Chapter 1

Many-Sorted Logic

DECISION PROCEDURES LAST UPDATE OF LECTURE NOTES: TUESDAY, MARCH 7, 2006 LAST UPDATE OF THIS CHAPTER: WEDNESDAY, FEBRUARY 1, 2006.

1.1 Syntax

1.1.1 Definition

We fix an enumerable set **Sort** of SORTS.

1.1.2 Definition

We fix an enumerable set **Var** of VARIABLES. Each variable has associated to it a sort. We denote with **Var**_{σ} the set of variables of sort σ . We assume that **Var**_{σ} is enumerable, for all sorts σ .

1.1.3 Definition

We fix an enumerable set **Con** of CONSTANT SYMBOLS. Each constant symbol has associated to it a sort. We denote with \mathbf{Con}_{σ} the set of constant symbols of sort σ . We assume that \mathbf{Con}_{σ} is enumerable, for all sorts σ .

1.1.4 Definition

We fix an enumerable set **Fun** of FUNCTION SYMBOLS. Each function symbol has associated to it an arity of the form $\sigma_1 \times \cdots \times \sigma_n \to \sigma$, where $n \ge 1$ and $\sigma_1, \ldots, \sigma_n, \sigma$ are sorts. We denote with $\mathbf{Fun}_{\sigma_1 \times \cdots \times \sigma_n \to \sigma}$ the set of function symbols of arity $\sigma_1 \times \cdots \times \sigma_n \to \sigma$. We assume that $\mathbf{Fun}_{\sigma_1 \times \cdots \times \sigma_n \to \sigma}$ is enumerable, for all sorts $\sigma_1, \ldots, \sigma_n, \sigma$.

1.1.5 Definition

We fix an enumerable set **Pred** of PREDICATE SYMBOLS. Each predicate symbol has associated to it an arity of the form $\sigma_1 \times \cdots \times \sigma_n$, where $n \ge 1$ and $\sigma_1, \ldots, \sigma_n$ are sorts. We denote with $\operatorname{Pred}_{\sigma_1 \times \cdots \times \sigma_n}$ the set of predicate symbols of arity $\sigma_1 \times \cdots \times \sigma_n$. We assume that $\operatorname{Pred}_{\sigma_1 \times \cdots \times \sigma_n}$ is enumerable, for all sorts $\sigma_1, \ldots, \sigma_n$.

1.1.6 Definition

The Equality symbol is \approx .

1.1.7 Definition

The PROPOSITIONAL CONNECTIVES are

1. \neg (not);

2. \wedge (and);

3. \vee (or);

4. \rightarrow (implies);

5. \leftrightarrow (iff).

1.1.8 Definition

The UNIVERSAL QUANTIFIER is \forall .

1.1.9 Definition

The existential quantifier is \exists .

1.1.10 Definition

A SIGNATURE is a tuple $\Sigma = (S, C, F, P)$ where:

- 1. S is a nonempty set of sorts.
- 2. C is a countable set of constant symbols whose sorts belong to S.
- 3. F is a countable set of function symbols whose arities are constructed using sorts that belong to S.
- 4. P is a countable set of predicate symbols whose arities are constructed using sorts that belong to S.

Given a signature $\Sigma = (S, C, F, P)$, we write Σ^{S} for S, Σ^{C} for C, Σ^{F} for F, and Σ^{P} for P.

1.1.11 Definition

Let Σ be a signature. The set of Σ -TERMS of sort σ is the smallest set of expressions satisfying the following properties:

- Each variable x of sort σ is a term of sort σ , provided that $\sigma \in \Sigma^{S}$.
- Each constant symbol $c \in \Sigma^{\mathcal{C}}$ of sort σ is a Σ -term of sort σ .
- If $f \in \Sigma^{\mathrm{F}}$ is a function symbol of arity $\sigma_1 \times \cdots \times \sigma_n \to \sigma$ and t_i is a Σ -term of sort σ_i , for $i = 1, \ldots, n$, then $f(t_1, \ldots, t_n)$ is a term of sort σ .

1.1.12 Definition

Let Σ be a signature. A $\Sigma\textsc{-}\mathsf{ATOM}$ is an expressions of the form

$$s \approx t$$
, $p(t_1, \ldots, t_n)$

where:

- 1. s and t are Σ -terms of the same sort;
- 2. $p \in \Sigma^{\mathcal{P}}$ is a predicate symbol of arity $\sigma_1 \times \cdots \times \sigma_n$ and t_i is a Σ -term of sort σ_i , for $i = 1, \ldots, n$.

1.1.13 Definition

The set of Σ -FORMULAE is the smallest set of expressions satisfying the following properties:

- 1. Each Σ -atom is a Σ -formula.
- 2. If φ is a Σ -formula then $\neg \varphi$ is a Σ -formula.
- 3. If φ and ψ are Σ -formulae then $\varphi \land \psi$, $\varphi \lor \psi$, $\varphi \to \psi$, and $\varphi \leftrightarrow \psi$ are formulae.
- 4. If φ is a Σ -formula, $\sigma \in \Sigma^{S}$, and x is a variable of sort σ , then $(\forall_{\sigma} x)\varphi$ and $(\exists_{\sigma} x)\varphi$ are Σ -formulae.

1.1.14 Definition

A Σ -LITERAL is a formula of the form

 $\varphi, \qquad \neg \varphi,$

where φ is a Σ -atom.

1.1.15 Definition

A QUANTIFIER-FREE Σ -FORMULA is a Σ -formula in which no quantifier occurs.

1.1.16 Definition

Let t be a term, and let σ be a sort. We denote with $vars_{\sigma}(t)$ the set of variables of sort σ occurring in t. This set can be recursively defined as follows:

- 1. $vars_{\sigma}(x) = \{x\}$, for all variables x of sort σ .
- 2. $vars_{\sigma}(x) = \emptyset$, for all variables x whose sort is not σ .
- 3. $vars_{\sigma}(c) = \emptyset$, for all constant symbols c.

4.
$$vars_{\sigma}(f(t_1,\ldots,t_n)) = \bigcup_{i=1}^n vars_{\sigma}(t_i).$$

1.1.17 Definition

Let t be a term. We denote with vars(t) the set of variables occurring in t, that is,

$$vars(t) = \bigcup_{\sigma \in \mathbf{Sort}} vars_{\sigma}(t)$$

1.1.18 Definition

Let T be a set of terms. We let

$$vars_{\sigma}(T) = \bigcup_{t \in T} vars_{\sigma}(t),$$

1.1.19 Definition

Let T be a set of terms. We let

$$vars(T) = \bigcup_{t \in T} vars(t)$$
.

1.1.20 Definition

Let φ be a formula, and let σ be a sort. We denote with $vars_{\sigma}(\varphi)$ the set of variables occurring free in φ . This set can be recursively defined as follows:

- 1. $vars_{\sigma}(s \approx t) = vars_{\sigma}(s) \cup vars_{\sigma}(t)$.
- 2. $vars_{\sigma}(p(t_1,\ldots,t_n)) = \bigcup_{i=1}^n vars_{\sigma}(t_i).$
- 3. $vars_{\sigma}(\neg \varphi_1) = vars_{\sigma}(\varphi_1)$.
- 4. $vars_{\sigma}(\varphi_1 \land \varphi_2) = vars_{\sigma}(\varphi_1) \cup vars_{\sigma}(\varphi_2).$
- 5. $vars_{\sigma}(\varphi_1 \lor \varphi_2) = vars_{\sigma}(\varphi_1) \cup vars_{\sigma}(\varphi_2).$
- 6. $vars_{\sigma}(\varphi_1 \to \varphi_2) = vars_{\sigma}(\varphi_1) \cup vars_{\sigma}(\varphi_2).$
- 7. $vars_{\sigma}(\varphi_1 \leftrightarrow \varphi_2) = vars_{\sigma}(\varphi_1) \cup vars_{\sigma}(\varphi_2).$
- 8. $vars_{\sigma}((\forall_{\tau} x)\varphi_1) = vars_{\sigma}(\varphi_1) \setminus \{x\}.$
- 9. $vars_{\sigma}((\exists_{\tau} x)\varphi_1) = vars_{\sigma}(\varphi_1) \setminus \{x\}.$

1.1.21 Definition

Let φ be a formula. We denote with $vars(\varphi)$ the set of variables occurring free in φ , that is,

$$vars(\varphi) = \bigcup_{\sigma \in \mathbf{Sort}} vars_{\sigma}(\varphi).$$

1.1.22 Definition

Let Φ be a set of formulae. We let

$$vars_{\sigma}(\Phi) = \bigcup_{\varphi \in \Phi} vars_{\sigma}(\varphi) \,,$$

1.1.23 Definition

Let Φ be a set of formulae. We let

$$vars(\Phi) = \bigcup_{\varphi \in \Phi} vars(\varphi) \,.$$

1.1.24 Definition

Let Σ be a signature. A Σ -SENTENCE is a Σ -formula φ such that $vars(\varphi) = \emptyset$.

1.2 Semantics

1.2.1 Definition

Let Σ be a signature, and let X be a set of variables whose sorts are in Σ^{S} . A Σ -INTERPRETATION over X is a map satisfying the following properties:

- 1. Each sort $\sigma \in \Sigma^{S}$ is mapped to a nonempty domain A_{σ} .
- 2. Each variable $x \in X$ of sort σ is mapped to an element $x^{\mathcal{A}} \in A_{\sigma}$.
- 3. Each constant symbol $c \in \Sigma^{\mathbb{C}}$ of sort σ is mapped to an element $c^{\mathcal{A}} \in A_{\sigma}$.
- 4. Each function symbol $f \in \Sigma^{\mathrm{F}}$ of arity $\sigma_1 \times \cdots \times \sigma_n \to \sigma$ is mapped to a function $f^{\mathcal{A}} : A_{\sigma_1} \times \cdots \times A_{\sigma_n} \to A_{\sigma}$.
- 5. Each predicate symbol $p \in \Sigma^{\mathcal{P}}$ of arity $\sigma_1 \times \cdots \times \sigma_n$ is mapped to a subset $p^{\mathcal{A}} \subseteq A_{\sigma_1} \times \cdots \times A_{\sigma_n}$.

1.2.2 Definition

Let Σ be a signature. A $\Sigma\textsc{-structure}$ is a $\Sigma\textsc{-interpretation}$ over an empty set of variables.

1.2.3 Definition

Let Σ be a signature, let t be a Σ -term of sort σ , and let \mathcal{A} be a Σ -interpretation over X such that $vars(t) \subseteq X$. The EVALUATION of t under \mathcal{A} is the object $t^{\mathcal{A}} \in A_{\sigma}$ recursively defined as follows:

- 1. The evaluation of a variable x is $x^{\mathcal{A}}$.
- 2. The evaluation of a constant symbol c is $c^{\mathcal{A}}$.
- 3. The evaluation of a term $f(t_1, \ldots, t_n)$ is

$$[f(t_1,\ldots,t_n)]^{\mathcal{A}} = f^{\mathcal{A}}(t_1^{\mathcal{A}},\ldots,t_n^{\mathcal{A}}).$$

1.2.4 Definition

Let \mathcal{A} and \mathcal{B} be Σ -interpretations over X, and let $x \in X$ be a variable. We say that \mathcal{B} is an x-variant of \mathcal{A} if:

1. $A_{\sigma} = B_{\sigma}$, for all sorts $\sigma \in \Sigma^{\mathrm{S}}$.

2. $r^{\mathcal{A}} = r^{\mathcal{B}}$, for all objects $r \in \Sigma^{\mathcal{C}} \cup \Sigma^{\mathcal{F}} \cup \Sigma^{\mathcal{P}} \cup (X \setminus \{x\})$.

1.2.5 Definition

Let Σ be a signature, let φ be a Σ -formula, and let \mathcal{A} be a Σ -interpretation over X such that $vars(\varphi) \subseteq X$. The EVALUATION of φ under \mathcal{A} is the truth value $\varphi^{\mathcal{A}} \in A_{\sigma}$ recursively defined as follows:

- 1. $[s \approx t]^{\mathcal{A}} = true \iff s^{\mathcal{A}} = t^{\mathcal{A}}.$
- 2. $[p(t_1,\ldots,t_n)]^{\mathcal{A}} = true \iff (t_1^{\mathcal{A}},\ldots,t_n^{\mathcal{A}}) \in p^{\mathcal{A}}.$

3. $[\neg \varphi]^{\mathcal{A}} = true \iff \varphi^{\mathcal{A}} = false.$ 4. $[\varphi \land \psi]^{\mathcal{A}} = true \iff \varphi^{\mathcal{A}} = true \text{ and } \psi^{\mathcal{A}} = true.$ 5. $[\varphi \lor \psi]^{\mathcal{A}} = true \iff \varphi^{\mathcal{A}} = true \text{ or } \psi^{\mathcal{A}} = true.$ 6. $[\varphi \rightarrow \psi]^{\mathcal{A}} = true \iff \varphi^{\mathcal{A}} = false \text{ or } \psi^{\mathcal{A}} = true.$ 7. $[(\forall_{\sigma} x)\varphi]^{\mathcal{A}} = true \iff \varphi^{\mathcal{B}} = true, \qquad \text{for all } x\text{-variants } \mathcal{B} \text{ of } \mathcal{A}.$ 8. $[(\exists_{\sigma} x)\varphi]^{\mathcal{A}} = true \iff \varphi^{\mathcal{B}} = true, \qquad \text{for some } x\text{-variant } \mathcal{B} \text{ of } \mathcal{A}.$

1.2.6 Definition

Let \mathcal{A} be a Σ -interpretation over X, and let φ be a Σ -formula such that $vars(\varphi) \subseteq X$. We write

 $\mathcal{A}\models\varphi$

when $\varphi^{\mathcal{A}} = true$.

1.2.7 Definition

Let φ be a Σ -formula, and let $X = vars(\varphi)$. We say that φ is:

- VALID, if $\mathcal{A} \models \varphi$, for all Σ -interpretations \mathcal{A} over X;
- SATISFIABLE, if $\mathcal{A} \models \varphi$, for some Σ -interpretation \mathcal{A} over X;
- UNSATISFIABLE, if φ is not satisfiable.

1.2.8 Definition

Let \mathcal{A} be a Σ -interpretation over X, and let Φ be a set of Σ -formulae such that $vars(\Phi) \subseteq X$. We write

 $\mathcal{A} \models \Phi$

when

$$\mathcal{A} \models \varphi$$
, for all formulae $\varphi \in \Phi$.

1.2.9 Definition

Let Φ be a set of Σ -formulae, and let $X = vars(\Phi)$. We say that Φ is:

- VALID, if $\mathcal{A} \models \Phi$, for all Σ -interpretations \mathcal{A} over X;
- SATISFIABLE, if $\mathcal{A} \models \Phi$, for some Σ -interpretation \mathcal{A} over X;
- UNSATISFIABLE, if Φ is not satisfiable.

1.2.10 Definition

Let \mathcal{A} be a Σ -interpretation over X. For $\Sigma_0 \subseteq \Sigma$ and $X_0 \subseteq X$, we denote with $\mathcal{A}^{\Sigma_0,X_0}$ the interpretation obtained from \mathcal{A} by restricting it to interpret only the symbols in Σ_0 and the variables in X_0 . Furthermore, we let $\mathcal{A}^{\Sigma_0} = \mathcal{A}^{\Sigma_0,\mathscr{O}}$.

1.2.11 Definition

Let \mathcal{A} and \mathcal{B} be two Σ -interpretations over X. An ISOMORPHISM h of \mathcal{A} into \mathcal{B} is a family of bijective functions

$$h = \left\{ h_{\sigma} : A_{\sigma} \to B_{\sigma} \mid \sigma \in \Sigma^{\mathcal{S}} \right\}$$

such that:

- 1. $h_{\sigma}(x^{\mathcal{A}}) = x^{\mathcal{B}}$, for all variables $x \in X_{\sigma}$.
- 2. $h_{\sigma}(c^{\mathcal{A}}) = c^{\mathcal{B}}$, for all constant symbols $c \in \Sigma^{\mathcal{C}}$.
- 3. $h_{\sigma}(f^{\mathcal{A}}(a_1,\ldots,a_n)) = f^{\mathcal{B}}(h_{\sigma_1}(a_1),\ldots,h_{\sigma_n}(a_n))$, for all function symbol $f \in \Sigma^{\mathrm{F}}$ of arity $\sigma_1 \times \cdots \times \sigma_n \to \sigma$.
- 4. $(a_1, \ldots, a_n) \in p^{\mathcal{A}}$ if and only if $(h_{\sigma_1}(a_1), \ldots, h_{\sigma_n}(a_n)) \in p^{\mathcal{B}}$, for all predicate symbol $p \in \Sigma^{\mathcal{P}}$ of arity $\sigma_1 \times \cdots \times \sigma_n$.

We write $\mathcal{A} \cong \mathcal{B}$ when there is an isomorphism of \mathcal{A} into \mathcal{B} .

1.3 Modelclasses

1.3.1 Definition

A Σ -MODELCLASS is a pair $M = (\Sigma, \mathbf{A})$ such that:

- 1. Σ is a signature;
- 2. A is a class of Σ -structures;
- 3. A is closed under isomorphism.

1.3.2 Definition

Let $M = (\Sigma, \mathbf{A})$ be a model lass. An *M*-STRUCTURE is a Σ -structure \mathcal{A} such that $\mathcal{A} \in \mathbf{A}$.

1.3.3 Definition

Let $M = (\Sigma, \mathbf{A})$ be a model class. An *M*-INTERPRETATION is a Σ -interpretation \mathcal{A} such that \mathcal{A}^{Σ} is a Σ -structure.

1.3.4 Definition

Let M be a Σ -model class, let \mathcal{A} be a Σ -interpretation over X, and let φ be a Σ -formula such that $vars(\varphi) \subseteq X$. We write

$$\mathcal{A}\models_M \varphi,$$

whenever $\varphi^{\mathcal{A}} = true$ and \mathcal{A}^{Σ} is an *M*-structure.

1.3.5 Definition

Let M be a Σ -model class, let φ be a Σ -formula, and let $X = vars(\varphi)$. We say that φ is:

- *M*-VALID, if $\mathcal{A} \models_M \varphi$, for all *M*-interpretations \mathcal{A} over *X*;
- *M*-SATISFIABLE, if $\mathcal{A} \models_M \varphi$, for some *M*-interpretation \mathcal{A} over *X*;
- *M*-UNSATISFIABLE, if φ is not *M*-satisfiable.

1.3.6 Definition

Let M be a Σ -modelclass, let \mathcal{A} be a Σ -interpretation over X, and let Φ be a set of Σ -formulae such that $vars(\Phi) \subseteq X$. We write

$$\mathcal{A} \models_M \Phi$$

when

$$\mathcal{A} \models_M \varphi$$
, for all formulae $\varphi \in \Phi$.

1.3.7 Definition

Let M be a Σ -modelclass, let Φ be a set of Σ -formulae, and let $X = vars(\Phi)$. We say that Φ is:

- *M*-VALID, if $\mathcal{A} \models_M \Phi$, for all Σ -interpretations \mathcal{A} over *X*;
- *M*-SATISFIABLE, if $\mathcal{A} \models_M \Phi$, for some Σ -interpretation \mathcal{A} over X;
- *M*-UNSATISFIABLE, if Φ is not *M*-satisfiable.

1.3.8 Definition

Let M be a Σ -model class, and let L be a set of Σ -formulae. We define the following decision problems:

- The VALIDITY PROBLEM of M with respect to L is the problem of deciding, for each Σ -formula $\varphi \in L$, whether or not φ is M-valid.
- The SATISFIABILITY PROBLEM of M with respect to L is the problem of deciding, for each Σ -formula $\varphi \in L$, whether or not φ is M-satisfiable.
- The UNSATISFIABILITY PROBLEM of M with respect to L is the problem of deciding, for each Σ -formula $\varphi \in L$, whether or not φ is M-unsatisfiable.

When we mention a decision problem without specifying the set of formulae L, we implicitly assume that L is the set of all Σ -formulae. For instance, if M is a Σ -model class, the validity problem of a Σ -model class M is the problem of deciding, for each Σ -formula φ whether or not φ is M-valid.

When we prefix the name of a decision problem with "quantifier-free", we implicitly assume that L is the set of all quantifier-free Σ -formulae. For instance, the quantifier-free satisfiability problem of a Σ -model class M is the problem of deciding, for each quantifier-free Σ -formula φ whether or not φ is M-satisfiable.