
SLURM Primer

Northeastern University Research Computing: Nilay K Roy, MS Computer Science, Ph.D Computational Physics

SLURM on Discovery Cluster

SLURM – Some background
• SLURM = SIMPLE LINUX UTILITY FOR RESOURCE

MANAGEMENT

• http://slurm.schedmd.com – Free and Open Source

• Others: SGE now OGE, Torque, Condor, Platform LSF

• SLURM (hilbert curve scheduling – top500.org – on 1st
fastest supercomputer – China’s Tianhe-2 – 33.86
PETAFLOPS –16,000 nodes, each with two Intel Xeon
IvyBridge processors and three Xeon Phi processors for
a total of 3.1 million cores – 17.8MW) – November
2015

http://slurm.schedmd.com/

Roles of resource manager and job scheduler

Allocate resources within a cluster
● Nodes (typically a unique IP address)
– NUMA boards
● Sockets
– Cores
● Hyperthreads
● Memory
– Interconnect/switch resources
– Generic resources (e.g. GPUs)
● Licenses
● Launch and otherwise manage jobs

Can require extensive
knowledge about the hardware
and system software (e.g. to
alter network routing or
manage switch window)

Simple Linux Utility for Resource Management
● Development started in 2002 at Lawrence Livermore National Laboratory as a resource
manager for Linux clusters
● Sophisticated scheduling plugins added in 2008
● About 500,000 lines of C code today
● Supports AIX, FreeBSD, Linux, Solaris, other Unix variants
● Used on many of the world's largest computers
● Active global development community

Highly scalable (managing 3.1 million core Tianhe-2, tested to much larger systems using
emulation)
● Open source (GPL version 2, available on Github)
● System administrator friendly
● Secure
● Fault-tolerant (no single point of failure)
● Portable

Dynamically linked objects loaded at run time based upon configuration file and/or user options
● 100+ plugins of 26 different varieties currently available
● Network topology: 3D-torus, tree, etc
● MPI: OpenMPI, MPICH1, MVAPICH, MPICH2, etc.
● External sensors: Temperature, power consumption, lustre usage,

Slurm Entities
● Jobs: Resource allocation requests
● Job steps: Set of (typically parallel) tasks
● Typically an MPI, UPC and/or multi-threaded application program
● Allocated resources from the job's allocation
● A job can contain multiple job steps which can execute sequentially or concurrently
● Use cases with thousands of job steps are common
● Partitions: Job queues with limits and access control

Node State Information
● Baseboards, Sockets, Cores, Threads
● CPUs (Core or thread count depending upon configuration)
● Memory size
● Generic resources (with names and counts)
● Features (arbitrary string, e.g. OS version or CPU type)
● State (e.g. drain, down, etc.)
● Reason, time and user ID
(e.g. “Bad PDU [operator@12:40:10T12/20/2013]”)

Numeric suffix with comma separated numbers or ranges
● Used in all commands and configuration files to make managing large clusters easier
● Bracketed value be at end of name (with optional range elsewhere in the name)

Queue/Partition State Information
● Associated with specific set of nodes
● Nodes can be in more than one partition
● Job size and time limits (e.g. small size and time limits for some partition and larger
limits for others)
● Access control list (by bank account, Quality Of Service or Linux group)
● Preemption rules
● State information (e.g. up, down, drain, etc.)
● Over-subscription and gang scheduling rules

Job State Information
● ID (a number)
● Name
● Time limit (minimum and/or maximum)
● Size specification (minimum and/or maximum; nodes, CPUs, sockets, cores, and/or
threads)
● Specific node names to include or exclude in allocation
● Node features required in allocation
● Dependency
● Account name
● Quality Of Service (QOS)
● State (Pending, Running, Suspended, Canceled, Failed, etc.)

Job States

Step State Information

ID (a number): <jobid>.<stepid>
● Name
● Time limit (maximum)
● Size specification (minimum and/or maximum; nodes,
CPUs, sockets, cores, and/or threads)
● Specific node names to include or exclude in
allocation
● Node features required in allocation

Job is submitted to a Slurm queue/partition
● Job is allocated resources (cores, memory, etc.)
● Job steps execute applications using the job's resources

Daemons

slurmctld – Central controller (typically one per cluster)
● Monitors state of resources
● Manages job queues
● Allocates resources
slurmdbd – Database daemon (typically one per enterprise)
● Collects accounting information
● Uploads configuration information (limits, fair-share, etc.) to slurmctld

slurmd – Compute node daemon (typically one per compute node, one or more on
front-end nodes)
● Launches and manages tasks
● Small and very light-weight (low memory and CPU use)
● Quiescent after launch except for optional accounting
● Supports hierarchical communications with configurable fanout

SLURM Commands: Job/step Allocation

● sbatch – Submit script for later execution (batch mode)
● salloc – Create job allocation and start a shell to use it (interactive mode)
● srun – Create a job allocation (if needed) and launch a job step (typically an MPI job)
● sattach – Connect stdin/out/err for an existing job or job step

MPI Support on Discovery Cluster

Many different MPI implementations are supported:
● IBM Platform MPI, ANL’s MPICH, and OpenMPI are currently supported
● Many use srun to launch the tasks directly
● Some use “mpirun” or another tool within an existing SLURM allocation (they
reference SLURM environment variables to determine what resources are
allocated to the job)

Linux Job Launch Sequence

SLURM Commands: System Information

● sinfo – Report system status (nodes, queues, etc.)
● squeue – Report job and job step status
● smap – Report system, job or step status with topology (curses-based GUI), less
functionality than sview
● sview – Report and/or update system, job, step, partition or reservation status with
topology (GTKbased GUI)
● scontrol – Administrator tool to view and/or update system, job, step, partition or
reservation status

sinfo Command

squeue Command

sview

scontrol Command
Designed for system administrator use

● Shows all available fields, but no filtering, sorting or formatting options
● Many fields can be modified

GroupUpdateForce = 0
GroupUpdateTime = 600 sec
HASH_VAL = Match
HealthCheckInterval = 0 sec
HealthCheckNodeState = ANY
HealthCheckProgram = (null)
InactiveLimit = 0 sec
JobAcctGatherFrequency = 30
JobAcctGatherType = jobacct_gather/linux
JobAcctGatherParams = (null)
JobCheckpointDir = /var/slurm/checkpoint
JobCompHost = discovery3
JobCompLoc = slurm_acct_db
JobCompPort = 3306
JobCompType = jobcomp/mysql
JobCompUser = SlurmUser
JobContainerType = job_container/none
JobCredentialPrivateKey = (null)
JobCredentialPublicCertificate = (null)
JobFileAppend = 0
JobRequeue = 1
JobSubmitPlugins = (null)
KeepAliveTime = SYSTEM_DEFAULT
KillOnBadExit = 0
KillWait = 30 sec
LaunchType = launch/slurm
Layouts =
Licenses = MATLAB_Distrib_Comp_Engine:256
LicensesUsed = MATLAB_Distrib_Comp_Engine:0/256
MailProg = /bin/mail
MaxArraySize = 1001
MaxJobCount = 10000
MaxJobId = 4294901760
MaxMemPerNode = UNLIMITED
MaxStepCount = 40000
MaxTasksPerNode = 128
MemLimitEnforce = yes
MessageTimeout = 100 sec
MinJobAge = 300 sec
MpiDefault = none
MpiParams = (null)
NEXT_JOB_ID = 138
OverTimeLimit = 0 min
PluginDir = /shared/apps/slurm/slurm-14.11.8/INSTALL/lib/slurm
PlugStackConfig = /shared/apps/slurm/slurm-
14.11.8/INSTALL/etc/plugstack.conf

[nilay.roy@discovery4 ~]$ scontrol show config
Configuration data as of 2016-04-13T17:04:41
AccountingStorageBackupHost = (null)
AccountingStorageEnforce = associations,limits,qos
AccountingStorageHost = discovery3
AccountingStorageLoc = N/A
AccountingStoragePort = 7032
AccountingStorageType = accounting_storage/slurmdbd
AccountingStorageUser = N/A
AccountingStoreJobComment = YES
AcctGatherEnergyType = acct_gather_energy/none
AcctGatherFilesystemType = acct_gather_filesystem/none
AcctGatherInfinibandType = acct_gather_infiniband/none
AcctGatherNodeFreq = 0 sec
AcctGatherProfileType = acct_gather_profile/none
AllowSpecResourcesUsage = 0
AuthInfo = (null)
AuthType = auth/munge
BackupAddr = 10.100.8.21
BackupController = discovery1
BatchStartTimeout = 10 sec
BOOT_TIME = 2016-03-22T13:49:36
CacheGroups = 0
CheckpointType = checkpoint/none
ChosLoc = (null)
ClusterName = discoverycluster
CompleteWait = 0 sec
ControlAddr = 10.100.8.23
ControlMachine = discovery3
CoreSpecPlugin = core_spec/none
CpuFreqDef = OnDemand
CryptoType = crypto/munge
DebugFlags = (null)
DefMemPerNode = UNLIMITED
DisableRootJobs = NO
DynAllocPort = 0
EnforcePartLimits = NO
Epilog = (null)
EpilogMsgTime = 2000 usec
EpilogSlurmctld = (null)
ExtSensorsType = ext_sensors/none
ExtSensorsFreq = 0 sec
FairShareDampeningFactor = 1
FastSchedule = 1
FirstJobId = 1
GetEnvTimeout = 2 sec
GresTypes = (null)

PreemptMode = OFF
PreemptType = preempt/none
PriorityParameters = (null)
PriorityDecayHalfLife = 7-00:00:00
PriorityCalcPeriod = 00:05:00
PriorityFavorSmall = 0
PriorityFlags =
PriorityMaxAge = 7-00:00:00
PriorityUsageResetPeriod = NONE
PriorityType = priority/multifactor
PriorityWeightAge = 0
PriorityWeightFairShare = 0
PriorityWeightJobSize = 0
PriorityWeightPartition = 0
PriorityWeightQOS = 0
PrivateData = none
ProctrackType = proctrack/cgroup
Prolog = (null)
PrologSlurmctld = (null)
PrologFlags = (null)
PropagatePrioProcess = 0
PropagateResourceLimits = ALL
PropagateResourceLimitsExcept = (null)
RebootProgram = (null)
ReconfigFlags = (null)
RequeueExit = (null)
RequeueExitHold = (null)
ResumeProgram = (null)
ResumeRate = 300 nodes/min
ResumeTimeout = 60 sec
ResvEpilog = (null)
ResvOverRun = 0 min
ResvProlog = (null)
ReturnToService = 1
RoutePlugin = (null)
SallocDefaultCommand = (null)
SchedulerParameters = CR_CORE_MEMORY
SchedulerPort = 7321
SchedulerRootFilter = 1
SchedulerTimeSlice = 30 sec
SchedulerType = sched/backfill
SelectType = select/cons_res
SelectTypeParameters = CR_CPU
SlurmUser = SlurmUser(510)
SlurmctldDebug = info

SlurmctldLogFile = /shared/apps/slurm/slurm-14.11.8/INSTALL/var_log_slurmcrtld
SlurmctldPort = 111111
SlurmctldTimeout = 120 sec
SlurmdDebug = info
SlurmdLogFile = /shared/apps/slurm/slurm-14.11.8/INSTALL/var_log_slurmd
SlurmdPidFile = /tmp/slurmd.pid
SlurmdPlugstack = (null)
SlurmdPort = 222222
SlurmdSpoolDir = /shared/apps/slurm/slurm-14.11.8/INSTALL/var_dir/spool
SlurmdTimeout = 300 sec
SlurmdUser = root(0)
SlurmSchedLogFile = (null)
SlurmSchedLogLevel = 0
SlurmctldPidFile = /tmp/slurmctld.pid
SlurmctldPlugstack = (null)
SLURM_CONF = /shared/apps/slurm/slurm-14.11.8/INSTALL/etc/slurm.conf
SLURM_VERSION = 14.11.8
SrunEpilog = (null)
SrunPortRange = 0-0
SrunProlog = (null)
StateSaveLocation = /shared/apps/slurm/slurm-14.11.8/INSTALL/var_dir/spool/statesavelocation
SuspendExcNodes = (null)
SuspendExcParts = (null)
SuspendProgram = (null)
SuspendRate = 60 nodes/min
SuspendTime = NONE
SuspendTimeout = 30 sec
SwitchType = switch/none
TaskEpilog = (null)
TaskPlugin = affinity,cgroup
TaskPluginParam = (null type)
TaskProlog = (null)
TmpFS = /tmp
TopologyPlugin = topology/none
TrackWCKey = 0
TreeWidth = 50
UsePam = 0
UnkillableStepProgram = (null)
UnkillableStepTimeout = 60 sec
VSizeFactor = 0 percent
WaitTime = 0 sec

Slurmctld(primary/backup) at discovery3/discovery1 are UP/UP
[nilay.roy@discovery4 ~]$

SLURM Commands: Accounting

● sacct – Report accounting information by individual job and job step
● sstat – Report accounting information about currently running jobs and job steps
(more detailed than sacct)
● sreport – Report resources usage by cluster, partition, user, account, etc.

SLURM Commands: Scheduling

● sacctmgr – Database management tool
● Add/delete clusters, accounts, users, etc.
● Get/set resource limits, fair-share allocations, etc.
● sprio – View factors comprising a job's priority
● sshare – View current hierarchical fair-share information
● sdiag – View statistics about scheduling module operations (execution time, queue
length, etc.)

SLURM Commands: Other
● scancel – Signal/cancel jobs or job steps
● sbcast – Transfer file to a compute nodes allocated to a job (uses hierarchical communications)
● srun_cr – Wrapper to srun for support of Berkeley checkpoint/restart
● strigger – Event trigger management tools

scancel Command

● Cancel a running or pending job or step
● Can send arbitrary signal to all processes on all nodes associated with a job or step
● Has filtering options (state, user, partition, etc.)
● Has interactive (verify) mode
> scancel 45001.1 (cancel job step 45001.1)
> scancel 45002 (cancel job 45002)
> scancel –user=alec –state=pending (cancel all pending jobs from user “alec”)

sbcast Command

● Copy a file to local disk on allocated nodes
● Execute command after a resource allocation is made
● Data transferred using hierarchical slurmd daemons communications
● May be faster than shared file system
> salloc -N100 bash
salloc: Granted job allocaiton 45201
> sbcast --force my_data /tmp/moe/my_data (overwrite old files)
> srun a.out
> exit (terminate spawned “bash” shell)

TO USE SLURM MUST LOAD
SLURM MODULE via .bashrc

OR in slurm batch submit scripts

INTERACTIVE RUNS

STEPS:
>>sallocate (Run with options to get an allocation from a login node – discovery2/4
>>Find the node the allocation is using “squeue –l”
>>“ssh –X” to that node
>>When done logout of that node, and then “exit” from the allocation
>>Check allocation is released

BATCH RUNS
SUBMIT USING SUBMIT SCRIPT

ANALYSIS OF A TYPICAL SUBMIT SCRIPT – MPI USE CASE IS IBM PLATFORM MPI

FIND PARTITION AND NODE INFORMATION TO DECIDE WHICH QUEUE TO USE

Check RUN results

SOURCE CODE ON NEXT SLIDE

rows = (dest <= extra) ? averow+1 : averow;
printf(" sending %d rows to task %d\n",rows,dest);
MPI_Send(&offset, 1, MPI_INT, dest, mtype, MPI_COMM_WORLD);
MPI_Send(&rows, 1, MPI_INT, dest, mtype, MPI_COMM_WORLD);
MPI_Send(&a[offset][0], rows*NCA, MPI_DOUBLE, dest, mtype,

MPI_COMM_WORLD);
MPI_Send(&b, NCA*NCB, MPI_DOUBLE, dest, mtype, MPI_COMM_WORLD);
offset = offset + rows;

}
/* wait for results from all worker tasks */
mtype = FROM_WORKER;
for (i=1; i<=numworkers; i++)
{

source = i;
MPI_Recv(&offset, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, source, mtype, MPI_COMM_WORLD, &status);
MPI_Recv(&c[offset][0], rows*NCB, MPI_DOUBLE, source, mtype, MPI_COMM_WORLD, &status);

}

/* print results */
printf("Here is the result matrix\n");
for (i=0; i<NRA; i++)
{

printf("\n");
for (j=0; j<NCB; j++)

printf("%6.2f ", c[i][j]);
}
printf ("\n");

}
/**************************** worker task ************************************/

if (taskid > MASTER)
{

mtype = FROM_MASTER;
MPI_Recv(&offset, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD, &status);
MPI_Recv(&rows, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD, &status);
MPI_Recv(&a, rows*NCA, MPI_DOUBLE, MASTER, mtype, MPI_COMM_WORLD, &status);
MPI_Recv(&b, NCA*NCB, MPI_DOUBLE, MASTER, mtype, MPI_COMM_WORLD, &status);

for (k=0; k<NCB; k++)
for (i=0; i<rows; i++)
{

c[i][k] = 0.0;
for (j=0; j<NCA; j++)

c[i][k] = c[i][k] + a[i][j] * b[j][k];
}

mtype = FROM_WORKER;
MPI_Send(&offset, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD);
MPI_Send(&rows, 1, MPI_INT, MASTER, mtype, MPI_COMM_WORLD);
MPI_Send(&c, rows*NCB, MPI_DOUBLE, MASTER, mtype, MPI_COMM_WORLD);

}
MPI_Finalize();

}

[nilay.roy@discovery4 slurm_test]$

[nilay.roy@discovery4 slurm_test]$ cat mpi_mm.c
#include "mpi.h"
#include <stdio.h>
#define NRA 500 /* number of rows in matrix A */
#define NCA 100 /* number of columns in matrix A */
#define NCB 100 /* number of columns in matrix B */
#define MASTER 0 /* taskid of first task */
#define FROM_MASTER 1 /* setting a message type */
#define FROM_WORKER 2 /* setting a message type */

int main(argc,argv)
int argc;
char *argv[];
{
int numtasks, /* number of tasks in partition */

taskid, /* a task identifier */
numworkers, /* number of worker tasks */
source, /* task id of message source */
dest, /* task id of message destination */
mtype, /* message type */
rows, /* rows of matrix A sent to each worker */
averow, extra, offset, /* used to determine rows sent to each worker */
i, j, k, rc; /* misc */

double a[NRA][NCA], /* matrix A to be multiplied */
b[NCA][NCB], /* matrix B to be multiplied */
c[NRA][NCB]; /* result matrix C */

MPI_Status status;

rc = MPI_Init(&argc,&argv);
rc|= MPI_Comm_size(MPI_COMM_WORLD,&numtasks);
rc|= MPI_Comm_rank(MPI_COMM_WORLD,&taskid);
if (rc != 0)

printf ("error initializing MPI and obtaining task ID information\n");
else

printf ("task ID = %d\n", taskid);
numworkers = numtasks-1;

/**************************** master task ************************************/
if (taskid == MASTER)
{

printf("Number of worker tasks = %d\n",numworkers);
for (i=0; i<NRA; i++)

for (j=0; j<NCA; j++)
a[i][j]= i+j;

for (i=0; i<NCA; i++)
for (j=0; j<NCB; j++)

b[i][j]= i*j;
/* send matrix data to the worker tasks */
averow = NRA/numworkers;
extra = NRA%numworkers;
offset = 0;
mtype = FROM_MASTER;

for (dest=1; dest<=numworkers; dest++)
{

SOME OTHER TIPS

How do I know to which partition I should submit my job so that it starts as early as possible?

How do I use the local scratch space ?

How do I know which slots exactly are assigned to my job ?

When will my job start ?
The squeue --start command gives an estimation of the date and time a job is supposed to start but beware that the estimation is based on the
environment at a given time. Slurm cannot anticipate higher-priority jobs being submitted after yours, or machine downtimes which lead to
fewer resources for the jobs, of job crashes which can lead to large jobs starting earlier than expected and smaller jobs scheduled for
backfilling to loose that backfilling opportunity.

How do I cancel a job?

How do I know how much memory my job is using/has used ?

Priority computation
The priority then depends on five elements:

THANK YOU

QUESTIONS

