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Abstract. From analysis of all available radiometric measurements of distances
between the Earth and the major planets (including observations of martian
landers and orbiters over 1971-2003 with the errors of few meters) the positive
secular trend in the Astronomical Unit AU is estimated as %AU =15+4 m/cy.
The given uncertainty is the 10 times enlarged formal error of the least-squares
estimate and so accounts for possible systematic errors of measurements and
deficiencies of the mathematical model. The reliability of this estimate as well
as its physical meaning are discussed. A priori most plausible attribution of this
effect to the cosmological expansion of the Universe turns out inadequate. A
model of the observables developed in the frame of the relativistic background
metric of the uniform isotropic Universe shows that the corresponding dynam-
ical perturbations in the major planet motions are completely canceled out by
the Einstein effect of dependence of the rate of the observer’s clock (that keeps
the proper time) on the gravitational field, though separately values of these
two effects are quite large and attainable with the accuracy achieved. Another
tentative source of the secular rate of AU is the loss of the solar mass due
to the solar wind and electromagnetic radiation but it amounts in %AU only
to 0.3 m/cy. Excluding other explanations that seem exotic (such as secular
decrease of the gravitational constant) at present there is no satisfactory ex-
planation of the detected secular increase of AU, at least in the frame of the
considered uniform models of the Universe.
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1 Introduction

At present, positional observations of the major planets make it possible to
control the scale factor of the solar system (Astronomical Unit AU) with the
accuracy about one meter and even better. The progress has started at the end
of seventies when the first precise measurements (with the errors of few me-



ters) of distances between the Earth and landers placed on Mars by the space
missions Viking and Pathfinder have been obtained. The ongoing program of
exploration of Mars by martian orbiters provides even more accurate observa-
tions. It seems natural to expect that a secular trend of AU if discovered might
reveal some fundamental features of the space-time. Indeed, the well estab-
lished cosmological expansion of the Universe manifests itself on the large space
scales as a Doppler effect in form of the Hubble redshift in spectra of galaxies
or quasars. It poses a question whether this expansion on the space scale of the
solar system generates the analogous Doppler shift (involving the corresponding
detectable secular increase of distances) in the radiometric observations of the
major planets. Intuitively one could expect that the value of AU should increase
in a secular way with the rate of the order of the Hubble constant. Considering
the Hubble age of the Universe of about 13 billion years one might expect that
%AU ~ 1 km/cy. However, this value is too large and definitely is ruled out by
positional observations of the major planets. In somewhat more sophisticated
approach the cosmological effects in the heliocentric motion of the planets are
calculated by using the standard metric of the four-dimensional time-space of
the uniform Universe (Masreliez 1999). The resulting effects seem to be rather
paradoxical. In terms of the length unit that rises with time in the expanding
Universe, the derived AU should decrease while the mean motions of the plan-
ets increase (such an effect of the apparent Solar System shrinking is called the
cosmic drag). The predicted accelerations in the planetary longitudes are also
too large varying from 1.4"/cy? for the Earth to 5.8"/cy? for Mercury. How-
ever, constructing the internationally adopted DE ephemerides, no such large
perturbations in the motion of the major planets have been detected. Note-
worthy that the dynamical model developed by Masreliez (1999) is incomplete
as it ignores an important feature of the rigorous equations of motion of the
test particle orbiting the Sun in the expanding Universe, namely, the apparent
secular decrease of the gravitational constant G.

Beneath we present more adequate model obtained as a solution of the cor-
responding Einstein’s field equations. This approximate solution generalizes the
well-known Schwarzschild solution to the case of the attracting singularity (the
Sun) in the background field of the expanding Universe. This field may cor-
respond to any uniform distribution of matter (e.g., to the Friedmann metric
of the open Universe or the flat metric of the expanding Universe). Rigorous
solution of this type has been constructed by McVittie (1933) revealing the
mentioned above effect of the cosmic drag in the so called cosmical coordinate
system (the distant quasars and galaxies are in rest in respect to this system).
According to McVittie, such effect vanishes in observer’s (locally statical) coor-
dinates. However more detailed investigation shows that even in such a system
the cosmic drag still exists. Tt is important to note that the cosmic drag is a
coordinate dependent effect and a correct prediction of observable consequences
of the cosmological expansion on the planet motion should take into account
not only the dynamical aspects of the cosmic drag but also the corresponding



Einstein effect in the light propagation. In the case of the expanding Universe
this effect means a secular trend between the observer’s proper time and the
coordinate time (the latter being the argument of the relativistic equations of
motion). Our considerations show that the large contributions to observables
from these two sources completely cancel out each other. Hence, the expansion
of the Universe in principle cannot be detected analyzing any observations of the
solar system bodies, at least in the frame of the models of the uniform Universe.
One may find in the literature the statements (without taking into account the
Einstein effect) that the expansion of the Universe does not affect the planetary
motion (see, for instance, Jarnefelt (1940, 1942)). This statement has not ever
been rigorously proved. Moreover, it is wrong if the Einstein effect is ignored.

There exists another source of perturbations in the solar system that really
leads to the secular increase of the Astronomical Unit at a marginally detectable
level. This effect is caused by the loss of the solar mass M due to the light
emission and solar wind. The rate M of the loss caused by the solar wind is
estimated as M /M ~ 3-10712/cy (Suniaev 1986) giving for the resulting secular
increase of AU the value about 0.3 meters per century which is at the threshold
of sensitivity of the contemporary radiometric observations of martian space
probes. The loss of the solar mass for radiation is several times less and may be
disregarded.

At last, we still cannot rule out the possibility that the gravitational constant
decreases secularily in time. It also might be detected from analysis of the
radiometric observations of the space probes.

The paper consists of the two parts. In the theoretical section we show that
the expansion of the uniform Universe does not produce any measurable effects
in the motion of the major planets. This result is not self-evident because the
cancellation of the large dynamical effects with those of the light propagation
needs rather delicate analytical considerations to be proved. In the second part
we discuss some results of estimating %AU from analysis of the radiometric
observations. The experimentally derived value of %AU indeed appears positive
but its value is at least by one order larger than that predicted for the assumed
rate of the loss of the solar mass.

This work seems to be a first attempt to detect such fine effects from analy-
sis of the most accurate radiometric observations available at present, and our
results may be considered as preliminary ones. Because the cosmological ex-
pansion of the uniform Universe is proved to do not affect the value d%AU,
further experimental studies of this parameter from analysis of the accumulat-
ing dataset of the radiometric observations seem to be very promising in several
aspects including detection of secular decrease of the gravitational constant (if
the solar physics sets limits on the rate of the loss of the solar mass). From the
other hand, theoretical studies of dynamical effects in the Solar System caused
by non-uniform features of the expanding Universe also seem to be perspective.



2 Cosmological expansion and planetary mo-
tion in the expanding Universe

2.1 Time—space metrics and equations of planetary mo-
tion

If the singularity approximating the solar gravitation is absent then the Fried-
mann metric of the open expanding Universe with the uniform mass distribution
can be presented in the conformally Galilean form as follows (Fock 1955; Landau

and Lifshitz 1967):

ds? = A (Fdt? — dr?), (1)
where
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c is the light velocity, r? = z? 4+ y? + 22, dr? = dz? 4+ dy? + dz?, and q is a
constant parameter of the metric.

We have chosen the conformally Galilean coordinates because to study the
planetary motions they are more suitable than the ‘cosmical’ co-moving coor-
dinates commonly used in cosmology.

For this study it is convenient to assume that the origin of the space coordi-
nates coincides with the center of the Sun. The second parameter of the metric
is the value of Sy of S for the present epoch at the solar center. Hence, the zero
point of the time scale is the epoch of the singularity when S = ¢t = 0 at the
solar center. The parameter Sy = ctq is proportional to the age of the Universe
0.

Tt is known (Fock 1955; Landau and Lifshitz 1967) that the Hubble constant
Hgy, measured at the present epoch, may be expressed in terms of ¢, Sy as

follows:
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Hye —C 1+_), A:<1__).
’ 50A3/4 < So ‘ So

The second relation presents the mean density pg of the matter in the Universe
(at present) in terms of the same parameters ¢, So
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where G is the gravitation constant.
For applications to planetary dynamics, the metric (1), (2) has to be gener-
alized to include perturbations caused by the solar potential. It is known that



the metrics of the gravitating point of the mass M with sufficient accuracy (not
too close to the singularity) may be presented as follows:

2 2 M
dsz:(l__m>c2dt2_(1+_m)dr2, me M
T T
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To take into account the gravitational singularity (the Sun), the perturbed Fried-
mann metric should satisfy the Einstein field equations with the right part being
the sum of the dust matter tensor and that of the singularity at the origin of
the coordinates. Both gravitational fields are weak and in spite of the nonlinear
structure of the field equations these equations may be linearized resulting to
superposition of the both fields with some small but important corrections. It
is shown in Appendix that the metric obtained as a solution of the perturbed
Einstein equations may be written in the form

ds® = <A - Z—m\/Z> cdt? — <A + Q—m\/Z> dr?. (4)
r r /

Deriving the quasi-Newtonian equations of motion in the field (4), the factor
at dr? may be set equal to A. If the trajectory of the test body is parameterized
by r(7), t(7) in terms of the proper time 7 then the equations of motion may
be written in Lagrangian form (making use of the vectorial symbolic)

d (0L oL 0
dr \ Or; or
dafory o _
dr \ Ot, o 7
where Lagrangian L is given by the expression
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and the lower index 7 denotes differentiating with respect to 7.

This system has the integral L = C. Without loss of generality the constant
C may be set equal to 1. Then this integral can be used to transform the
system to the coordinate time ¢t as the independent variable. In this way the
equations for the space coordinates r are separated from the equation relating
the coordinate time with the proper time. Omitting simple transformations, we
present the final differential equations in the form (consistent, also, with Egs.

(4.3.38) of Brumberg (1991))
GM 2q
~Ar T s

For the purely uniform Universe (i.e. if M = 0) the equations of motion
have three-parametric family of the partial solutions

(I#[? = ) (i —x).. (5)

iPo=

r = rt, (6)



meaning that the test particle at the position r moves in the radial direction
with the Hubble velocity v = r/t where ¢ is the time interval elapsed from the
epoch of singularity. This family as a whole presents rectilinear motions of the
uniformly distributed field of particles (galaxies) generating the metric of the
expanding Universe.

In application to the solar system bodies the equations (5) may be signifi-
cantly simplified. The time variable ¢ explicitly entering into the right member
of these equations is reckoned from the epoch of the singularity. Hence, its value
at the present epoch is equal to the Universe age: tq ~ 17.7 x 10° years. We
set S = ct neglecting the light propagation time in the solar system (about five
minutes for AU and several hours for maximal light crossing) in comparison
with the Universe age. We may also neglect the ratio |#|?/c? of the order 1078
for any planet of the solar system. As a result, the equations of motion of the
test particle in the field of solar gravity at the background of the expanding
uniform Universe reduce to the form

Gm 2q .
~ 72,5 T T o paya T (7)
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With sufficient accuracy we may set

a=(-5)"

and restrict ourselves by the planar case with z = z = 0.

Hence, we ignore the dependence of S on the space coordinates r in the
expression (2) assuming S = Sy + ¢(t — ¢p) at least for the time span of several
hundred years. Indeed, the error of this approximation is proportional to the
square of the ratio of the light interval r/¢ (about five minutes) to the Universe
age to. Therefore, with very high accuracy the parameter A of the metric may
be presented in the form

A= Ao+ Ao(t —to)

where
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These expressions should be substituted into the first term of the right part
of equations of motion (7) while for the small second term the approximation
A = Ag is quite sufficient. As the result the equations of motion of the test

particle around the Sun at the background of the uniform Universe reduce to
the simple form as follows:

. GM 1y 2
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where

T:@<ﬁ_1> (10)

¢ q

is the time-like parameter that characterizes the perturbing effects in the plan-
etary motion due to the cosmological expansion.

Note that the a priori value of the ratio ¢/Sy < 0.1 is small enough and
thus relation (3) shows that the parameter Sy/c is close to the Hubble age
of the Universe 1/Hy. Then from definition (10) of T one can see that T
exceeds the Hubble age at least by one order. Thus the expected perturbations
are less than one could anticipate from the naive assumption that the Hubble
age 1s the characteristic time of the evolution of the planetary orbits due to
the cosmological expansion. This is true for the considered open model with
po < per Where pe, is the critical mass—density

_ s
Per = 8§tG’

It may be shown, however, that for the flat expanding model with pg = pe,
(consistent probably with recent observations, see (Spergel et al. 2003)) the
Hubble time is indeed the characteristic evolutional time for the corresponding
equations of motions. But as shown below 1t does not involve any observational
consequences.

Dependence of the first term in the right member of equations (9) on the
constant parameter Ag does not lead to any observable effects and may be
disregarded by putting M* = M/\/Ajq resulting in the equations

i _GM <1_21_t°)r_31'~. (1)

r

Solution of differential equations (11) written for the heliocentric motion of
the Earth has to be inserted to the right member of expression (4) enabling one
to obtain the relationship between the coordinate time ¢ and the proper time 7
realized on the Earth as the atomic time scale

dr\? 2m v?
<E> —A— T\/AT—AC—T

If the cosmological expansion is not considered (A = 1) then this relation
presents relativistic effect in the atomic time and is used in processing obser-
vations of the planets in a standard way. Thus we may disregard the terms
proportional to m and v?/c?. The first term results in the following relation
between the coordinate time ¢ and the atomic time 7 of an observer (setting the
constant factor v/Aq equal to 1 by rescaling the time unit of the proper time 7):

d t—1
d_;:\/2~1+2 TO. (12)



2.2 Dynamical effects in the expanding Universe

From differential equation (11) one can see that the expanding Universe pro-
duces the effect similar to the secular degrease of the gravitational constant &
with the rate G/G given by the expression

g’_Q

G~ T
in which the time-like constant T is defined by relation (10).
Introducing the polar coordinates in the plane of motion z = 0

r =rcosl, y=rsinA (13)

the equations (11) can be transformed into

.. : t—1tp\ 1 2, 1d : 2
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The second equations admits the straightforward integration
: t—1
r?X = na’ exp (—2 7 0) (15)

or by neglecting the higher orders with respect to the small parameter (t—t¢)/ T

A:n(%)2<1—2t}t°>, (16)

a being an arbitrary constant related with the longitude frequency n by the
third Kepler’s law n%?a® = GM*. Then the first equation of (11) takes the form

n2q* t— 1o nZa t— 1o 2
r = 1—4 — 1-2 ——7. 1
TS < T ) 2 < T ) T" (17)

Hence, the motion of the test body can be represented by the approximate
expressions for the radius—vector and longitude

ro= a<1—2t_Tt°>, (18)

X = Xo+n(t—tg) <1+tfrt°>. (19)

These relations should be used for perturbations of both the observed planet
and the Earth. If they are not taken into account then the experimentally
derived value of the Astronomical Unit AU would reveal the secular trend

dAU __t—to
AU T

(20)



Hence, if positional observations of the planets are processed without con-
sidering in the dynamical model the perturbations of the radius—-vector and
longitude given above then it results to the negative secular trend (20) in the
observed values of AU and the positive quadratic term (19) in longitudes of all
planets (the cosmic drag effects). In fact the effect in the longitudes means that
the time scale of the observer needs the quadratic in time correction.

However, these dynamical effects do not cover all consequences of the cosmo-
logical expansion for the major planet motion. Not accounted effects of the same
character arise if in modeling the observables one ignores a small but important
cosmological effect in the light propagation from the terrestrial observer to the
planet. This effect is caused by the rate clock difference between the observer’s
atomic time scale and the time scale of the equations of motion (Einstein effect).

2.3 Einstein effect for the light propagation in the ex-
panding Universe

To model the observed distances from the observer to the planet the following
reductions for the light propagation should be carried out.

1. If ¢4, to, t3 are the instants of the signal emitting, its reflecting from the
target, and its receiving back at the terrestrial station, respectively, then the
radar time delay dt is equal to t3 — #; and the modeled values of di, t1, to, 13
are obtained by iterations from the relations

d=to—ty = ¢ (rplts) — rolta)| + I ta) — vy (t2)]),
ty = 1 -I-C_lll‘p(tz) _re(tl)l;
ts = ta+ C_1|1'e(t3,) —1p(t2)],

where 1, (t), r.(t) are heliocentric positions of the target and the observer at the
corresponding moment ¢ of the coordinate time scale of planetary ephemerides.

Several iterations are needed to calculate the momentsty, ¢5, t3 and the time
delay dt. Afterwards, to match the modeled time delay d¢ with its measured
value dt 55, the value dt should be transformed to the scale of the proper time 7
multiplying it by the scale factor 1 +dr/dt with the value (12) for the derivative
dr/dt. Thus the calculated time delay dt is related with the observed quantity
dtops as follows:

t—t
dt . = dt <1+2 T°>.

If this reduction is not applied then in addition to the dynamical trend (20)
the value of AU derived from observations would contain the positive secular
trend

d t—to

— AU =2 . 21
dt v T (21)




Tt is seen that contributions (20) and (21) cancel out each other.

2. Before entering into the ephemerides given in the coordinate time scale,
the proper time 7 reckoned by the observer’s clock has to be transformed into the
coordinate time t. This transformation is obtained by integrating the equation
(12). Tf this reduction is not carried out then the observed mean longitude would
contain the additional negative term quadratic in time and proportional to the
mean motion n

_n(t —to)?

d\ =
T

(22)

The correction (22) has to be added to the right member of relation (19). Tt
is seen that the dynamical and kinematical effects in the mean longitude also
cancel out as well in AU.

Thus, we have shown that the effects of expanding uniform Universe do not
involve any measurable effects in the motion of the major planets. This result
is proved for the open model of the uniform Universe when p < p., (or ¢ < Sp)
but it holds true for the case of the flat expanding Universe. Tt may be proved
by extending the above analysis to the case of the metric with p = p... For
brevity such consideration is not presented here.

3 Secular increase of the Astronomical Unit:
observed evidences

3.1 Observations

For the aim of this work only radiometric observations of the major planets have
been used, as the most accurate ones. These observations make it possible to de-
rive positions of the planets without relating them to the stellar or quasar back-
ground (that could be produced only by adding angular observations of more
poor accuracy). To study the effect of the secular variation of the Astronomi-
cal Unit this approach seems to be quite adequate. We use the database of the
radiometric observations of the major planets of the Institute of Applied Astron-
omy compiled and supported by Pitjeva (2001, 2003). It includes all radiometric
data processed in construction of the ephemerides DE405 which are the inter-
nationally adopted standards. The data are published by Standish, the author
of the DE ephemerides, at the web site hitp : /ssd.jpl.nasa.gov/iau — comm4/
of the Jet Propulsion Laboratory. This dataset has been appended by Pitjeva
with radar observations of Mercury, Venus and Mars made at the radar station
Eupatoria (Crimea) since 1961, and at American radar stations in 1961-1966
(ranging to Mercury and Venus), and in 1967-1971 (ranging to Mars) which are
not included into the JPL database due to their lower accuracy in comparison
with the more recent data. The measurements of ranging to surfaces of the
planets are reduced for effects of topography making use of either the available
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hypsometric data (for Mars and Venus), or so called closing points (for Mer-
cury). Observations distributed in one-day intervals are combined to normal
points with the resulting errors varying from several kilometers for the old data
to about 150 meters for the more recent ones.

Since 1971 a great improvement in accuracy of the measured distances to
Mars has been achieved as the result of exploration of Mars by space missions.
These data are of the two types: firstly, the measured distances to the lan-
ders on the surface of Mars (Viking 1 in 1976-1992, Viking 2 in 1976-1977
and Pathfinder in 1997), and secondly, the distances to the martian barycen-
ter synthesized from results of tracking of space probes orbiting around Mars
(Mariner-9, 1971-1972, Mars Global Surveyor (MGS), 1998-2003, and Odyssey,
2002-2003). A priorierrors of the lander data are about 5 m. For the spacecraft
data they vary from 10-15 m for Mariner-9 to 2-3 m for MGS and Odyssey.

There 1s also a large volume of phase measurements of distances to Mars
(about 15000 normal points for Vikings 1, 2 and 7500 normal points for Pathfinder
mission). They are of a centimeter level of accuracy which could not be realized
in the full scale due to impossibility to resolve the phase ambiguity and to tailor
the phase measurements made at different days. That is why the observations
of this type were used only in form of differences of the phases for two moments
of time separated by two-minute time interval, transformed to the length unit.
In this way the phase ambiguity vanishes, but the obtained differences lose sen-
sitivity to the long—periodic effects caused by errors in the orbital elements.
On the other hand, these differential measurements are very sensitive to the
short periodic effects of the Mars rotation and have been used here mainly to
strengthen the solution with respect to the coordinates of martian landers and
parameters of rotation of Mars.

The total dataset of the measurements consists of about 7500 measured rang-
ing distances (individual or reduced to normal places) to Mercury, Venus and
Mars (either to sub—radar points on the surfaces, or to the landers, or else to
the barycenter of Mars), and about 23000 of the Doppler-like auxiliary measure-
ments. All observations were weighted in accordance with the a priori accuracy
of the individual measurements or normal places assigned by Pitjeva. The great
volume of the Doppler-like differential measurements (given by the phase dif-
ferences) was downweighted to avoid influence of their systematic errors.

The observation span of 1961-2003 has allowed to estimate the centennial
secular trend of AU with the formal error about 0.4 meter.

3.2 Dynamical model and ephemerides

For more reliability of results the described above observations have been pro-
cessed with two independent dynamical models that could provide the ade-
quate level of accuracy. The first model is presented by the ephemerides DE405
adopted as an international standard (Standish 1998). These ephemerides are
distributed in the form of Chebyshev polynomials and hence they cannot be
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applied to calculate partial derivatives with respect to a number of parameters
that have to be estimated simultaneously with the secular effects under con-
sideration. The partials have been calculated with the numerical theory EPM,
developed in the Institute of Applied Astronomy of St-Petersburg, making it
possible to improve all the parameters with the both ephemerides and then to
compare the results obtained. Numerical integration of the EPM ephemerides is
performed within the framework of the relativistic (post—-Newtonian) time—space
metric of General Relativity following the basic ideas of the DE ephemerides as
they are outlined in (Newhall et al. 1983). Since then significant developments
have been made to refine the models of the orbital motion of the major plan-
ets, as well as of the orbital and rotational motions of the Moon for the aims
of successful processing more recent and more precise observations of distances
to the major planets and the Moon (Krasinsky, 1999, Pitjeva 2001, Krasinsky,
2002).

The most serious problem encountered in constructing up-to-date ephemerides
of the major planets is the strong necessity to take into account the perturba-
tions from a large number of minor planets with poorly known masses. In the
EPM ephemerides the integrated differential equations include (in addition to
the equations for the major planets from Mercury to Pluto and for the Moon
and its librations) also the equations of motion of 297 minor planets. For the
biggest five of them mutual perturbations are accounted while for the others
only the perturbations from the major planets. Masses of the minor planets for
the integration have been obtained by the method described in (Krasinsky et
al. 2001, 2002). This method follows basically that used in the DE ephemerides
and may be briefly outlined in the following way. The minor planets are sep-
arated to three sets in accordance with their taxonomic classes: C (Carbonic),
S (Sillicum) and M (Metallic) derived from the taxonomic codes taken from
NASA database SBN (‘Small bodies node of the NASA Planetary Data Sys-
tem’, http://pdssbn.astro.umd.edu). This database contains also the radii of
the asteroids resulted from TRAS (Infra Red Astronomical Satellite) mission.
Assuming appropriate densities for each of the taxonomic classes, one obtains
values of the masses of all asteroids involved in numerical integration. Mean
densities of each of the taxonomic classes are considered as parameters to be
improved from general fitting of the radiometric measurements, simultaneously
with other parameters which include also masses of the biggest five asteroids
(estimating them from perturbations in the orbits of the major planets). To
take into account the overall effect from the large number of remaining small
asteroids whose individual perturbations could not be calculated by the direct
numerical integration, these perturbations are approximated by the model of
a solid ring in the ecliptic plane. The mass of this ring also are included into
the set of the estimated parameters. For more details of evaluating the asteroid
masses see (Krasinky et al, 2001; Krasinsky et al, 2002).

At the level of accuracy of the best radiometric observations available now,
uncertainties of the adopted masses of the major planets also influence the
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modeled observables. To rule out this source of systematic errors in the secular
trend of AU, the masses of Venus, Mars, Jupiter and Saturn are included into
the list of parameters under estimation.

Dynamical effects of the uncertainty of the lunar mass are negligible but
the geometrical displacement of the Earth relative to the barycenter of the
Earth—-Moon system (so called lunar term) is very sensitive to the lunar mass.
Therefore, the ratio of the masses of the Moon and Earth is considered as one
more unknown of the analysis. Any error in the mass of the Moon gives rise to
a monthly term in the residuals and so does not affect the secular rates under
study but its error might increase the noise of the residuals.

Both the DE405 and EPM ephemerides account for the dynamical effects
of the coefficient Jy of the second harmonics of the solar potential. The value
Jo = 2.0 x 10~7 adopted in DE405 is used. On the whole our analysis of the
radiometric observations has confirmed this value, and moreover, it appears that
Ja may be determined even more exactly if included into the list of the solve-for
parameters.

The applied luni—planetary integrator is based on the Everhard method of
numerical integration with the fixed step of 0.5 day. It is built into the program-
ming system ERA developed to support scientific research of various kind in the
field of Dynamical and Ephemeris Astronomy. The system is described briefly in
(Krasinsky and Vasilyev 1997), the full Manual is available via anonymous FTP:
quasar.ipa.nw.ru/incoming/era/era7.ps. Both the numerical integration and
comparison of the constructed dynamical theory EPM with the observed radio-
metric distances to the planets have been carried in the frame of this system.
The process may be independently reproduced with corresponding programs
available in the mentioned above FTP server.

3.3 Estimation of the parameters

The total list of the estimated parameters is as follows:

o three Keplerian elements of the Earth (semi-major axis, excentricity and
perihelion longitude) considering fixed the other three elements which re-
late the coordinate system of the major planets with the celestial reference
frame,

e 6 x 4=24 orbital elements of Mercury, Venus and Mars,

¢ 3 x 3 =9 areocentric coordinates of the martian landers (Viking 1, Viking
2, and Pathfinder),

e 3 Euler’s angles of the equator of Mars relative to its orbit, and 3 secular
rates of these angles (6 unknowns),

e masses of the biggest five asteroids (5 unknowns),

e masses of Venus, Earth, Mars, Jupiter, Saturn, and of the ring of small
asteroids (6 unknowns),
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ratio of the masses of the Moon and the Earth,

mean radii of Mercury, Venus, and Mars (for Venus and Mars they are
rather scale factors of the hypsometric maps used for reduction of ranging
to these planets, 3 unknowns),

parameters of the solar corona model for martian orbiters (one or two
parameters for each upper conjunction for various solutions),

densities of the asteroids of classes C and S (2 unknowns),
coefficient J3 of the solar potential,

Astronomical Unit AU,

secular rate of AU,

quadratic in time term of the observer’s time scale.

The basic solution includes these 62 parameters plus a bias of the normal
points of Pathfinder, as well as the bias for Odyssey data (considered to be less
reliable than the MGS ones). The solution has provided a satisfactory fit to the

observations, as one can see from Table 1 in which the weighted random mean
square errors (WRMS) of the post—fit residuals in the one-way distances are
given for each group of observations, both for DE405 and EPM ephemerides.

Table 1. Statistics of the post-fit residuals

Observations Dates N | WRMS (m) | WRMS (m)

DE405 EPM
MGS 1998 315 3.1 4.1
MGS 1999 1786 1.1 1.1
MGS 2000 188 1.6 1.4
MGS 2001 1024 1.0 0.9
MGS 2002 717 1.4 1.3
MGS 2003 905 1.6 1.1
Odyssey 2002 775 1.3 1.3
Odyssey 2003 940 1.1 1.0
Viking 1 1976-1982 | 1172 9.6 8.6
Viking 2 1976-1977 80 5.7 5.3
Pathfinder 1997 90 2.6 2.4
Mariner 9 1971-1973 644 37.8 37.6
Mars ranging 1965-1995 403 725.0 733.0
Venus ranging 1961-1995 | 1355 637.0 647.0
Mercury ranging | 1969-1997 706 1329.0 1328.0
Viking phase 1976-1078 | 15030 0.035 0.035
Pathfinder phase 1997 7613 0.003 0.003
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One can see that the WRMS for the two dynamical models are practically iden-
tical. The derived estimates of the secular trend in AU are presented in Table 2
for a number of solutions in which %AU is estimated from various subsets of
the observations (the statistics of the residuals presented in Table 1 corresponds
to the basic solution). To make judgement on reliability of these results it is
important to note that the correlations of %AU with other parameters of the
basic solution do not exceed 0.5. On the other hand, the quadratic term in
the planetary longitudes strongly correlates with the orbital elements of Mars,
the correlations amounting up to 0.85. Thus, we believe that at present the
estimate of d%AU is much more reliable than that of the quadratic term in the
planet longitudes.

Our experience shows that the estimate of %AU is sensitive to values of
parameters of the solar corona model for the martian orbiters. Unfortunately,
unlike the two—frequency observations of the landers, those of the orbiters are
carried out only at one frequency. The published observations of the orbiters
have been already reduced for the corona effects making use of some model,
parameters of which are determined from a global processing, but with the
secular trend of AU not estimated. In this way the reduced observations of the
orbiters might acquire some systematic errors to absorb a part of effects of this
trend. We believe that the theory-dependence of the published observations
of the orbiters could be weakened if the corrections to parameters of the solar
corona are included to the list of unknowns. If that is not done, the trend
%AU appears smaller (but still positive); however such estimate seems not be
very reliable, due to the mentioned methodological deficiencies of this approach.
That is why in the basic solution the corrections to the model of the solar corona
are considered as solve-for parameters, notwithstanding that the observartions
of the orbiters have been already reduced for the solar corona.

Table 2 demonstrates that all the solutions tried give significant positive
values of the secular rate %AU, even excluding the data from orbiters. The
estimates of the rate are given only for the ephemerides EPM, those obtained
with DE405 are very close to them. For instances, the basic solution gives
for EPM the secular trend in AU equal to 16.7 &+ 0.41, while with DE405 the
estimate is 16.5+ 0.41.

Taking into account uncertainties of the results due to different systematic
errors we believe that the most realistic estimate of the rate is

d
ZAU =154 m/ey. (23)

Table 2. Estimates of secular rate of AU
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%AU Solution Time span

(m/cy)

16.7 4+ 0.4 | All observations'" 1961-2003
9.7 +0.2 | All observations? 1961-2003
7.9 4+0.2 | All observations® 1961-2003

9.7 4+ 0.3 | Landers + orbiters® | 1971-2003
144 £ 1.2 | Ranging + orbiters® | 1961-2003
61.0 =+ 6.0 | Ranging + landers 1961-1997
21.3 £ 5.6 | Landers 1971-1997

(1) Estimating parameters of corona for orbiters, and masses of planets.
(2) The same, excluding parameters of corona for orbiters.
(3) Excluding masses of the major planets and the parameters of corona.

4 Discussion of the results

Theoretical interpretation of the derived positive non—zero estimate of the rate
%AU meets serious problems. We may consider the following hypotheses.

1. The effect is an artifact caused by the systematic errors in observations
or by omitting some effects in the dynamical model or in propagation of the
radiosignal. Indeed as noted above this estimate of the rate is affected by diffi-
culties of adequate modeling of the dispersive features of the solar corona when
observing the martian orbiters near upper conjunctions. However, any reason-
able values of the solar corona model do not eliminate the significant positive
secular rate of AU. Solutions in which the adopted masses of the major plan-
ets from Venus to Jupiter are simultaneously improved show that diltAU is only
slightly affected by uncertainties of these masses. The estimate of %AU appears
rather robust if one tries various sets of the estimated parameters. Therefore,
we believe that the observed large positive value of %AU is not affected by
deficiency of either the dynamical model or that of propagation of radio sig-
nal because probably all known sources of errors are accounted. On the other
hand, one could expect that the non—zero d%AU should be accompanied by the
non-zero secular decrease of the planetary mean motion n of the same order in
the parameter dl = AU n/n. If such effect indeed does not take place, it could
be supposed that the trend in AU is caused by some instrumental biases of the
measured distances. However the parameter dl turned out strongly correlated
with a number of parameters under estimation, especially with the areocentric
longitudes of the martian landers, and cannot be considered as reliably deter-
mined. In any case it always was too small to match the derived value of d%AU.
The constraint dl < 5 m/cy seems to be the most reliable estimate, and at
present, we still cannot rule out the hypothesis that the derived rate of AU is
an artifact due to instrumental biases in the observed data.
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2. The main theoretical result of this paper is that the secular rate of AU
cannot be explained by the cosmological expansion of the Universe in the frame
of any model with uniform mass distribution. The zero value of %AU for such
model is a fine balance between the dynamical effect of the cosmic drag and
the Einstein effect in the light propagation. Since each of these effects is very
large (in particular, for the model with p = p., considered now as the most
plausible) one might conjecture that taking into account the mass anisotropy
of the Universe would lead to non—complete cancellation of these large effects
resulting in some non—zero value of %AU. At present it 1s not clear how to
come to this difficult theoretical problem.

3. Permanent loss of the solar mass due to the electromagnetic radiation and
solar wind involves a secular increase of AU. The largest contribution to the
loss of the solar mass is due to the solar wind. To calculate the corresponding
secular increase of AU we can apply the method of Section 2 used for equation
(9) to the equation

r

. M

and after analogous transformations (with the assumed value of the loss due to
the solar wind M /M ~ 3 -107'%/cy) we obtain

d M
EAU =AU i 0.3 m/cy

which is less than the observed value (23) by almost the two orders.

Probably the large value (23) derived from the observations cannot be rec-
onciled with any physically meaningful model of the loss of the solar mass. Note
that even now the formal error of the secular trend in AU only insignificantly
exceeds the predicted rate due to the loss of the solar mass and in near future
this effect must be accounted while constructing the ephemerides of the planets.

4. Other conjectures. Decrease G of the gravitational constant G with the
rate G/G ~ —2 x 107'?/year might explain the observed secular rate of AU.
This cojecture seems to be the lest plausible.

In conclusion, we would like to underline that the by—product of precise mea-
surements of the distances between the Earth and Mars provided by the ongoing
program of exploration of Mars seems to be very promising for obtaining more
reliable estimates of %AU. Even now the formal error of this value is compa-
rable with the expected effect from the solar wind. Accumulation of the data
of this tipe makes it possible to derive more reliable value of d%AU. Then any
deviations of the observed %AU from the predicted value of the rate of loss
of the solar mass will be very informative either for the solar physics or for
understanding deep features of the space—time evolution of the Universe.
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Appendix. Attracting mass at the cosmological background

We derive below the metric (4) describing a weak gravitational field of a sin-
gle attracting mass (the Sun) at the cosmological background of the uniform
isotropic Universe. The standard (Robertson—Walker) form of this background
in the spherical co—moving coordinates reads (Landau and Lifshitz 1967)

ds? = 2de? — a*[dx® + X?(d6? + sin? 0dp?)] (A.1)
with

X, flat model (A.2)

sin y closed model
Y= {
sinhy, open model
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and scalar factor @ determined by the Einstein field equations. Considering that

g52 +1, closed model
dy? = ——, k= 0, flat model (A.3)
1 — kX2
—1, open model

and replacing

p
EE R S— A4
1+ %kpZ (4.4)
one often makes use of (A.1) in form of
2
ds? = 2d¢* — [dp? + p*(d6? + sin® Bdp?)] (A.5)

v
(14 kp?)"

but this form is not convenient for our purposes. Another modification of (A.1)
more convenient in our case is produced by the transformation

edé = adn. (A.6)
There results:
ds? = a?(n)[dn? — dx? — £2(d6? + sin” 0dyp?)]. (A7)

As well known, for the models with zero pressure the world time &, radius a and
the Hubble constant H = a~'da/d¢ have values (Landau and Lifshitz 1967)

9 ¢ siny
=L (n —siny) 24 (1= cosm)?’
e ! ’ 2¢(1 — cos ), q (1 —cosn)
4.3 2 2 3
ER = H=<¢— A.
£=19 3.7 a=qqn’, T (4.8)
2 . 2¢(coshn — 1), .
—q(smhn —n), ( ' ¢ _ sinhp
¢ 2¢ (coshnp — 1)?

for k = 1 (closed model), 0 (flat model) and —1 (open model), respectively, ¢
being a scale factor.

The general Robertson-Walker metric (A.7) can be reduced to the confor-
mally Galilean metric (e.g., problem 19.8 of Lightman et al. 1975). In case of
the open model one can apply a simpler reduction resulting to the conformally
Galilean metric in the form used by Fock (1955). Introducing

r = dsinhy, ¢t = dcosh x, qexpn =d, ‘canhx:c—if (A.9)

one transforms (A.7) (with ¥ = —1) to the form

ds? = A[c?dt? — dr? — v*(d6? + sin? 0dp?)] (A.10)
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with

(12

1
A= a:E(d—q)Q, d = (c*? — p?)1/2 (A.11)

coinciding with the expression (1) by Fock for

' =rcospsind, x? = rsingsinf, #® = rcosf. (A.12)

At the next step we use the equations in variations for the background isotropic
solution derived in (Brumberg 1991). The complete metric

ds® = gudada”,  gu = nu + b (A.13)
represents the solution of the Einstein field equations
Ruw = —k(Tp +Ti) + Aguw (A.14)
with ) .
Tiv =T = 50w T T =Tuw = 50T (A.15)

Here 7,, is the background field mass tensor, T, is the perturbation field

mass tensor, R, is the Ricci tensor, A denotes the cosmological constant, x =

87G/c?, and G is the gravitational constant. 7 and T are the invariants of

the mass tensors 7H” and TH, respectively. As usually, each Greek index

runs values from 0 to 3, every Latin index runs values from 1 to 3 and the

corresponding Einstein summation rule is applied for each twice repeated index.
The background isotropic metric for A = 0, 7, = 0 reads, in general,

7700 = A, 770m = 0, nmn = —Bémn s (A16)

A, B being functions of all four coordinates (in our case B = A and A has the
specific form (A.11)).

Equations in variations to determine h,, are as follows (Brumberg, 1991):
6Ru = —kTy, — k6T, + Aguw (A7)

with
0Ty = T (908) — T (Nap)- (A.18)

Under coordinate conditions
hoo,0 + hss,0 — 2hos,s = 0, hoo,m — hssm 4 2hms s = 0 (A.19)
these equations take the form
hoo,ss — hoo,00 = 2Loo , (A.20)

hOm,ss = QLOm s (A21)
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B B B
hmn ss__hmn :Qﬁmn ——1)h mn — 5 h m,0n h n.0m A.22
X a1 ,00 + <A ) 00, A( om,0n + hon,om)  ( )

with
Ly, = B(KT;V + K/Jﬁy —Aguw +Qu), (A.23)

Qv being non-linear contributions in Ricci tensor components given by (4.3.24)—
(4.3.26) of (Brumberg 1991). The use of the background conformally Galilean
metric enables one to treat (A.22) as the wave equation with constant coeffi-
cients (in contrast to the Robertson-Walker metric in co—moving coordinates
with A = 1 and B being a function of r and t).

For our purposes it is sufficient to have the simplest, just quasi-Newtonian
solution of equations (A.20)—(A.22). First of all, we retain in (A.23) only the
first term by putting L, = £BT},,. We consider only one material point of mass
M (the Sun) located at the spatial origin r = (2*) = 0. Then the contravariant
disturbing mass tensor T#” may be taken in the form

THV:Ld_xoﬁﬁ (A.24)
V=g ds dz® dz° :

with the density
p=Mé(r), (A.25)

d(r) being delta—function (Infeld and Plebansky 1960). For the background
metric (A.16) one easily finds

" T ~_ (A @2 I A2
(A WP U2y
B A 2\ P /A w2 vh vl
I I B » v c
BTij h \/Zp (B c2> [2 (B 62> 8ij + c c:| ’ (A.28)

v' denoting the three-dimensional velocity. In integrating the equations (A.20)-
(A.22) for the fixed material point in the conformally Galilean background with
A = B one may put

Loo = 4nVAmé(x),  Loi=0,  Ljj=4mV/Amd(r)dy (A.29)

with

GM

m =
2

(A.30)

Hence, by neglecting the retardation terms one can present the approximate

solution of (A.20)—(A.22) in form

hoo:_QTm A hyi=0, hij:_ZTm\/Zaij, (A.31)
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resulting to expression (4), i.e.

2 2
ds? = <A _ _m\/Z> 2t — <A + _m\/Z> dz*dx® . (A.32)
r r '

It is of interest to compare this expression with the exact solution for the
one-body problem in an expanding universe given by McVittie (McVittie 1933;
see also Jarnefelt 1940, 1942). The McVittie solution for the flat (de Sitter)
universe (k = 0) has the form

‘ 2 4
ds? = <1—/17(t)/2r> c2dt? — (1 + @) eP(t) [dr2 + 7“2((16’2 + sin? 6dgp2)]
r

T4 p(t)/2r
(A.33)
with . aM
1] : -
both p=me W m= O (A.34)

Retaining only the first-order terms with respect to m one has

2 2 |
ds? = (1 - —me_ﬁﬂ) Adt? — (1 + —me_ﬁﬂ) PO [dr? + r?(df? + sin? 0d?)].
7

r
(A.35)
Changing the time variable
dt = e*%di (A.36)

one gets the expression
ds® = <eﬁ — 2—meﬁm) 2di? — <eﬁ + Z—meﬁﬂ) [d?“2 + r2(d62 + sin? 6’dgo2)]
r r

(A.37)
taking for A = e’ the same form as (A.32).
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