₂
- How to capture CO₂
- Performance and costs of CO₂ capture
- CO₂ utilisation or reuse

CO₂ Emissions

Emissions, Gt/year

How to Capture CO₂

post-combustion capture

Post combustion capture

ENHO GAS

Conventional power plant

Capture Before Combustion

ENHO CASSON OF THE PROPERTY OF

Coal-fired power plant (IGCC)

Pre-Combustion Capture

DA CASTALLE AND SECOND SECOND

Advantages

- Generally higher CO₂ concentration than for post-combustion capture
- Higher pressure
 - More compact equipment
 - Higher driving force for CO₂ separation

Disadvantages

- Fuel processing is needed
 - Partially oxidation
 - Needed anyway for coal and oil to remove impurities
 - ➤ Shift conversion of fuel gas to H₂ and CO₂

Oxyfuel combustion

SAD CASA

Power generation plant

Oxygen Blown Combustion

- Pulverised coal, gas or oil fired boilers/furnaces
 - Flue gas is recycled to avoid excessively high combustion temperatures
- Circulating fluidised bed combustors
 - ➤ No flue gas recycle is needed cooled recycled solids limit the temperature, as in conventional CFBC
- Gas turbines
 - ➤ CO₂ is recycled to the compressor to provide the expansion medium, instead of air
 - Novel turbine cycles have been proposed including IGCC (eliminates shift reaction / fuel gas CO₂ separation)
- Fuel Cells
 - Use of oxyfuel after burner

Oxygen Blown Combustion

THE THOUSE OF THE PARTY OF THE

Advantages

- Combustors would be fairly conventional
- May be able to avoid FGD
 - Store the SO_x and NO₂ along with the CO₂

Disadvantages

- High cost of oxygen production
- Need to recycle large quantities of flue gas
 - Not needed for circulating fluidised bed combustors
- Potential for advanced oxygen separation membranes with lower energy consumption

CO₂ Capture After Combustion

CO₂ concentration (vol. %)

Capture Before/During Combustion

Current Status of Technologies

- Post-combustion capture (amine scrubbing)
 - Amine scrubbing well established for natural gas etc.
 - Some small power plants operating
 - Solvent degradation is a problem
- Pre-combustion capture
 - > IGCC and ammonia production are established
 - Physical solvent separation well established
 - Gas turbines must be capable of using H₂-rich fuel
- Oxygen-blown combustion
 - Oxygen production is well established
 - Small scale combustor test rigs operating

CO₂ Separation Techniques

- Solvent Absorption
 - Chemical solvent
 - Physical solvent
- Adsorption on a solid
 - Pressure Swing Adsorption (PSA)
 - Temperature Swing Adsorption (TSA)
 - Electric Swing Adsorption (ESA)
- Membranes
 - Gas separation membranes
 - Gas absorption membranes
- Cryogenics

Novel Capture Techniques

Chemical looping combustion

- A fuel is contacted with a metal oxide, which releases oxygen for combustion
- The oxide is regenerated by reaction with air in a separate vessel
- Degradation of the oxide material is a concern

CO₂ capture in fuel cells

 Modifications for CO₂ capture in fuel cells could be relatively small

Performance and Costs

- Results are presented from a variety of recent studies
- Results of studies vary due to many factors, e.g.
 - Fuel analyses
 - Ambient conditions
 - Types of gas turbine
 - > Steam conditions
 - Percentage CO₂ capture
 - > CO₂ compression pressure (or no compression)
 - Plant location

Power Generation Efficiency

Efficiencies of Plants with Capture

Coal fired power plants

Efficiency, % (LHV)

Efficiency Penalty for Capture

Coal fired power plants

Efficiency penalty, % (LHV)

Efficiencies of Plants with Capture

Gas fired combined cycle plants

Efficiency, % (LHV)

Efficiency Penalty for Capture

SEENHOUSE SANGERS

Gas fired combined cycle plants

Efficiency penalty, % (LHV)

Post-Combustion Capture

- Efficiency and cost penalties for coal fired power plants with conventional MEA scrubbing are reasonably well known
- More uncertainty about natural gas CCGTs
- Improved solvents etc. may reduce energy losses by 40%
- Significant cost savings are possible

Pre-Combustion Capture

- For coal plants, efficiency and cost penalties are generally lower than for post-combustion capture
- For gas CCGTs, efficiency and cost penalties are about the same as for post-combustion capture
- Efficiency and cost penalties depend on the type of coal gasifier
 - ➤ Gasifiers with coal slurry feeding and water quench of the product gas tend to have lower capture penalties but lower overall efficiencies
- Coal fired IGCCs without capture tend to have high overall costs

Cost of CO₂ Capture

Potential for Cost Reductions

- Stretch improvements will be made to existing technologies
- Costs of other emission control technologies have reduced substantially
- Continuing R&D and development of a market for products is needed to stimulate cost reductions
- Technological breakthroughs may produce large cost reductions

Progress in FGD Costs

Capital cost, \$/kW_e

IEA Clean Coal Centre data

CO₂ Reuse

Industrial Uses of CO₂

- ➤ In 2000, 117 Mt/y of CO₂ consumed in chemical synthesis (75%) and in CO₂-EOR (25 %)
- ➤ In 2000, ~24 Gt/y of anthropogenic CO₂ emissions

CO₂ Reuse by Conversion

Relative Thermodynamic Stability of CO₂

Chemicals

Free energy of formation, ΔG^{o}_{298} (kJ/mole)

Thermodynamic stability		Benzene	+130	
	Y	Ethylene	+68	ion
		Methane	-51	conversion
		Urea	-197	conv
		$H_2O(I)$	-237	mic
		Carbon Dioxide (CO ₂)	-394	heri
	7	Dimethyl Carbonate	-492	Endoth
		Magnesium Carbonate	-1012	豆
	V	Calcium Carbonate	-1129	

CO₂ conversion, recycling, storage

CO₂ Based Secondary Energy/Chemical Cycle

CO₂ conversion, recycling, storage

 A Comprehensive CO₂ Based Secondary Energy & Material Utilization Cycle

CO₂ Reuse as Fuels

Fuels synthesis

Methane synthesis:

$$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$$

$$\Delta G^{o}_{298} = 113.6 \text{ kJ/mol}$$

Methyl alcohol:

$$CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$$

$$\Delta G^{o}_{298} = 3.9 \text{ kJ/mol}$$

Ethylene synthesis:

$$2\text{CO}_2 + 2\text{CH}_4 \rightarrow 2\text{CO} + \text{C}_2\text{H}_4 + 2\text{H}_2\text{O} \Delta G^{o}_{1073 \, K} = 35 \text{ kJ/mol}$$

Carbohydrates (photosynthesis):

$$nCO_2 + nH_2O \rightarrow C_nH_{2n}O_n + nO_2$$
 $\Delta G^o_{298} = (+)ve$

Many fuel synthesis reactions are endothermic and require a source of H_2 Development of reaction pathways and catalysts are also necessary

CO₂ Reuse as Materials

Intermediate Chemicals & Commodity Materials

Several synthesis reactions are endothermic and/or require a source of H₂; some materials can be recycled or stored indefinitely

CO₂ Reuse with storage

ENHO GAS

- CO₂-Enhanced Oil Recovery
- -can enhance the oil recovery by 10-15 %
- -can sequester 120 Gt of CO₂
- -current consumption is 30 Mt/year (supplied mainly from natural sinks)

Higher the oil prices, lower the cost of CO₂-EOR storage

Estimated at an oil price of \$ 15/bbl.

CO₂ Reuse

Conclusion

- ➤ The conversion of CO₂ into fuels and chemicals have been assessed in terms of its chemical stability.
- ➤ Since CO₂ is a thermodynamically a very stable molecule in a high oxidation state its reuse often requires the input of energy and/or the use of hydrogen for chemical conversion
- ➤ The supply of energy and hydrogen for CO₂ 'fixation', recycling and storage must be derived from a carbon free energy source for the effective mitigation of anthropogenic emissions approaches require rigorous life cycle assessments of energy use and emissions
- ➤ Current industrial use of CO₂ is 2-3 orders of magnitude lower than the net anthropogenic CO₂ emissions