The technogeek explanation :
We use NIST's Secure Hash Standard rev 1 (SHS-1, sometimes called the Secure
Hash Algorithm or SHA-1) to cryptographically hash the digitized image of the
chaotic system (Lava Lite lamps) produced in step 2.
Our implementation of SHS-1 allows for the production of an n-way hash. An n-way hash produces n hash values, each of which is a hash of a every nth octet. In this example we use a 7-way hash, each of which produces a 160 bit value from every 7th byte of the digitized image. By hashing every 7th byte we avoid hashing the same byte of each pixel.
The 7-way SHA-1 hash of the above digitized image yields the following 140-byte base 16 value:
1f51fcba8eeed05d8d4caf6b85229c660495f2295315243d3c79cd1a a6469bf5c0bf058962ea52151ae20ed71538f3b717804bd071681a9d 911939a48f70fb1f9d8dd6f42b68d5a2d7bab3f97c4d60746e67320a 5bf894b09bc8a9473da65133e554d442c9746b74ab17498396e6abaf 0d29ed1689270f657c9551f68934557aa3cfee43a30663caad12966e
Here is a sample 128-byte random number (in base 16):
b078be0ef23a6a38f6885ec521644d9de4a399b4298414014dfd245bc39664a1 6105f71148104e6aee68e1a54903247efa2d6713fb850bf9f0159cf0ddf11150 82c81414fd7043d7855beb85a8b0df72d0e66886de452430e6b10e505ce45dbc 7b708f2d821fcc0613d26d965d9109aebcf76a421c60c5b6b8ac3ba1f69abdc8
The Blum Blum Shub is based on the low order bits of quadratic residues of a product of two Blum primes. Blum primes are primes that are 3 mod 4. A quadratic residue is the square of a value modulo some value, in this case, modulo a product of two Blum primes. In this example we are using the following 1062-bit product of two Blum primes:
5360751114622011236087979022735306713592537659947455285353148181 8526455500785383194936281698585494806464721601253386562653528822 5543322562532917886396992291116815877218495559211688377961466145 0857446201926232198015028137924055146650866097197909406089918491 4133568666470293429076893274969016410915119621659901793350665953
Your personal non-random number is: