The KdV Equation

and the

Inverse Scattering Method (ISM)

Ryo Takei
APMA 935 Project, April 12, 2006

- The Korteweg - de Vries (KdV) Equation (Iong water waves of small amplitude):

$$
\begin{equation*}
u_{t}-6 u u_{x}+u_{x x x}=0 \tag{KdV}
\end{equation*}
$$

- (KdV) known for solitary wave solutions, or solitons: localized, highly stable waves that, upon interaction, retains its identity.
- Solitons were discovered experimentally (Russell 1844), analytically (Korteweg \& de Vries, 1895), then numerically (Zabusky \& Kruskal 1965).
- J. Russell's sketch from his soliton experiment (Report on Waves, 1844):

- ISM for solving (KdV): Gardiner et.al. (1967).

Scattering Theory: Scattering

- Sturm-Liouville problem, given potential $u(x)$:

$$
\begin{equation*}
\psi_{x x}=(\lambda-u) \psi \quad\left(u, u^{\prime} \rightarrow 0 \text { as }|x| \rightarrow \infty\right) \tag{SL}
\end{equation*}
$$

- $\lambda<0$: (discrete spectrum), assume the form:

$$
\psi_{n}(x) \sim c_{n} e^{-\kappa_{n} x} \quad \text { as } x \rightarrow \infty, n=1, \ldots, N
$$

where $\kappa_{n}=\sqrt{-\lambda}$.

- $\lambda>0$: (continuous spectrum), assume:

$$
\widehat{\psi}(x, k) \sim \begin{cases}e^{-i k x}+b(k) e^{i k x} & \text { as } x \rightarrow+\infty \\ a(k) e^{-i k x} & \text { as } x \rightarrow-\infty\end{cases}
$$

where $k=\sqrt{\lambda}$. (see schematic picture below)

- $S(u):=\left\{\left(\kappa_{n}\right),\left(c_{n}\right), b(k)\right\}$: scattering data for $u(x)$.

Scattering Theory: Inverse Scattering

- In fact, $S(u)$ is sufficient to uniquely recover potential $u(x)$!
- Inverse Scattering Procedure:

Given $S(u)=\left\{\left(\kappa_{n}\right),\left(c_{n}\right), b(k)\right\}$,

1. Let $F(X):=\sum_{n=1}^{N} c_{n}^{2} e^{-\kappa_{n} X}+\frac{1}{2 \pi} \int_{-\infty}^{\infty} b(k) e^{i k X} d k$.
2. Solve $K(x, z)$ in the Marchenko Equation:

$$
\begin{equation*}
K(x, z)+F(x+z)+\int_{x}^{\infty} K(x, y) F(y+z) d y=0 \tag{ME}
\end{equation*}
$$

3. Compute $u(x)=-2 \frac{d}{d x} K(x, x)$.

- Remark: difficulty is in solving the Fredholm-type integral (ME).
- Conclusion: we have an equivalence between $S(u)$ and u in (SL). ie. One can be derived from the other via scattering / invserse scattering.

Lax Pair for the KdV

- Consider operators L, M :

$$
\begin{aligned}
L & =-\frac{\partial}{\partial x}+u(x, t) \\
M & =-4 \frac{\partial^{3}}{\partial x^{3}}+3 u(x, t) \frac{\partial}{\partial x}+3 \frac{\partial}{\partial x} u(x, t)+A(t)
\end{aligned}
$$

(L, M is called a Lax Pair.)

- If $u(x, t)$ solves the (KdV),

$$
\begin{align*}
\left\{L_{t}+(L M-M L)\right\} u & =u_{t}-6 u u_{x}+u_{x x x} \\
& =0 \tag{LE}
\end{align*}
$$

- Theorem (Lax):

If (LE) holds for $u(x, t)$ and $L \psi=\lambda \psi$, then

$$
\lambda_{t}=0 \quad \text { and } \quad \psi_{t}=M \psi
$$

The Inverse Scattering Method for KdV: Schematic Diagram

$$
\mathrm{KdV}: u_{t}-6 u u_{x}+u_{x x x}=0
$$

IV: $u(x, 0) \frac{\text { 1. } L \psi=\lambda \psi \text { at } x \rightarrow \pm \infty}{\text { (Scattering at } x \rightarrow \pm \infty)} \quad \begin{aligned} & \text { Scattering Data } \\ & S(u(x, 0))\end{aligned}$

		2. Evolve S at $\begin{aligned} & x \rightarrow \pm \infty \text { by } \\ & \psi_{t}=M \psi \end{aligned}$
Solution: $u(x, t)$	Inverse Scattering Procedur	$x, t))$

- Remark 1: M is independent of u, u_{x} at $x \rightarrow \pm \infty$.
- Remark 2: similar to Fourier method of solving linear PDEs.

The Inverse Scattering Method for KdV: Overview

- Given IV $u(x, 0)$, solve the KdV via ISM:

1. Solve the eigenvalue problem $\psi_{x x}+(u(x, 0)-\lambda) \psi=0$, to get scattering data $S(u(x, 0))=\left\{\left(\kappa_{n}(t=0)\right),\left(c_{n}(t=0)\right), b(k, t=0)\right\} .(\mathbf{u s i n g}(S L): L \psi=\lambda \psi)$
2. Evolve scattering data $S(u(x, 0)) \rightarrow S(u(x, t))$:

$$
\begin{align*}
\kappa_{n} & =\text { constant } \tag{1}\\
c_{n}(t) & =c_{n}(0) e^{4 \kappa_{n}^{3} t} \tag{2}\\
b(k ; t) & =b(k, 0) e^{8 i k^{3} t} \tag{3}
\end{align*}
$$

((1) is precisely $\lambda_{t}=0$ and (2), (3) are derived from $\psi_{t}=M \psi$)
3. Define $F(X)$ from $S(u(x, t))$, and solve (ME) for $K(x, z)$ and subsequently for $u(x, t)$, via Inverse scattering procedure.

Example 1: single - soliton solution

- case $u(x, 0)=-2 \operatorname{sech}^{2}(x)$
\checkmark obtain $\psi_{1}=-\operatorname{sech}(x)$ (solution to legendre's equation) and $b \equiv 0$ (reflectionless).
\rightarrow Solution (by ISM): $u(x, t)=-2 \operatorname{sech}^{2}(x-4 t)$.
- Remark: Agrees with solution obtained by traveling wave approach.

Example 2: two - soliton solution

- case $u(x, 0)=-6 \operatorname{sech}^{2}(x)$, where N is a positive integer.
- two discrete eigenvalues $\kappa_{1,2}=1$ and 2 , and $b \equiv 0$ (reflectionless).
- solution by ISM:

$$
u(x, t)=-12 \frac{3+4 \cosh (2 x-8 t)+\cosh (4 x-64 t)}{(3 \cosh (x-28 t)+\cosh (3 x-36 t))^{2}}
$$

- Asymptotically, the above solution is:
$u(x, t) \sim-8 \operatorname{sech}^{2}\left(2(x-16 t) \mp \frac{1}{2} \log 3\right)-2 \operatorname{sech}^{2}\left((x-4 t) \pm \frac{1}{2} \log 3\right) \quad$ as $t \rightarrow \pm \infty$
ie. interaction of solitons is nonlinear.

Example 3: Negative delta function initial condition

- If $u(x, 0)=-\alpha \delta(x)$, cannot be solved analytically \Longrightarrow Try numerical approach.
- Strategy I: Solve KdV numerically for $f_{n}(x)$ s.t. $f_{n} \rightarrow-\alpha \delta$.
- tested with initial gaussians of area $500(\alpha=500)$ with increasing σ.
- See top plots next slide.
- Strategy II: Solve (ME) numerically; an ISM approach.
- in (ME), $F(X ; t)$ becomes:

$$
F(X ; t)=\kappa_{1} e^{8 \kappa_{1}^{3} t-\kappa_{1} X}-\frac{\alpha}{2 \pi} \int_{-\infty}^{\infty} \frac{e^{8 i k^{3} t+i k X}}{2 i k+\alpha} d k
$$

- integral in $F(X ; t)$ solves a first order ODE with Airy inhomo. part.
- thus numerically evaluate F, then solve (ME) by approximating the integral by the trapezoid rule.
- See bottom plots next slide for the case $\alpha=1$.
- Conclusion: soliton to the right, with (Airy-like) dispersion to the left.
(left) Spectral code for KdV with initial gaussian; (right) Convergence of error between consecutive increasing standard deviation. Here, $u(x, 0)=-500 \delta(x)$.

(left) Numerical solution to Marchenko solver; (right) convergence of error between consecutive increasing N, mesh points. Here $u(x, 0)=-\delta(x)$.

