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Introduction and History

» The Korteweg - de Vries (KdV) Equation (long water waves of small ampli-

tude):
ur — 6uty + Uger = 0 (KdV) I

» (KdV) known for solitary wave solutions, or solitons: localized, highly stable
waves that, upon interaction, retains its identity.

» Solitons were discovered experimentally (Russell 1844), analytically (Ko-
rteweg & de Vries, 1895), then numerically (Zabusky & Kruskal 1965).

» J. Russell's sketch from his soliton experiment (Report on Waves, 1844):
Li

» ISM for solving (KdV): Gardiner et.al. (1967).



Scattering Theory: Scattering

» Sturm-Liouville problem, given potential u(x):

Ve = (N —u)y (u,u/ — 0 as || — oc0) (SL)

» )\ < 0: (discrete spectrum), assume the form:
Yn(x) ~ cpe” ™" asx —oo,n=1,.... N

where Kk, = v/ —A\.

» )\ > 0: (continuous spectrum), assume:

~ e T 4 p(k)e*™ as x — +oo
¢($,k¢) ~ { a(k)e—ikl' as r — —oo

where k = v/ A. (see schematic picture below)
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> S(u) :={(kn),(cn),b(k)} : scattering data for u(x).



Scattering Theory: Inverse Scattering

» In fact, S(u) is sufficient to uniquely recover potential u(x)!

» Inverse Scattering Procedure:
Given S(u) = {(xn), (cn),b(k)},

1. Let F(X) =30 e 4+ L [ b(k)e*¥dk.

2. Solve K(z,z) in the Marchenko Equation:

K(iB,Z)-I-F(m-I—Z)-i-/ K(z,y)F(y + 2z)dy = 0 (ME)

3. Compute u(z) = —2LK(z,z).
» Remark: difficulty is in solving the Fredholm-type integral (ME).

» Conclusion: we have an equivalence between S(u) and u in (SL). ie. One

can be derived from the other via scattering / invserse scattering.



Lax Pair for the KdVv

» Consider operators L, M:

0
L = e + u(z,t)

3

Moo= -4 4 3u@ )l 4300 + A®)
ox3 T ox

ox
(L, M is called a Lax Pair.)

» If u(x,t) solves the (KdV),

{Lt + (LM - ML)}U = U — 6uu; + Ugas
(LE)

I
o

» Theorem (Lax):
If (LE) holds for u(xz,t) and Ly = A, then

A =0 and W = M.



The Inverse Scattering Method for KdV: Schematic Diagram

KdV: u; — 6uuy + uger = 0

IV: u(z,0) 1. Ly =y at @ — +oo Scattering Data
(Scattering at x — +00) S(u(xz,0))
2. Evolve S at
T — +oo by
b = M
Solution:
u(z,t) S(u(z, 1))

3. Inverse Scattering Procedure

» Remark 1: M is independent of u, u; at x — *oo.

» Remark 2: similar to Fourier method of solving linear PDEs.



The Inverse Scattering Method for KdV: Overview

» Given IV u(x,0), solve the KdV via ISM:

1. Solve the eigenvalue problem ;. + (u(x,0) — X)) = 0, to get scattering data
S(u(x,0)) = {(kn(t =0)), (cn(t =0)),b(k,t = 0)}. (using (SL): Ly = \y)

2. Evolve scattering data S(u(z,0)) — S(u(x,t)):

kn, = constant, (1)
ca(t) = ca(0)e* (2)
b(k;t) = b(k,0)e3*t, (3)

((1) is precisely \; =0 and (2), (3) are derived from v; = M1))

3. Define F(X) from S(u(x,t)), and solve (ME) for K(x,z) and subsequently for
u(x,t), via Inverse scattering procedure.



Example 1: single - soliton solution

» case u(z,0) = —2sech?(z)
» obtain ¢ = —sech(x) (solution to legendre’s equation) and b = 0 (reflection-
less).

» Solution (by ISM): u(z,t) = —2sech?(z — 4t).

» Remark: Agrees with solution obtained by traveling wave approach.

Initial condition: u(x,0) = -23ech(x)2 Numerical vs ISM for KdV:t =1.02
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Example 2: two - soliton solution

» case u(x,0) = —6sech?(z), where N is a positive integer.
» two discrete eigenvalues k12 =1 and 2, and b = 0 (reflectionless).

» solution by ISM:

3 4 4cosh(2x — 8t) + cosh(4x — 64t)

u(.’l?, t) = —12 (3cosh(aj — 28t) + COSh(3$ — 36t))2

» Asymptotically, the above solution is:

1 1
u(z, t) ~ —8sech2(2(x—16t)$§ log 3)—25ech2((x—4t)i§ log 3) as t — 400

ie. interaction of solitons is nonlinear.
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Example 3: Negative delta function initial condition

» If u(x,0) = —ad(x), cannot be solved analytically = Try numerical ap-
proach.
» Strategy I: Solve KdV numerically for f,(x) s.t. f, — —ad.
— tested with initial gaussians of area 500 (o = 500) with increasing o.

— See top plots next slide.

» Strategy II: Solve (ME) numerically; an ISM approach.
— in (ME), F(X;t) becomes:

o0 8ik3t+ikX
F(X;t) = ppeBrat—mX e S , dk
27 e 21k + o

— integral in F(X;t) solves a first order ODE with Airy inhomo. part.

— thus numerically evaluate F, then solve (ME) by approximating the inte-
gral by the trapezoid rule.

— See bottom plots next slide for the case a = 1.

» Conclusion: soliton to the right, with (Airy-like) dispersion to the left.



(left) Spectral code for KAV with initial gaussian; (right) Convergence of error
between consecutive increasing standard deviation. Here, u(xz,0) = —5006(x).
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(left) Numerical solution to Marchenko solver; (right) convergence of error between
consecutive increasing N, mesh points. Here u(x,0) = —d(x).
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