
Accurate Indirect Branch Prediction

Karel Driesen and Urs Hölzle
Department of Computer Science

University of California
Santa Barbara, CA 93106

Technical Report TRCS97-19
Revised March 15, 1998

Abstract. Indirect branch prediction is likely to become increasingly important in the future
because indirect branches occur more frequently in object-oriented programs. With misprediction
rates of around 25% on current processors, indirect branches can incur a significant fraction of
branch misprediction overhead even though they remain less frequent than the more predictable
conditional branches. We investigate a wide range of two-level predictors dedicated exclusively to
indirect branches. Starting with predictors that use full-precision addresses and unlimited tables,
we progressively introduce hardware constraints and minimize the loss of predictor performance
at each step. For programs from the SPECint95 suite as well as a suite of large C++ applications,
a two-level predictor achieves a misprediction rate of 9.8% with a 1K-entry table and 7.3% with an
8K-entry table, representing more than a threefold improvement over an ideal BTB. A hybrid pre-
dictor further reduces the misprediction rates to 8.98% and 5.95%, respectively.

1. Introduction

Current high-performance superscalar processors use branch prediction to speculatively execute
instructions beyond an unresolved branch. If the branch is mispredicted, this work is lost, and
execution must restart right after the branch instruction. Newer designs increase instructions issue
width and pipeline depth, increasing the relative overhead of mispredicted branches and making
accurate branch prediction even more critical to performance.

Conditional direct branches, whose target is encoded in the instruction itself, can already be
predicted with reported hit rates of up to 97% ([YP93]). In contrast, indirect branches, which
transfer control to an address stored in a register, are harder to predict accurately. Unlike condi-
tional branches, they can have more than two targets so that prediction requires a full 32-bit or 64-
bit address rather than just a “taken” or “not taken” bit. Current processors predict indirect branches
with a branch target buffer (BTB) which caches the most recent target address of a branch. Unfor-
tunately, BTBs typically have much lower prediction rates than the best predictors for conditional
branches. For example, an ideal (unconstrained) BTB achieves an average prediction hit ratio of
only 64% on the SPECint95 benchmarks.

Though not as common as conditional branches, indirect branches occur frequently enough to
cause substantial overhead. Chang et al. [CHP97] predict a reduction in execution time of 14% and
5% for theperl andgcc benchmarks on a wide-issue superscalar processor with an improved
prediction mechanism for indirect branches (Target Cache).

2

Technical Report TRCS97-19: Accurate Indirect Branch Prediction

In C++ and Java programs, indirect branches occur with even higher frequency (see Table 1). These
languages promote a polymorphic programming style in which late binding of subroutine invoca-
tions is the main instrument for modular code design. Virtual function tables, the implementation
of choice for most C++ and Java compilers, execute an indirect branch for every polymorphic call.
The C++ programs studied here execute an indirect branch as frequently as once every 50 instruc-
tions; other studies [CGZ94] have shown similar results. Some of the C++ programs in Table 1
execute only 6 conditional branches for every indirect branch.

Predictated instructions [M+94] further increase the importance of indirect branch prediction since
they remove conditional branches and thus conditional branch misses. For example, Intel expects
predication to reduce the number of conditional branches by half for the IA-64 architecture
([Intel97]). With indirect branches becoming more frequent relative to conditional branches, and
with indirect branches being mispredicted much more frequently, indirect branch prediction misses
can start to dominate the overall branch misprediction cost. For example, if indirect branches are
mispredicted 12 times more frequently (36% vs. 3% miss ratio), indirect branch misses will domi-
nate conditional branch misses as long as indirect branches occur more frequently than every 12
conditional branches.

As the relevance of indirect branches grows, so does the opportunity for more sophisticated predic-
tion mechanisms. In the next decade, uniprocessors may reach one billion transistors, with 48
million transistors dedicated to branch prediction ([P+97]).

In this study, we explore the design space of prediction mechanisms that are exclusively dedicated
to indirect branches. Since the link between misprediction rate and execution overhead has been
demonstrated in [CHP97], we focus on the minimization of branch misprediction rate. Initially, we
assume unlimited hardware resources so that results are not obscured by implementation artifacts
such as interference in tagless tables. We then progressively introduce hardware constraints, each
of which causes a new type of interference and corresponding performance loss. We repeat this
process until we obtain implementable predictors. Finally, the practical predictors are pairwise
combined into a hybrid predictor, further improving prediction accuracy.

2. Benchmarks

Our main benchmark suite consists of large object-oriented C++ applications that range from 8,000
to over 75,000 non-blank lines of C++ code each (see Table 1), andbeta, a compiler for the Beta
programming language ([MMN93]), written in Beta. We also measured the SPECint95 benchmark
suite (see Table 2) with the exception ofcompress which executes only 590 branches during a
complete run. Together, the benchmarks represent over 500,000 non-comment source lines.

All C and C++ programs exceptself1 were compiled with GNU gcc 2.7.2 (options -O2 -multrasparc
plus static linking) and run under theshade instruction-level simulator [CK93] to obtain traces of
all indirect branches. Procedure returns were excluded because they can be predicted accurately
with a return address stack [KE91]. All programs were run to completion or until six million indi-
rect branches were executed.2 In jhm andself we excluded the initialization phases by skipping the
first 5 and 6 million indirect branches, respectively.

1 self does not execute correctly when compiled with -O2 and was thus compiled with “-O” optimization. Also,self was not fully statically linked;
our experiments exclude instructions executed in dynamically-linked libraries.

3

Technical Report TRCS97-19: Accurate Indirect Branch Prediction

For each benchmark, the tables list the number of indirect branches executed, the number of
instructions executed per indirect branch, the number of conditional branches executed per indirect
branch, and the percentage of indirect branches in C++ programs that correspond to virtual func-
tion calls. For example, only 34% of the indirect branches ineqn are due to virtual function calls;
the rest represent indirect calls through function pointers, indirect branches of switch statements,
etc. In addition, the tables list the number of indirect branch sites responsible for 90%, 95%, 99%,
and 100% of the indirect branches. For example, only 2 different branch sites are responsible for
95% of the dynamic indirect branches ingo.

99% of the indirect branches in the OO and SPEC programs are executed from less than 200 indi-
rect branch sites, except forself which contains a much larger number of active indirect branches
(848). The SPECint95 programs are even more dominated by very few indirect branches, with less
than ten interesting branches for all programs exceptgcc. Because there are so few distinct indirect
branches in these programs, they are much more sensitive to variations in indirect branch prediction

2 We reduced the traces of three of the SPEC benchmarks in order to reduce simulation time. In all of these cases, the BTB misprediction rate differs
by less than 1% (relative) between the full and truncated traces, and thus we believe that the results obtained with the truncated traces are accurate.

Name Description lines
of code

of
indirect
branches

instr. /
indirect

cond. /
indirect

virt.
func.

active branch sites

90% 95% 99% 100%

idl SunSoft’s IDL compiler (version 1.3) 13,900 1,883,641 47 6 93% 6 15 70 543

jhm Java High-level Class Modifier: 6-12M 15,000 6,000,000 47 5 94% 11 16 34 155

self Self-93 VM: 5-6M 76,900 1,000,000 56 7 76% 309 462 848 1855

troff GNU groff version 1.09 19,200 1,1105,92 90 13 74% 19 32 61 161

lcom compiler for hardware description language 14,100 1,7377,51 97 10 60% 8 17 87 328

porky SUIF 1.0 scalar optimizer 22,900 5,392,890 138 19 71% 35 51 89 285

ixx IDL parser, part of the Fresco X11R6 library 11,600 212,035 139 18 47% 31 46 91 203

eqn typesetting program for equations 8,300 296,425 159 25 34% 17 23 58 114

beta BETA compiler 72,500 1,005,995 188 23 N/A 37 54 135 376

Table 1. OO Benchmarks

Name Description lines of
code

of
indirect
branches

instr. /
indirect

cond./
indirect

active branch sites

90% 95% 99% 100%

xlisp SPEC95 4,700 6,000,000 69 11 3 3 4 13

perl SPEC95 21,400 300,000 113 17 6 6 7 24

edg EDG C++ front end 114,300 548,893 149 23 91 125 186 350

gcc SPEC95 130,800 864,838 176 31 38 56 95 166

m88ksim SPEC95 12,200 300,000 1827 233 3 4 5 17

vortex SPEC95 45,200 3,000,000 3480 525 5 6 10 37

ijpeg SPEC95 16,800 32,975 5770 441 3 5 7 60

go SPEC95 29,200 549,656 56355 7123 2 2 5 14

Table 2. C Benchmarks

4

Technical Report TRCS97-19: Accurate Indirect Branch Prediction

schemes since a change in the prediction accuracy of a single indirect branch may significantly
affect the overall prediction rate.

The relevance of indirect branch prediction is indicated by the number of instructions per indirect
branch, and by the number of conditional branches per indirect branch. Three groups emerge: five
of the OO benchmarks and one C benchmark execute fewer than 100 instructions per indirect
branch; four OO benchmarks and three C benchmarks execute between 100 and 200 instructions
for each indirect branch; and four of the SPEC benchmarks execute more than 1,000 instructions
per indirect branch. Since the impact of branch prediction will be very low for the latter four bench-
marks, we exclude them from all averages. Table 3 shows the groups for which we will commonly
show average misprediction rates.

We have included the SPECint95 programs mostly for comparison purposes; we do not believe that
they are the best choice for evaluating indirect branch predictors (except forgcc). In effect, most
SPEC benchmarks are microbenchmarks as far as indirect branch prediction is concerned, since
very few branches dominate their behavior, and they are executed sparingly. In our evaluation of
indirect branch prediction schemes we will therefore focus on the behavior of the larger OO
programs (by minimizing AVG misprediction rates).

3. Unconstrained Indirect Branch Predictors

We first study the intrinsic predictability of indirect branches by ignoring any hardware constraints
on predictor size or organization. Thus, we assume unconstrained, fully associative tables and full
32-bit addresses (unless indicated otherwise).

3.1 Branch Target Buffers

Current processors use a branch target buffer (BTB) to predict indirect branches. The predictor uses
the branch address as a key into a table (the BTB) which stores the last target address of the branch
(Figure 1).

We simulated two variants: “BTB” is a standard BTB which updates its target address after each
branch execution. “BTB-2bc” is a BTB with two-bit counters which updates its target only after
two consecutive mispredictions1. BTB-2bc predictors perform better in virtually all cases, with an

1 In conditional branch predictors, the latter strategy is implemented with a two-bit saturating counter (2bc), hence the name. For an indirect branch,
one bit suffices to indicate whether the entry had a miss the last time it was consulted.

Name
Number of
programs
in group

Criteria

AVG-OO 9 OO benchmarks (Table 1)

AVG-C 4 C-benchmarks (excluding AVG-infreq, see Table 2)

AVG 13 AVG-100 plus AVG-200

AVG-100 6 all benchmarks with fewer than 100 instructions per indirect branch

AVG-200 7 all benchmarks with between 100 and 200 instructions per indirect branch

AVG-infreq 4 all benchmarks with more than 1,000 instructions per indirect branch

Table 3. Benchmark groups

5

Technical Report TRCS97-19: Accurate Indirect Branch Prediction

average of 24.9% misprediction rate, compared to 28.1% for a standard BTB. Polymorphic
branches occasionally switch their target but are often dominated by one most frequent target, a
situation observed in object-oriented programs [AH96], [D+96]. But even with two-bit counters
BTB accuracy is quite poor, ranging from average misprediction ratios of 20% in OO programs to
37% for C programs. Infrequent indirect branches (AVG-200) are less predictable, with a mispre-
diction average of 38% vs. 10% for the programs in AVG-100.

3.2 Two-Level Prediction for Indirect Branch Paths

Two-level predictors improve prediction accuracy by keeping information from previous branch
executions in a history buffer. Combined with the branch address, this history pattern is used as a
key into the History Table which contains the predicted target addresses. As in BTBs, the entries
can be updated on every miss or after two consecutive misses (2-bit counters). We tested every
predictor in this section with both variants, and always saw a slight improvement with 2-bit
counters. I.e., ignoring a stand-alone miss when updating seems to be a good strategy in general.
Thus, we will only show 2-bit counter results in the rest of the paper.

For conditional branches, a branch history of lengthp consists of the taken/not-taken bits of thep
most recently executed branches [YP93]. In contrast, most indirect branches are unconditional, and
thus keeping a history of taken/not-taken bits would be ineffective. Instead, the history must consist
of previous target addresses or bits thereof. Such a path-based history could also be used to predict

Figure 1. Branch target Buffer

Branch Target Buffer

Branch Address

Predicted Target

Figure 2. Indirect branch misprediction rates for an unconstrained BTB

id
l

jh
m

se
lf

tr
o
ff

lc
o
m

p
o
rk

y

ix
x

e
q
n

b
e
ta

A
V

G
-O

O

xl
is

p

p
e
rl

e
d
g

g
cc

A
V

G
-C

A
V

G
-1

0
0

A
V

G
-2

0
0

A
V

G

m
8
8
ks

im

vo
rt

e
x

ijp
e
g

g
o

A
V

G
-i
n
fr

e
q

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

M
is

p
re

d
ic

tio
n
 r

a
te

BTB

BTB-2bc

6

Technical Report TRCS97-19: Accurate Indirect Branch Prediction

conditional branches, but since taken/not-taken bits succinctly summarize the target addresses of a
conditional branch, conditional branch predictors usually do not employ target address histories
(but see [Nair95]).

3.2.1 First Level: History Pattern

Branch predictors can use one or more history buffers. Aglobal history uses a single history buffer
(correlation branch prediction), and all branches are predicted using the outcomes of thep most
recently executed branches. In contrast, aper-address history keeps a separate history for each
branch, so that branches do not influence each other’s prediction. Finally,per-set history prediction
forms a compromise by using a separate history for each set of branches, where a set may be deter-
mined by the branch opcode, a compiler-assigned branch class, or a particular address range
([YP93]).

To investigate the impact of global vs. local histories, we simulated per-set histories where a set
contains all branches in a memory region of size 2s bytes, i.e., all branches with the same values in
bits s..31 fall into the same set (Figure 4). With this parametrization, a global history corresponds

to s=31, and per-branch histories correspond tos=2. Using the results of the exhaustive run on a

History Pattern (p targets)

History Table

Figure 3. Two-level branch prediction

Branch Address
Key Predicted Target

History Patterns

Figure 4. History pattern sharing

Branch Address

Key (concatenate)

s

7

Technical Report TRCS97-19: Accurate Indirect Branch Prediction

limited benchmark suite, we obtained good initial values for the other parameters (path length p=8,
per-branch pattern entries in the history table). The results are shown in Figure 5.

In general, a global history outperforms local histories for all benchmark groups exceptAVG-
infreq. AVG declines from 9.4% with per-address paths down to 6.0% with a global path. The OO
programs benefit most from sharing paths, with misprediction rates falling from 8.7% to 5.6%. This
result indicates a substantial correlation between different branches (i.e., inter-branch correlation)
in our benchmark suite, a correlation not limited by code distance. This result is analogous to the
results for conditional branches in [YP93], where a global predictor generally performs better than
a per-address scheme.

The C benchmarks show a pronounced dip for s=9 (i.e., if branches within 512-byte code regions
share paths). On closer observation, the dip is caused byxlisp where only three indirect branches
are responsible for 95% of the dynamic indirect branch executions. Forxlisp, moving from s=8 to
s=9 reduces mispredictions by a factor of three. Similarly, at s=10go’s misprediction ratio jumps
from 26% to 33% (go is dominated by two indirect branches), which causesAVG-infreq to jump at
s=10.

The programs inAVG-infreq (which execute indirect branches very infrequently) are the only ones
benefiting from per-address histories (AVG-infreq). Apparently, the targets of different branches do
not correlate well with each other since they occur very far apart. Since these programs use indirect
branches only sparingly, we can safely ignore their different behavior when designing branch
predictors.

3.2.2 Second Level: History Table Sharing

A two-level predictor uses the history pattern to index into a history table that stores predicted
targets. Again, we have a choice of per-branch, per-set, or global prediction. We simulated per-set
tables that grouped all branches with identical address bitsh..31 into the same set (see Figure 6).
Thus,h=2 implies per-branch history tables (each branch has its own history table) andh=31
implies a single shared history table (i.e., all branches with the same history share the same predic-

Figure 5. Influence of history sharing for path length p=8, per-branch entries

O O O O O O O O O O O

O
O

O
O

O

O
O O O O

C C C C C C C

C C
C C

C C

C C
C

C C

C C C1 1 1 1 1 1 1
1 1 1 1 1

1 1
1 1

1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2

2 2

2
2

2

2
2

2 2 2

pe
r b

ra
nc

h

s=
3

s=
4

s=
5

s=
6

s=
7

s=
8

s=
9

s=
10

s=
11

s=
12

s=
13

s=
14

s=
15

s=
16

s=
17

s=
18

s=
19

s=
20

s=
21

sh
ar

ed

4%

5%

6%

7%

8%

9%

10%

11%

12%
O AVG-OO

C AVG-C

AVG

1 AVG-100

2 AVG-200

AVG-infreq

8

Technical Report TRCS97-19: Accurate Indirect Branch Prediction

tion). Figure 7 shows that the branch address matters: The misprediction average for all bench-

marks increases from 6.0% for per-address history tables to 9.6% for a globally shared history
table, the rate of the OO programs increases from 5.6% to 8.6%, and that of the C benchmarks rises
from 6.8% to 11.8%. (Again,xlisp changes dramatically ath=9, causing a sharp increase for some
averages.) Therefore, we will only consider per-address tables (h=2) in subsequent experiments.

3.2.3 Path length

The history pattern consists of target addresses of recently executed branches. The history buffer is
shared (global), so all indirect branches influence each other’s history. Concatenation with the
branch address results in the key used to access the history table. The path lengthp determines the
number of branch targets in the history pattern. In theory, longer paths are better since a predictor

cannot capture regularities in branch behavior with a period longer thanp. Shorter paths have the
advantage that they adapt more quickly to new phases in the branch behavior. A long path captures
more regularities, but the number of different patterns mapping to a given target is larger, so it takes
longer to fill in the table. This long “warm-up”-time for long patterns can prevent the predictor from

Global History Pattern

Figure 6. History Table sharing

Branch Address

h

Key (concatenate)

Figure 7. Influence of history table sharing for path length 8 with a global history pattern.

O O O O O O O O O O O O O O O O
O O O O O

C C C C C C C

C C C C C C C C C C C C C C

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1
1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2

2 2 2 2 2

pe
r b

ra
nc

h

h=
3

h=
4

h=
5

h=
6

h=
7

h=
8

h=
9

h=
10

h=
11

h=
12

h=
13

h=
14

h=
15

h=
16

h=
17

h=
18

h=
19

h=
20

h=
21

sh
ar

ed

4%

6%

8%

10%

12%

14%

16%

18%
O AVG-OO

C AVG-C

AVG

1 AVG-100

2 AVG-200

AVG-infreq

Figure 8. Two level branch prediction

Branch Address

Key (concatenate)Global History Pattern

p

9

Technical Report TRCS97-19: Accurate Indirect Branch Prediction

taking advantage of longer term correlations before the program behavior changes again. We
studied path lengths up to 18 target addresses in order to investigate both trends and see where they
combine for the best prediction rate.

Figure 9 shows the impact of the history path length on the misprediction rate for all path lengths
from 0 to 18. (A path length of 0 reduces the two-level predictor to a BTB predictor since the key
pattern consists of the branch address only.) The average misprediction rate drops quickly from

24.9% for a BTB to 7.8% forp=3 and then slowly reaches a minimum of 5.8% at path length 6.
Then the misprediction rate starts to rise again and keeps rising for larger path lengths up to the
limit of our testing range atp=18. All benchmark suites follow this pattern, although programs with
infrequent branches show uniformly higher misprediction rates.

This result indicates that most regularities in the indirect branch traces have a relatively short
period. In other words, a predictable indirect branch execution is usually correlated with the execu-
tion of less than three branches before it. Increasing the path length captures some longer term
correlations, but at path length six cold-start misses begin to negate the advantage of a longer
history. At this point, adding an extra branch target to the path may still allow longer-term correla-
tions to be exploited, but on the other hand it will take the branch predictor longer to learn a full new
pattern association for every branch that changes its behavior due to a phase transition in the
program. A hybrid branch predictor combining both short and long path components should be able
to adapt quickly to phase changes while still exploiting longer-term correlations; we experiment
with such hybrid predictors in section 6.

3.3 Variations

We explored a few other choices for the history pattern elements. In the first variant we used both
branch address and target, and in the second we included targets of conditional branches in the
history. Both resulted in inferior prediction capacity for any pattern lengthp (see [DH97]).

Figure 9. Misprediction rates as a function of path length (global history, per-address table entries)

1
1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2

2

2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

bt
b

p=
1

p=
2

p=
3

p=
4

p=
5

p=
6

p=
7

p=
8

p=
9

p=
10

p=
11

p=
12

p=
13

p=
14

p=
15

p=
16

p=
17

p=
18

0%

5%

10%

15%

20%

25%

30%

35%

40%
AVG

1 AVG-100

2 AVG-200

AVG-infreq

10

Technical Report TRCS97-19: Accurate Indirect Branch Prediction

Although we only showed one-dimensional slices of the design space for two level predictors, we
ran an exhaustive simulation for the whole design space as given in Table 4 for a representative
subset. We simulated all combinations ofs, h, andp for the OO suite (excludingself and beta,
which were not available at the time). We did omit some parameter values that are provably iden-

tical or nearly identical to others. In particular, s=0 and s=1 are meaningless since instructions are
word-aligned, and s=22/h=22 were virtually identical to s=31/h=31 since only few benchmark
executables exceeded 221 bytes in size. The exhaustive search gave us an overview of the inter-
esting regions in the parameter space of two-level predictors, establishing limits beyond which the
misprediction rate stops improving and allowing use to choose preliminary values for path length,
history pattern sharing, and history table sharing (p=8, s=31,h=0). The misprediction rate varies
smoothly in the three dimensions of the parameter space in the vicinity of the global minimum,
allowing us to minimize one parameter at a time for the full benchmark suite while still staying
close to the global minimum. We omit graphs of the exhaustive results for space reasons.

4. Limited-Precision Branch Predictors

The global history pattern is a very long bit pattern. For p=8, it consists of 8 * 32 = 256 bits, and
concatenation with the branch address results in a total of 288 bits. The information content of this
bit pattern is quite low: the number of different patterns that occur during program execution is
much smaller than 2288. Since a tag in an associative table includes most of the pattern, long
patterns inflate the size of the predictor table. We need to compress the pattern for each path length
into a short bit pattern, ideally without compromising prediction accuracy. As a first step towards
smaller history patterns, we will only consider path lengths up to sizep=12, since longer path
lengths result in higher misprediction rates (as seen in Figure 9)

4.1 History Pattern Compression

A straightforward approach for history pattern compression is to select a limited number of bits
from each target and concatenate these partial addresses into the history pattern. We explored a
number of choices by using a range [a..A] of the address bits. We varieda from 2 to 10, andA from
a to a+(b-1), whereb is the largest number of bits that still allows the history pattern to fit within a
total of 24 bits (i.e.b * p <= 24). Starting with bita=2 worked best on average, and thus we will not
show data for other values of a.

Figure 10 shows the misprediction ratios resulting from the selection of bits [2..2+(b-1)], for b
values of 1,2,3,4 and 8, as well as the misprediction rate for full-precision addresses. The curve for
b=8 almost completely overlaps with the full-address curve, indicating that 8 bits are enough even
for short path lengths. For decreasing address precision, shorter path lengths suffer most. For
example, for path length p=10, 2 bits achieve a misprediction rate of 6.77% vs. 6.53% for full
addresses, while for path length p=3, the miss ratio decreases from 10.6% (2 bits) to 7.1% (full
addresses). A total bit length of 24 bits suffices for the history pattern to approach the full-address

parameter meaning range simulated discussed in ...

s history sharing 2..22 section 3.2.1

h history table sharing 0..22 section 3.2.2

p history (path) length 0..18 section 3.2.3

Table 4. Summary of two-level indirect branch prediction parameters

11

Technical Report TRCS97-19: Accurate Indirect Branch Prediction

performance for all path lengths. Thus, in the rest of the paper we always choose the largest number
b of bits from each address that keepsb * p <= 24. For example, for path length 2 we choose 12 bits
for each history entry, and for path length 6 we choose 4.

We also tried two other schemes for target address compression:

• Fold the new target address into the desired number ofb bits by dividing it into chunks ofb bits
and xor-ing them all together.

• Shift the history patternb bits to the left and xor with the complete new target address.

These variants were intended to use more information of the target address but did not reliably
result in better prediction rates and were sometimes even worse. Since they require more logic than
the bit selection discussed above, we decided to drop them from further tests.

4.2 Folding the Branch Address

As mentioned in section 3.3, omitting the branch address reduces the performance of a two-level
predictor (for p=8, the misprediction rate increased from 6.0% to 9.6%). However, concatenating
the branch address with the history pattern results in a key of 24 + 30 = 54 bits. In analogy with the
Gshare predictor used in conditional branch prediction [CHP95], we can reduce the number of bits
in the key pattern to 30 by xor-ing the branch address with the history pattern. Table 5 shows the

misprediction rate averages for both alternatives. Compared to the increase in misprediction rate
due to limited table size and associativity in the next section, the reduction of the key pattern from

Operation p=0 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8 p=9 p=10 p=11 p=12

Xor 24.91% 13.58% 8.84% 7.09% 6.49% 6.27% 6.01% 6.18% 6.19% 7.44% 7.34% 7.49% 7.67%

Concat 24.91% 13.08% 8.78% 7.08% 6.48% 6.22% 5.99% 6.13% 6.16% 6.62% 6.77% 7.02% 7.27%

Xor-Concat 0.00% 0.50% 0.06% 0.01% 0.01% 0.05% 0.02% 0.05% 0.03% 0.82% 0.57% 0.47% 0.40%

Table 5. Concatenation versus Xor of history pattern with branch address (AVG)

Figure 10. Limited Precision misprediction rates.
AVG for 1, 2, 3, 4, 8 bit and full target addresses.
(low order bits starting from bit 2)

1

1

1
1

1
1

1 1 1 1 1 1

2

2

2
2

2
2 2 2 2 2 2 2

3

3

3
3

3 3 3 3

4

4

4
4

4 4

8

8

8

p=
1

p=
2

p=
3

p=
4

p=
5

p=
6

p=
7

p=
8

p=
9

p=
10

p=
11

p=
12

0%

5%

10%

15%

20%

25%
1 1 bit

2 2 bit

3 3 bit

4 4 bit

8 8 bit

full address

12

Technical Report TRCS97-19: Accurate Indirect Branch Prediction

54 to 30 bits by xor causes a very small increase in misprediction rate. Since this operation reduces
the table space used for tag bits by more than half, we use this scheme in the remainder of the paper.

5. Resource-Constrained Branch Predictors

In this section we introduce limited table sizes and limited associativity in order to obtain practical
indirect branch predictors.

5.1 Limited-Size Fully-Associative Tables

Limited tables introduce a new source of branch misses: capacity misses. When the table is too
small to store the history patterns of all branches in its working set, some patterns will be evicted
from the table, resulting in capacity misses.

Longer path lengths generate more patterns for a given set of branches. For example,ixx generates
203 different patterns for path lengthp=0, 402 forp=1, 865 forp=2, 1469 forp=3, and ends up with
9403 patterns forp=12. Though not all patterns are used more than once (some only occur once in
the warm-up phase), for longer path lengths capacity misses will occur fairly soon. A predictor with
a longer path length may be more accurate than a predictor of shorter path length for an unlimited
table, but the capacity misses caused by a small table size can affect the longer path length predictor
enough to negate this advantage.

To estimate the effect of capacity misses we simulate fully-associative tables with LRU replace-
ment policy. Figure 11 shows the average misprediction rate for various fully-associative tables for

predictors with path length p=0-4,6,8,10 and 12. The misprediction rate of some path lengths
reaches its minimum in the explored range. For p=0 (BTB), the miss rate decreases with increasing
table size and reaches its minimum at 256 entries. Since there are no capacity misses left,
increasing the table size beyond this point will not lower the miss rate for p=0. Increasing the path
lengths pushes this point out to 1024 entries (p=1), 2048 entries (p=2), and 8192 entries (p=3 and
p=4). Longer path lengths never completely recover from capacity misses in the explored range. A
longer path’s ability to detect longer-term regularities can pay off, although the best predictor for

1 1 1 1 1 1

2

2
2

2 2 2

3

3
3

3
3 3

4

4

4
4

4 4

6

6

6

6

6
6

8

8

8

8

8

a

a

a

a

c

c

c

51
2

10
24

20
48

40
96

81
92

U
nl

im
ite

d

5%

6%

7%

8%

9%

10%

11%

12%

13%

14%

15%
0 btb

1 p=1

2 p=2

3 p=3

4 p=4

6 p=6

8 p=8

a p=10

c p=12

0
0

0 0 0 0 0 0 0 0

1

1
1

1 1 1 1 1 1 1

2

2

2

2
2 2 2 2 2 2

3

3

3

3
3 3 3 3 3

4

4

4

4

4
4 4 4 4

6

6

6

6

6
6

6 6

8

8

8

8
8

8
8

a

a

a

a

a
a

a

c

c

c

c
c

c

32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

U
nl

im
ite

d

0%

5%

10%

15%

20%

25%

30%

Figure 11. AVG of limited table size fully-associative misprediction ratios (w. LRU replacement policy)
(cut-out section enlarged in right graph)

13

Technical Report TRCS97-19: Accurate Indirect Branch Prediction

each table size is still affected by capacity misses. For instance, p=2 wins at table size 256 with a
misprediction rate of 12.5%, 3.6% of which is due to capacity misses. For size 1024, p=3 takes over
with a misprediction rate of 8.5%, with 1.4% due to capacity misses. For a 8192-entry table, p=6
(which achieved the lowest misprediction rate for an unlimited table) has a misprediction rate of
6.6%, with 0.6% due to capacity misses.

5.2 Limited-Size Limited-Associative Tables

In practice, a fully-associative LRU table of sufficient size requires too much logic to implement in
hardware, and thus we will explore limited-associative tables in this section.

Limited associativity means that part of the key pattern is used as an index into a table to access a
limited set of entries. Each entry in the set has a tag that is checked for equality to the rest of the key
pattern. The index part of the key determines how a working set of branch patterns is spread out
over the sets, and how many patterns share the same set. For instance, if one only used the high-
order 8 bits of the branch address as index in a BTB of 256 sets, most of the patterns would have
to share the same set. This can cause conflict misses; these are similar to capacity misses, but it is
the capacity of the set instead of the table that is the limiting factor. Conflict misses can be reduced
without changing the total size of the table by increasing the associativity or by choosing a different
index scheme, so that different patterns share the same sets.We start out choosing the lower order
bits of the key pattern as index. In a two-level predictor, this part contains the lower order branch
address bits, xor-ed with the target address bits of the recent targets in the history pattern (see
section 4.2).

We test 1, 2 and 4-way associativity, and tagless tables, which is like 1-way associativity but
without tags. Where a one-way associative table will register a miss if the search pattern is not in
the table, a tagless table will simply return the target corresponding to the index part of the pattern.
We compare misprediction rates for equal table sizes, i.e. a table with 256 sets of one entry each (1-
way associative) is compared to a table with 64 sets of four entries each (4-way associative).

We tested all table sizes of the previous section, but will show only selected examples for this anal-
ysis to reduce the amount of cluttering in the graphs. Figure 12 (a) shows the misprediction rate of
different associativities for a 4096-entry table, for all path lengths.

Figure 12. Misprediction rates for a 4096-entry table

0

0 0
0 0 0 0 0 0 0 0 0 0

1

1

1

1

1
1

1
1

1

1
1

1
1

2

2

2
2

2 2

2
2

2

2
2

2
2

4

4 4 4
4 4

4 4
4

4
4

4
4

bt
b

p=
1

p=
2

p=
3

p=
4

p=
5

p=
6

p=
7

p=
8

p=
9

p=
10

p=
11

p=
12

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%
0 Tagless

1 Assoc1

2 Assoc2

4 Assoc4

FullAs.

14

Technical Report TRCS97-19: Accurate Indirect Branch Prediction

5.2.1 Interleaving

The saw-tooth curve for associativities 1, 2 and 4 indicates that there is something wrong with the
way the history pattern is assembled from the target address bits. In particular, for associativity one,
the misprediction rate of a p=2 predictor is much higher than a p=1 predictor. Figure 13 shows an

example for p=2. Since the index part of the pattern is identical for target sequence t2t1 and t3t1,
both paths will occupy the same set in the table. The predictor assigns sets in the same way as a
predictor of path length one. If the two patterns alternate often, the path length two predictor will
incur frequent conflict misses with a one-way associative table and not return a prediction, while
the path length one predictor will return the predicted target address. To a lesser degree, the same
effect applies to larger path lengths and higher associativities1, explaining the saw-toothed lines for
concatenation in Figure 12. Interleaving remedies this problem by ensuring that the index part of a
pattern contains the lower order bits of all target addresses, rather than all bits of a subset of the
target addresses. When the target bits are interleaved, target sequences t2t1 and t3t1 will likely
differ in the index part of the pattern and will therefore not interfere with each other.

Interleaving of target bits is effective because it spreads patterns over more different sets than
concatenation. For example, interleaving increases table utilization forixx from 50% to 79% for a

1 Also note that since concatenation places the oldest targets completely in the tag, they are invisible to a tagless table. A path length 12 pattern,
with two bits per target in a predictor with a tagless, 4096-entry table will use only the 6 most recent targets, so its effective path length is only 6.

target2 target1

Concatenation t2 t1

indextag

Interleaving t3 t1

Figure 13. Concatenation and interleaving of target address bits for path length 2
for a 4096-entry table

target3

Concatenation t3 t1

Interleaving t2 t1

15

Technical Report TRCS97-19: Accurate Indirect Branch Prediction

1024 entry, one-way associative table for path length four. Figure 14 shows that interleaving
dramatically improves predictor performance compared to concatenation.

We experimented with three variants of interleaving schemes. Figure 15 shows the interleaving
schemes for path length 4 and index length 10. The index part of the pattern contains low order bits

from all targets, but two targets are more precisely represented with three bits, and two contribute
only their two lower order bits. Straight interleaving represents the most recent targets with higher
precision (target 1 and 2), while reverse interleaving represents the older targets most precise
(target 3 and 4). Ping-pong interleaving represents both the oldest and youngest target more precise
(1 and 4). Suppose the current branch depends only on the address of target4, and some of the possi-
bilities are equal in their two lower order bits. With straight interleaving, the two patterns will
conflict. With reverse interleaving, they will use entries in different sets.

We found that reverse interleaving performs slightly better on average than the two other schemes.
For shorter path lengths, the order does not make much difference since the index part of the pattern
contains many bits from every target. For longer path lengths the difference in precision becomes
more important. Reverse interleaving gives longer path length predictors the opportunity to use
more exact information from older targets, which is their main advantage compared to shorter path
lengths. In the remainder of the paper we use reverse interleaving.

Figure 14. misprediction rates for a 4096-entry table with reverse interleaving

0

0
0 0 0 0 0 0 0 0 0 0 0

1

1
1 1

1 1
1 1

1 1
1

1
12

2
2 2 2 2 2 2

2 2
2

2 2
4

4
4 4 4 4 4 4 4 4

4 4 4
bt

b

p=
1

p=
2

p=
3

p=
4

p=
5

p=
6

p=
7

p=
8

p=
9

p=
10

p=
11

p=
12

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%
0 Tagless

1 Assoc1

2 Assoc2

4 Assoc4

FullAs.

target1

Straight Interleaving

indextag

Figure 15. Interleaving schemes for path length 4 with a table of 1024 sets (10-bit index)

target2target3target4

Reverse Interleaving

Ping-pong Interleaving

16

Technical Report TRCS97-19: Accurate Indirect Branch Prediction

5.2.2 Associativity

Figure 14 shows that for any given table size and path length, higher associativity results in lower
misprediction rates. The only exception is the tagless table, which obtains a lower misprediction
rate than a four-way associative table for path length 7 to 12. This effect is caused by positive inter-
ference. Since these longer path lengths generate a larger set of distinct patterns, conflict misses
occur frequently even in four-way associative tables. The tagless table returns its stored target as a
prediction even though it may belong to a different pattern, while the associative table registers a
miss. Since many patterns map to a small number of targets, the prediction is better than random so
that a tagless table can outperform the associative table. Even where tagless tables do worse than

two- or four-way associative tables, the difference in miss rate remains relatively small. Since asso-
ciative tables require tags and tag checking logic, the hardware implementation of a tagless table is
smaller and faster than its associative counterpart, so that it may be the preferable choice under
many circumstances.

Figure 16 shows the AVG misprediction rates for practical associativities. The best predictor for a
given table size changes depending on associativity. For tagless tables, p=3 is best for table sizes
128 to 8192. For 2-way associative tables, p=1 wins for size 128, then p=2 is best for sizes 256 to
1024, after which p=3 performs better. For 4-way associativity, the best predictor for every size up
to 1024 is the same as for a fully-associative table (see Figure 11). Then p=3 remains the best

0
0 0 0 0 0 0 01

1

1
1

1 1 1 1

2

2

2

2
2

2 2 2

3

3

3

3
3

3
3 3

4

4

4

4

4
4

4 4

6

6

6

6

6
6

6

8

8

8

8

8
8

8

a

a

a

a
a

a

c

c

c

c

c
c

32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0%

5%

10%

15%

20%

25%

30%
0

0
0 0 0 0 0 0

1

1

1
1 1 1 1 1

2

2

2

2
2

2 2 2

3

3

3

3
3 3 3

4

4

4

4

4
4

4

6

6

6

6

6
6

8

8

8

8

8

a

a

a

a

c

c

c

c
32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0%

5%

10%

15%

20%

25%

30% 0
0

0 0 0 0 0 0 0
1

1

1
1 1 1 1 1 1

2

2

2
2

2 2 2 2

3

3

3

3
3

3 3 3

4

4

4

4
4

4 4

6

6

6

6
6

6

8

8

8

8
8

a

a

a

a

a

c

c

c

c

32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

0%

5%

10%

15%

20%

25%

30%

1
1 1 1 1

2

2

2
2 2

3

3

3

3
3

4

4

4

4

6

6

6

8

a

51
2

10
24

20
48

40
96

81
92

5%

6%

7%

8%

9%

10%

11%

12%

13%

14%

15%
1

1 1 1
2

2

2
2

2

3

3

3

3
3

4

4

4

4

6

6

6

6

8

8

8

a

a

c

c

51
2

10
24

20
48

40
96

81
92

5%

6%

7%

8%

9%

10%

11%

12%

13%

14%

15%
1

1 1 1 1

2

2
2

2 2

3

3

3
3

3

4

4

4

4
4

6

6

6

6

8

8

a

51
2

10
24

20
48

40
96

81
92

5%

6%

7%

8%

9%

10%

11%

12%

13%

14%

15%

Tagless Associativity 2 Associativity 4

Figure 16. AVG misprediction rates for various table sizes, for tagless, 2-way and 4-way associativity.
(numbers indicate path length, a = 10, c = 12, bottom graphs enlarge cut-out section)

17

Technical Report TRCS97-19: Accurate Indirect Branch Prediction

choice up to table size 4096. At size 8192, p=4 has a slight edge. P=6 retains too many conflict
misses even for large table sizes and therefore loses its status as best practical predictor. Limited
table size and associativity prevent the predictor from taking full advantage of the longer-term
regularity detection capability of longer path length predictors (however, see the next section).
Table A-1 in the appendix shows the exact misprediction rates for the best predictors for all table
sizes, and Table A-2 contains their path lengths.

6. Hybrid Branch Predictors

As discussed in section 3.2, predictors with short path lengths adapt more quickly when the
program goes through a phase change because it doesn’t take much time for a short history pattern
to fill up. Longer path length predictors are capable of detecting longer-term correlations but take
longer to adapt and suffer more from table size limitations because a larger patterns set is mapped
to the same number of targets. In this section we combine the two kinds of predictor in a hybrid
predictor in order to obtain the advantages of both.

6.1 Metaprediction

A hybrid branch predictor combines two or more component predictors that each predict a target
for the current branch. The hybrid predictor employs a selection mechanism (metapredictor) to
predict which of the predictors is likely to be correct. A branch predictor selection table (BPST)
[McFar93] associates a two-bit counter with each branch to keep track of which of two component
predictors is more accurate. After resolving a branch, the counter is updated to reflect the relative
accuracy of the two components. Alternatively, branches can be partitioned into different classes
based on run-time or compile-time information, and each class is associated with the component
predictor best suited to handle it [CHP94].

We attach a “confidence” counter to each table entry to keep track of the number of times the table
entry predicted the correct target. The counter is a n-bit saturating counter which tracks the success
rate over the last 2n-1 times the entry was consulted. (Replacing an entry resets the counter to zero).
The hybrid predictor selects the target with the highest confidence value; ties are resolved using a
fixed ordering (we test different orders in the next section). This metaprediction scheme is usually
more fine-grained than a BPST since it keeps track of the prediction accuracy of a particular pattern
rather than a particular branch. We tested 1,2,3 and 4-bit counters for all configurations in the next
section. Although the performance difference between 2,3 and 4 bit counters was small, 2-bit
counters usually performed best and are used for all results shown.

18

Technical Report TRCS97-19: Accurate Indirect Branch Prediction

6.2 Component Predictors

We simulate hybrid predictors with two component predictors of equal table size and associativity
but different path lengths. The component table sizes vary from 32 entries to 16K entries, and we
simulate all combinations of path lengths in the range 0..12.

Figure 17 shows the AVG hit ratios for two component table sizes with representative behavior
(2048 and 8192); more details are given in Table 6. The best hit rates are obtained by the combina-
tion of a short path length predictor (p=1..3) with a longer path length predictor (p=5..12). Since the
curve is fairly symmetrical with respect to the diagonal, it appears that the order of the predictors
(which is used to break ties in component predictor selection) does not matter much. For smaller
tables, the curve is sharper and peaks at shorter path lengths, i.e., it the choice of the short path
length component is more important, and very short path lengths do much better.

Figure 18 shows the misprediction rates of the best non-hybrid and hybrid predictors for each table
size and associativity. We compare predictors based on total table size, i.e., we treat a hybrid
predictor with two component predictors of size N as a predictor of size 2N and compare it against
the non-hybrid predictor of that size. In all but one case (64 entry, associativity 4), hybrid predictors
obtain lower misprediction rates than equal-sized non-hybrid predictors, even though each compo-
nent separately suffers more from capacity and conflict misses than the non-hybrid predictor. For
smaller table sizes (between 64 and 512 entries), the effect of increased associativity remains
stronger than that of hybridization. For example, a non-hybrid 4-way associative table of size 256
achieves a lower misprediction rate than a hybrid predictor with two 2-way associative components
of size 128 each. For larger table sizes (between 1K and 32K entries), a hybrid predictor with 2-way
associative components performs better than a non-hybrid 4-way associative predictor of the same
size. For 2- and 4-way associative non-hybrid predictors with tables larger than 2K entries, the
prediction rate improves more by changing to a hybrid predictor than by doubling the total table

Figure 17. AVG prediction hit rates for hybrid predictors, for all path length combinations, for 4-way associa-
tive tables with 2-bit confidence counters and component table size of 2048(left) and 8192(right)
entries. P1 is the path length of the first component predictor, P2 of the second. When P1 = P2 (the
diagonal), the hit rate for a non-hybrid predictor of twice the component size is shown.

0
1

2
3

4
5

P1 6
7

8
9

10
11

12

0
1

2
3

4
5 P26

7
8

9
10

11
12

95%
94%
93%
92%
91%
90%

95%
94%
93%
92%
91%
90%

0
1

2
3

4
5

P1 6
7

8
9

10
11

12

0
1

2
3

4
5 P26

7
8

9
10

11
12

95%
94%
93%
92%
91%
90%

95%
94%
93%
92%
91%
90%

19

Technical Report TRCS97-19: Accurate Indirect Branch Prediction

size. For tables larger than 4K entries, a 4-way associative hybrid predictor outperforms even a
fully-associative table of the same size.

Table 6 shows the misprediction rate of the best predictor for each table size as well as the compo-
nent path lengths for which the misprediction rate was achieved. The trend towards longer path
lengths with increasing table size is very pronounced; clearly, long paths are ineffective for small
predictor tables.

a A non-hybrid predictor outperforms all hybrid pre-
dictors in this case.

size tagless assoc2 assoc4

miss% p1.p2 miss% p1.p2 miss% p1.p2

64 23.89% 0.2 22.76% 1.0 19.77% 1a

128 19.28% 1.4 17.81% 1.4 16.66% 2.0

256 15.89% 1.3 14.31% 2.1 13.29% 2.0

512 13.64% 3.1 11.65% 3.1 10.90% 3.1

1024 11.42% 3.1 9.56% 3.1 8.98% 3.1

2048 9.98% 3.1 8.42% 4.1 7.82% 5.1

4096 8.95% 3.7 7.24% 5.2 6.72% 6.2

8192 7.76% 3.7 6.40% 6.2 5.95% 6.2

16384 6.94% 3.9 5.84% 7.2 5.53% 7.2

32768 6.31% 3.9 5.50% 7.2 5.21% 8.2

Table 6. AVG misprediction rates and path length combinations for best hybrid predictors

Figure 18. Misprediction rates for best predictor (choice of path length) for each table size, for tagless, two-way
associative and four-way associative tables, hybrid and non-hybrid versions,
compared to a fully-associative predictor (table size given in total number of entries)

64 12
8

25
6

51
2

10
24

8%

10%

12%

14%

16%

18%

20%

22%

24%

26%

20
48

40
96

81
92

16
38

4

32
76

8

5%

6%

7%

8%

9%

10%

11%
tagless

assoc2

assoc4

fullassoc

direct hybrid

assoc2 hybrid

assoc4 hybrid

20

Technical Report TRCS97-19: Accurate Indirect Branch Prediction

7. Related work

Lee and Smith [LS84] describe several forms of BTBs. Jacobson et al. [J+96] study efficient ways
to implement path-based history schemes and observe that BTB hit rates increase substantially
when using a global path history. Their Correlated Task Target Buffer (CTTB), unconstrained and
fully associative, reached misprediction rates of 18% and 15% forgcc andxlisp with path length 7;
our study found misprediction rates of 12% and 1.5% forp=7. The different results can be
explained by several factors: different benchmark version (SPEC92 vs. SPEC95), inputs, and radi-
cally different architectures (e.g., the multiscalar processor’s history information will likely omit
some branches in the immediate past). Finally, Jacobson et al. include conditional branches in the
path histories, which is probably responsible for the difference inxlisp (see section 3.3).

Chang et al. [CHP97] explore a limited range of two-level predictors for indirect branches and
simulate the resulting speedups of selected SPECint95 programs for a superscalar processor. The
misprediction rate of a BTB-2bc is reduced by half to 30.9% forgcc with a Pattern History Tagless
Target Cache with configuration gshare(9). This predictor XORs a global 9-bit history of taken/non
taken bits from conditional branches with the branch address, and uses the result as a key into a
globally shared, tagless 512-entry history table. In the present study, a comparable non-hybrid
predictor (p=3, tagless 512-entry) reaches a misprediction ratio of 31.5% forgcc, the best non-
hybrid predictor (p=2, four-way associative 512-entry) has 28.1% misprediction rate, and the best
hybrid predictor (p1=3, p2=1, four-way associative 512-entry) reaches 26.4%. These comparisons
should be regarded with caution, since the two experiments differed in architectures (HPS vs.
SPARC), compilers, and benchmark inputs.1

Emer and Gloy [EG97] describe several single-level indirect branch predictors based on combina-
tions of the values of PC, SP, register number, and target address, and evaluate their performance on
a subset of the SPECint95 programs. For these programs, the best predictor shown achieved a
misprediction ratio of 30%, although the authors allude to a better predictor that achieves 15%.

Calder and Grunwald proposed the two-bit counter update rule for BTB target addresses [CG94]
and showed that it improved the prediction rate of a suite of C++ programs. Chen et al. [CCM96]
propose Partial Prefix Matching prediction for conditional branch prediction and show that a PPM
predictor performs better than a two-level predictor for a similar hardware budget. Since a PPM
predictor predicts for the longest pattern for which a prediction is available (choosing progressively
shorter path lengths until a prediction is found), a hybrid predictor with different path length
components can mimic this behavior.

Nair [Nair95] introduced path-based branch correlation for conditional branches and showed that
a path-based predictor with two-bit partial addresses attained prediction rates similar to a pattern-
based predictor with taken/not taken bits (for similar hardware budgets).

Many alternative implementations in this study were inspired by conditional branch predictors. We
refer to [USS97] for a recent general overview, to [YP93] for a classification of two-level predic-
tors, and [ECP96] for recent hybrid prediction results.

1 We were unable to obtain the exact benchmark inputs used by Chang et al.

21

Technical Report TRCS97-19: Accurate Indirect Branch Prediction

8. Conclusions and future work

We have explored a wide range of two-level indirect branch predictors, starting with unconstrained
predictors with full-precision addresses and unlimited hardware resources. For a suite of large C++
and C programs totalling more than half a million lines of source code, the best unconstrained
predictor achieved a misprediction rate of 5.8%, indicating that indirect branches are intrinsically
predictable even though current hardware predictors (BTBs) do not predict them well. An exhaus-
tive search of the design space established that a global history and per-address predictors perform
best.

Subsequent experiments introduced resource constraints in order to evaluate whether realistic
predictors could approach this performance with a limited hardware budget. Introducing limited-
precision addresses (for a history buffer of 24 bits) increased the misprediction rate to 6.0%.
Limiting table size (thus causing capacity misses) resulted in a further increase to a 8.5% mispre-
diction rate for a 1K-entry table and 6.6% for a 8K-entry table. Restricting table associativity
resulted in 11.7% and 8.5% misprediction rates for 1K and 8K tagless tables, respectively. Four-
way associative tables of the same sizes reduce the misprediction rates to 9.8% and 7.3%, respec-
tively. In comparison, an infinite-size fully-associative branch target buffer achieves a best-case
misprediction rate of 24.9%. In other words, two-level prediction improves prediction accuracy by
more than a factor three.

Combining two-level predictors with different path lengths in a hybrid predictor further improved
prediction accuracy. For a 4-way associative table, the misprediction rate of the best hybrid
predictor improved to 8.98% for 1K entries and 5.95% for 8K entries. We found that 2-bit per-
pattern confidence counters achieve adequate meta-prediction performance and that combining a
short and long path length predictor results in the best performance. Compared to an ideal BTB, an
8K-entry hybrid predictor improves prediction accuracy by a factor of more than four.

We also explored a variety of alternatives that resulted in inferior performance. In particular:

• Per-address or per-set history buffers perform worse than a global, shared history buffer.

• Updating targets on every miss lowers the performance, compared to updating only after two
consecutive misses.

• Including conditional branch targets in the history pattern lowers prediction performance by
pushing the more relevant indirect branch information out of the history buffer.

• Using bits other than the lower-order bits of target addresses results in lower performance.

• For limited-associative tables, the index part of the key pattern should contain bits from as
many targets as possible, i.e., interleaving of target address bits performs better than concate-
nation.

The difference in performance between a BTB and the best practical two-level predictor becomes
significant only for history tables larger than 64 entries. As the hardware budget allows larger
history tables to be implemented, the path length of the best predictor grows. At 2048 entries, a
hybrid predictor’s miss rate of 7.8% outperforms that of a BTB by a factor of three. This result
suggests that even for very high-ILP processors, indirect branches are less likely to severely
constrain the achievable IPC if the transistor budget is large enough.

22

Technical Report TRCS97-19: Accurate Indirect Branch Prediction

8.1 Future Work

Hybrid predictors can be further explored. We plan to simulate component predictors of different
sizes and combine three or more components. Furthermore, the different components can use one
shared table. Entries can be augmented with a “chosen” counter, which keeps track of the number
of times an entry’s prediction is used by the hybrid predictor. This counter is consulted when
updating table entries, so that seldom used entries can be recuperated by a different component, for
better use of available hardware. This would allow each component to only use storage space for
the branches it predicts best.

We also plan to study the positive interference observed in tagless, long path length predictors.
Since many patterns predict the same target, a denser encoding may exist that uses fewer table
entries while preserving prediction accuracy. Also, if a long path length predictor is used as compo-
nent in a hybrid predictor, the more recent targets may be ignored, reducing the number of patterns
that map to the same entries. This will remove the capability of the predictor to predict short term
correlations, but these may be adequately predicted by the short path component with which it is
combined.

A predictor could predict not only the target of a branch but also the address of the next indirect
branch to be executed. This disambiguates branches that lie on different conditional branch control
flow paths but share the same indirect branch path, and allows a predictor to run, in principle, arbi-
trarily far ahead of execution.

Acknowledgments. The authors would like to thank Raimondas Lencevicius for his comments on
an early version of this paper, and Ralph Keller for thejhm benchmark. This work was supported
in part by National Science Foundation CAREER grant CCR-9624458, an IBM Faculty Develop-
ment Award, and by Sun Microsystems.

9. References

[AH96] Gerald Aigner and Urs Hölzle. Eliminating Virtual Function Calls in C++ Programs.ECOOP ‘96 Proceedings, Springer
Verlag, July 1996.

[CGZ94] Brad Calder, Dirk Grunwald, and Benjamin Zorn.Quantifying Behavioral Differences Between C and C++ Programs.
Technical Report CU-CS-698-94, University of Colorado, Boulder, January 1994.

[CG94] Brad Calder and Dirk Grunwald. Reducing indirect function call overhead in C++ programs. In21st Symposium on Prin-
ciples of Programming Languages, pages 397-408, 1994.

[CHP94] Po-Yung Chang, Eric Hao, Yale N. Patt. Branch classification: A new mechanism for improving branch predictor perfor-
mance.MICRO ‘27 Proceedings, November 1994.

[CHP95] Po-Yung Chang, Eric Hao, Yale N. Patt. Alternative Implementations of Hybrid Branch Predictors.MICRO ‘28
Proceedings, November 1995.

[CHP97] Po-Yung Chang, Eric Hao, Yale N. Patt. Target Prediction for Indirect Jumps. To appear in theISCA’97 Proceedings.

[CCM96] I-Cheng K.Chen, John T.Coffey, Trevor N. Mudge. Analysis of Branch Prediction via Data Compression.ASPLOS’96
Proceedings.

23

Technical Report TRCS97-19: Accurate Indirect Branch Prediction

[CK93] Robert F. Cmelik and David Keppel.Shade: A Fast Instruction-Set Simulator for Execution Profiling. Sun Microsystems
Laboratories, Technical Report SMLI TR-93-12, 1993. Also published as Technical Report CSE-TR 93-06-06,
University of Washington, 1993.

[D+96] Jeffrey Dean, Greg DeFouw, David Grove, Vassily Litvinov, and Craig Chambers. Vortex: An Optimizing Compiler for
Object-Oriented Languages.Proceedings of OOPSLA ‘96, San Jose, CA, October, 1996.

[DH96] Karel Driesen and Urs Hölzle. The Direct Cost of Virtual Function Calls in C++. InOOPSLA ‘96 Conference
proceedings, October 1996.

[DH97] Karel Driesen and Urs Hölzle. Limits of Indirect Branch Prediction. Technical Report TRCS97-10, Department of
Computer Science, University of California Santa-Barbara,June 25, 1997 (http://www.cs.ucsb.edu/oocsb/papers/
TRCS97-10.html)

[EG97] Joel Emer and Nikolas Gloy. A language for describing predictors and its application to automatic synthesis. To appear
in theISCA’97 Proceedings,July 1997.

[ECP96] Marius Evers, Po-Yung Chang, Yale N. Patt. Using Hybrid Branch Predictors to Improve Branch Prediction Accuracy
in the presence of context switches.Proceedings of ISCA’96.

[Intel97] Intel press release.The Next Generation of Microprocessor Architecture: A 64-bit Instruction Set Architecture (ISA)
Based on EPIC Technology. Intel Corporation October 1997 (http://www.intel.com/pressroom/archive/backgrnd/
sp101497.HTM)

[J+96] Quinn Jacobson, Steve Bennet, Nikhil Sharma, and James E. Smith. Control flow speculation in multiscalar processors.
HPCA-3 proceedings, February 1996.

[KE91] David Kaeli and P. G. Emma. Branch history table prediction of moving target branches due to subroutine returns.
ISCA ‘91 Proceedings, May 1991.

[LS84] J. Lee and A. Smith. Branch prediction strategies and branch target buffer design.IEEE Computer 17(1), January 1984.

[Nair95] Ravi Nair. Dynamic Path-Based Branch Correlation. Proceedings of MICRO-28, 1995.

[M+94] S. A. Mahlke, R. E. Hank, R. A. Bringmann, J. C. Gyllenhaal, D. M. Gallagher, and W. W. Hwu. Characterizing the
Impact of Predicated Execution on Branch Prediction.Proceedings of the 27th International Symposium on Microarchi-
tecture, December 1994, pp. 217-227

[MMN93] Ole Lehrmann Madsen, Birger Moller-Pedersen, Kristen Nygaard.Object-Oriented Programming in the Beta Program-
ming Language. Addison-Wesley 1993.

[McFar93]S. McFarling, Combining Branch Predictors,WRL Technical Note TN-36, Digital Equipment Corporation, June 1993

[P+97] Yale N.Patt, Sanjay J. Patel, Marius Evers, Daniel H. Friendly, Jared Stark. One Billion Transistors, One Uniprocessor,
One Chip. IEEE Computer, September 1997

[SLM95] Stuart Sechrest, Chich-Chieh Lee, and Trevor Mudge. The role of adaptivity in two-level adaptive branch prediction.
Proceedings of MICRO-29, November 1995.

[USS97] Augustus K. Uht, Vijay Sindagi, Sajee Somanathan. Branch Effect Reduction Techniques.IEEE Computer, May 1997.

[YP91] Tse-Yu Yeh and Yale N. Patt. Two-level adaptive branch prediction.MICRO 24, November 1991.

[YP93] Tse-Yu Yeh and Yale N. Patt. A Comparison of Dynamic Branch Predictors that use Two Levels of Branch History.
Proceedings of ISCA’93.

24

Technical Report TRCS97-19: Accurate Indirect Branch Prediction

Appendix : Detailed Data

Table A-1 shows the misprediction rates (in %) per benchmark and averages for a fully associative

ta
bl

es
iz

e

bt
b

fu
lla

ss
oc

ta
gl

es
s

as
so

c1

as
so

c2

as
so

c4

fu
lla

ss
oc

hy
br

id
 ta

gl
es

s

hy
br

id
 a

ss
oc

1

hy
br

id
 a

ss
oc

2

hy
br

id
 a

ss
oc

4

 b
tb

fu
lla

ss
oc

ta
gl

es
s

as
so

c1

as
so

c2

as
so

c4

fu
lla

ss
oc

hy
br

id
 ta

gl
es

s

hy
br

id
 a

ss
oc

1

hy
br

id
 a

ss
oc

2

hy
br

id
 a

ss
oc

4

AVG idl
32 28.11 30.71 32.50 30.28 25.98 22.62 30.71 32.50 30.28 25.98 6.09 6.76 6.39 6.15 7.87 8.06 6.76 6.39 6.15 7.87
64 26.83 24.26 26.30 23.60 19.77 18.53 23.89 25.45 22.76 19.77 2.99 5.20 6.38 5.55 5.33 5.02 5.39 5.64 5.91 5.33

128 25.76 20.56 22.22 19.09 16.98 15.56 19.28 20.36 17.81 16.66 2.45 4.80 4.54 3.73 2.74 3.77 4.68 5.62 5.17 3.64
256 25.13 16.99 18.06 15.15 13.73 12.47 15.89 15.76 14.31 13.29 2.41 3.40 3.13 3.69 2.67 1.23 3.05 3.52 2.90 2.10
512 25.01 13.74 15.92 12.59 11.35 10.40 13.64 13.03 11.65 10.90 2.40 2.05 3.26 2.18 1.49 1.05 2.44 2.11 1.52 1.17

1024 24.93 11.74 13.53 10.74 9.82 8.48 11.42 10.78 9.56 8.98 2.40 1.43 2.38 1.33 0.85 0.64 1.52 1.29 0.93 0.76
2048 24.92 10.27 11.48 9.49 8.52 7.76 9.98 9.41 8.42 7.82 2.40 1.13 1.80 0.82 0.69 0.62 1.19 0.99 0.67 0.46
4096 24.92 9.12 10.43 8.54 7.77 7.17 8.95 8.46 7.24 6.72 2.40 0.95 1.60 0.71 0.63 0.62 0.81 0.80 0.52 0.38
8192 24.92 8.45 9.68 8.02 7.27 6.57 7.76 7.37 6.40 5.95 2.40 0.69 1.01 0.67 0.63 0.44 0.60 0.61 0.40 0.37

16384 24.92 7.77 8.97 7.47 6.81 6.14 6.94 6.72 5.84 5.53 2.40 0.69 0.85 0.65 0.45 0.42 0.46 0.54 0.37 0.36
32768 24.92 7.09 8.46 7.07 6.57 6.02 6.31 6.26 5.50 5.21 2.40 0.55 0.81 0.50 0.45 0.42 0.43 0.43 0.36 0.35

100-AVG ijpeg
32 14.97 18.92 18.07 16.82 16.81 15.86 18.92 18.07 16.82 16.81 1.26 26.62 1.52 1.64 0.82 0.32 26.62 1.52 1.64 0.82
64 13.31 15.73 16.96 14.68 14.29 13.76 16.14 15.98 14.69 14.29 1.26 26.63 51.15 0.31 0.31 0.31 1.41 0.54 0.41 0.31

128 11.72 15.01 13.98 12.33 11.77 13.63 15.17 15.45 14.03 12.35 1.26 0.92 0.56 0.31 0.31 0.39 26.14 34.23 0.31 0.29
256 10.57 12.49 12.01 12.11 11.20 9.85 12.32 12.07 11.57 10.08 1.26 0.69 0.56 0.65 0.39 0.39 0.57 0.56 0.35 0.29
512 10.32 9.84 12.27 9.84 9.09 8.20 10.16 9.46 8.63 8.22 1.26 0.44 0.39 0.39 0.39 0.39 0.48 0.49 0.37 0.37

1024 10.14 8.42 10.77 8.48 7.15 6.37 8.31 7.82 7.02 6.66 1.26 0.45 0.39 0.39 0.46 0.46 0.36 0.37 0.37 0.37
2048 10.11 7.41 9.21 6.97 6.37 6.12 7.20 6.77 6.18 5.96 1.26 0.45 0.39 0.46 0.46 0.51 0.36 0.37 0.38 0.38
4096 10.11 6.69 8.54 6.29 5.77 5.62 6.71 6.66 5.74 5.47 1.26 0.44 0.39 0.46 0.46 0.51 0.44 0.46 0.46 0.47
8192 10.11 6.21 6.91 5.92 5.62 5.26 5.88 5.89 5.13 4.83 1.26 0.50 0.46 0.46 0.51 0.56 0.44 0.46 0.47 0.47

16384 10.11 5.95 6.43 5.69 5.42 4.93 5.36 5.31 4.74 4.54 1.26 0.56 0.46 0.51 0.56 0.62 0.43 0.46 0.47 0.47
32768 10.11 5.56 6.10 5.68 5.26 4.86 4.92 4.90 4.46 4.42 1.26 0.56 0.46 0.56 0.56 0.62 0.43 0.47 0.47 0.48

200-AVG ixx
32 39.38 40.82 44.86 41.81 33.84 28.40 40.82 44.86 41.81 33.84 46.58 33.15 56.21 51.11 30.07 24.30 33.15 56.21 51.11 30.07
64 38.42 31.58 34.30 31.24 24.48 22.61 30.54 33.58 29.68 24.48 45.75 24.47 32.91 24.86 18.10 15.94 31.72 30.00 23.33 18.10

128 37.79 25.32 29.28 24.89 21.44 17.22 22.79 24.57 21.06 20.36 45.70 24.60 27.55 17.93 15.37 12.10 22.09 25.43 20.18 19.02
256 37.61 20.84 23.24 17.77 15.91 14.72 18.95 18.92 16.67 16.04 45.70 18.74 20.58 15.47 12.57 10.34 17.91 18.55 14.13 13.32
512 37.61 17.08 19.05 14.94 13.29 12.28 16.63 16.09 14.23 13.20 45.70 13.88 21.38 13.48 10.63 10.25 14.28 13.72 10.84 9.48

1024 37.61 14.58 15.90 12.67 12.10 10.28 14.08 13.32 11.73 10.98 45.70 12.37 15.32 11.57 9.03 8.21 11.89 11.63 9.53 8.56
2048 37.61 12.73 13.43 11.65 10.36 9.16 12.37 11.67 10.34 9.42 45.70 10.90 12.51 9.82 8.47 6.94 10.81 10.54 7.43 6.06
4096 37.61 11.21 12.05 10.46 9.47 8.51 10.86 10.00 8.52 7.80 45.70 9.34 12.11 9.29 8.29 6.94 8.13 6.87 5.96 5.06
8192 37.61 10.37 12.06 9.82 8.69 7.69 9.37 8.64 7.49 6.91 45.70 8.86 11.28 8.94 7.11 5.86 7.32 6.45 5.37 4.91

16384 37.61 9.32 11.15 9.00 8.00 7.18 8.30 7.93 6.79 6.38 45.70 7.66 10.55 8.04 5.98 5.58 5.98 6.12 4.87 4.70
32768 37.61 8.39 10.48 8.26 7.68 7.01 7.50 7.42 6.39 5.88 45.70 6.79 10.14 6.70 5.94 5.58 5.71 5.58 4.81 4.15

INFREQ-AVG lcom
32 31.78 31.68 32.32 31.88 20.85 17.95 31.68 32.32 31.88 20.85 5.18 12.99 5.80 5.24 4.81 4.45 12.99 5.80 5.24 4.81
64 31.78 27.61 34.80 18.16 17.74 17.54 27.65 24.51 19.88 17.74 4.71 4.67 4.78 4.03 3.84 3.62 5.11 4.84 4.30 3.84

128 31.78 23.16 20.75 17.96 17.54 15.66 26.24 28.73 16.79 21.46 4.46 4.75 3.90 3.61 3.47 3.49 4.48 4.31 3.73 3.72
256 31.78 19.92 18.07 17.52 15.58 14.98 15.74 16.96 15.37 17.03 4.25 3.93 3.43 3.37 3.25 3.27 3.73 3.35 3.36 2.96
512 31.78 15.26 20.34 16.44 15.18 14.97 14.72 14.12 11.98 11.31 4.25 3.25 3.26 2.80 2.60 2.53 3.18 2.83 2.66 2.56

1024 31.78 14.27 19.40 16.09 10.89 10.40 13.04 12.49 11.42 10.43 4.25 2.68 2.77 2.33 2.20 1.88 2.61 2.26 2.07 1.95
2048 31.78 13.54 18.06 12.86 10.67 10.16 12.24 11.89 10.06 10.09 4.25 2.17 2.43 1.85 1.68 1.65 2.14 1.86 1.73 1.69
4096 31.78 12.04 16.48 11.87 10.44 10.06 11.29 11.23 9.81 8.31 4.25 1.83 2.12 1.56 1.42 1.34 2.03 1.71 1.46 1.31
8192 31.78 12.12 14.41 11.76 10.50 10.81 10.29 10.10 8.02 7.84 4.25 1.62 1.71 1.44 1.36 1.34 1.69 1.40 1.20 1.11

16384 31.78 12.66 14.17 11.67 11.22 9.17 9.61 9.47 8.63 8.60 4.25 1.55 1.58 1.37 1.37 1.39 1.45 1.24 1.11 1.04
32768 31.78 11.14 13.98 11.89 11.07 9.10 9.47 9.20 8.30 8.90 4.25 1.43 1.49 1.39 1.35 1.39 1.31 1.20 1.05 1.02

Table A-1. Misprediction rates (per benchmark and averages) for different predictors and table sizes.

25

Technical Report TRCS97-19: Accurate Indirect Branch Prediction

OO-AVG m88ksim
32 23.70 25.80 28.17 25.96 22.64 20.02 25.80 28.17 25.96 22.64 76.41 56.87 78.29 76.41 45.33 35.99 56.87 78.29 76.41 45.33
64 22.18 20.43 22.55 18.96 17.18 16.04 22.35 21.62 19.12 17.18 76.41 46.52 49.25 35.99 35.99 35.99 65.19 56.77 42.54 35.99

128 20.87 20.75 18.40 15.33 14.13 15.43 19.14 19.63 17.20 15.47 76.41 43.78 46.40 35.99 35.99 26.55 42.50 44.76 33.11 46.11
256 19.97 17.00 15.48 14.79 13.29 11.95 15.35 15.01 13.61 12.16 76.41 36.17 35.99 29.46 26.55 26.55 28.66 34.39 28.57 32.27
512 19.81 13.37 15.30 11.95 10.61 9.50 13.29 12.47 11.13 10.50 76.41 22.07 32.29 27.54 26.55 26.55 23.90 23.26 17.53 15.38

1024 19.69 11.29 12.63 9.91 9.47 7.93 10.85 10.15 9.01 8.49 76.41 20.16 30.44 27.54 14.40 14.40 19.26 18.53 16.47 13.56
2048 19.67 9.81 10.51 9.14 8.09 7.21 9.42 8.82 7.97 7.50 76.41 19.31 30.43 17.48 14.40 13.40 17.35 17.47 11.57 8.72
4096 19.67 8.67 9.68 8.21 7.38 6.70 8.51 7.97 6.97 6.48 76.41 15.41 30.43 14.58 14.40 13.40 11.62 10.73 8.75 2.17
8192 19.67 8.03 9.32 7.75 6.90 6.31 7.37 7.06 6.14 5.76 76.41 14.39 16.40 14.40 13.40 10.58 9.78 10.73 2.17 2.17

16384 19.67 7.43 8.57 7.21 6.49 5.91 6.51 6.42 5.62 5.35 76.41 14.43 16.40 13.40 10.58 3.07 6.73 8.76 4.00 4.00
32768 19.67 6.82 8.00 6.76 6.33 5.87 5.94 5.97 5.31 5.06 76.41 9.64 16.40 10.58 10.58 3.07 6.73 6.76 4.00 4.00

C-AVG perl
32 34.91 36.72 37.28 35.94 27.18 23.20 36.72 37.28 35.94 27.18 31.80 60.62 31.81 31.80 36.31 22.80 60.62 31.81 31.80 36.31
64 34.54 30.25 34.76 26.10 21.67 20.83 27.51 29.29 25.41 21.67 31.80 45.24 45.27 49.74 22.76 22.75 9.32 31.76 31.75 22.76

128 34.27 21.65 25.78 22.75 20.46 15.76 22.92 25.36 17.99 20.41 31.80 0.37 40.74 36.21 22.72 0.34 0.33 4.85 0.40 0.29
256 34.25 18.43 20.96 16.75 15.16 14.31 16.42 17.20 15.63 16.43 31.80 0.35 22.73 0.33 0.32 0.29 0.28 0.30 0.28 0.26
512 34.25 14.90 18.84 15.23 14.10 13.69 14.58 14.20 12.40 11.56 31.80 0.31 0.33 0.32 0.29 0.28 0.27 0.30 0.28 0.27

1024 34.25 13.50 17.48 14.34 10.75 10.05 12.87 12.34 11.11 10.26 31.80 0.31 0.32 0.30 0.34 0.32 0.26 0.27 0.26 0.26
2048 34.25 12.43 15.87 11.56 10.08 9.57 11.74 11.31 9.75 9.31 31.80 0.30 0.31 0.34 0.33 0.37 0.25 0.26 0.27 0.27
4096 34.25 11.09 14.31 10.58 9.54 9.15 10.61 10.40 8.82 7.79 31.80 0.30 0.30 0.33 0.32 0.37 0.29 0.33 0.32 0.33
8192 34.25 10.75 12.45 10.19 9.31 8.98 9.46 9.08 7.50 7.12 31.80 0.34 0.35 0.33 0.37 0.40 0.29 0.33 0.33 0.32

16384 34.25 10.60 12.02 9.87 9.38 7.91 8.76 8.43 7.49 7.26 31.80 0.38 0.34 0.37 0.40 0.45 0.29 0.32 0.33 0.33
32768 34.25 9.42 11.73 9.82 9.08 7.72 8.31 8.06 7.11 7.22 31.80 0.38 0.33 0.41 0.40 0.45 0.30 0.33 0.32 0.34

SPEC-AVG porky
32 34.05 35.89 34.75 34.29 25.64 21.58 35.89 34.75 34.29 25.64 21.70 28.88 26.38 23.76 22.52 19.41 28.88 26.38 23.76 22.52
64 34.04 30.36 34.64 25.27 20.80 20.39 26.32 27.33 24.13 20.80 21.21 19.74 21.75 17.41 15.30 13.97 21.81 21.97 19.21 15.30

128 34.02 20.11 25.21 22.61 20.19 14.91 22.26 24.53 16.54 19.45 21.08 19.24 17.53 13.97 13.15 9.68 17.41 18.88 15.02 16.11
256 34.02 17.20 20.64 15.99 14.49 13.68 15.32 16.08 14.79 15.82 20.80 14.94 15.96 12.43 10.22 9.12 13.56 13.68 10.75 11.04
512 34.02 13.72 18.12 14.80 13.78 13.48 13.52 13.26 11.47 10.70 20.80 12.28 12.53 10.16 9.01 8.90 11.99 11.40 9.94 9.28

1024 34.02 12.63 16.96 14.22 9.95 9.43 12.00 11.70 10.56 9.67 20.80 10.37 10.03 8.56 7.89 6.97 10.06 8.74 7.81 7.59
2048 34.02 11.72 15.46 11.00 9.49 9.02 11.05 10.81 9.23 8.99 20.80 9.30 8.96 7.78 6.88 5.13 8.97 7.84 7.04 6.99
4096 34.02 10.39 14.23 10.05 9.01 8.64 10.08 9.83 8.51 7.44 20.80 8.39 8.43 7.24 6.26 4.85 7.80 6.81 6.01 5.41
8192 34.02 10.12 11.76 9.71 8.67 8.56 8.97 8.76 7.09 6.76 20.80 7.22 9.13 6.98 5.30 5.05 6.83 6.20 5.36 5.05

16384 34.02 10.22 11.39 9.26 8.79 7.35 8.31 8.10 7.23 7.01 20.80 6.07 7.68 5.64 5.22 4.61 6.08 5.56 5.13 4.77
32768 34.02 8.95 11.13 9.32 8.51 7.13 7.92 7.73 6.82 7.05 20.80 5.37 6.53 5.19 4.99 4.61 5.29 5.76 4.92 4.29

beta self
32 31.85 27.98 36.63 33.76 25.20 16.89 27.98 36.63 33.76 25.20 36.08 49.54 48.36 46.15 45.21 40.81 49.54 48.36 46.15 45.21
64 30.48 21.88 23.13 19.59 14.73 12.22 25.92 24.17 20.58 14.73 32.34 44.08 46.73 39.69 38.86 36.39 42.34 44.11 41.04 38.86

128 29.44 18.65 16.62 14.66 10.77 13.06 17.05 16.85 14.69 13.03 25.07 39.80 39.03 32.54 31.61 36.84 41.43 42.17 37.80 34.00
256 28.57 13.88 12.88 13.04 10.99 10.44 12.69 12.09 11.33 10.17 18.41 33.05 32.08 31.53 29.44 26.91 33.49 32.42 31.82 26.15
512 28.57 10.20 13.75 9.38 7.46 5.51 10.09 9.59 8.52 8.36 16.94 26.80 29.39 23.94 22.18 19.70 27.35 26.31 24.20 23.26

1024 28.57 7.84 10.64 6.04 5.61 3.19 7.21 6.53 5.47 4.92 15.88 22.37 24.27 19.48 18.61 16.62 22.53 20.60 18.00 17.11
2048 28.57 6.29 6.19 5.13 3.77 2.66 5.46 4.79 3.84 3.23 15.68 18.33 19.69 16.81 15.40 16.01 18.33 16.28 15.21 14.64
4096 28.57 4.42 4.78 4.12 3.28 2.63 4.45 3.78 2.77 2.20 15.68 15.49 16.84 14.03 12.90 13.44 17.94 16.31 14.06 13.38
8192 28.57 3.77 4.91 3.62 2.73 2.46 3.31 2.95 2.27 1.99 15.68 14.00 15.43 12.27 11.91 11.54 14.62 13.50 11.81 10.83

16384 28.57 3.49 4.46 2.81 2.51 2.28 2.58 2.58 2.03 1.88 15.68 13.51 13.73 11.55 11.43 10.50 12.44 11.15 9.92 9.25
32768 28.57 2.91 4.18 2.79 2.49 2.28 2.28 2.32 1.87 1.68 15.68 11.87 12.63 11.51 10.72 10.10 10.62 10.54 9.16 8.61

ta
bl

es
iz

e

bt
b

fu
lla

ss
oc

ta
gl

es
s

as
so

c1

as
so

c2

as
so

c4

fu
lla

ss
oc

hy
br

id
 ta

gl
es

s

hy
br

id
 a

ss
oc

1

hy
br

id
 a

ss
oc

2

hy
br

id
 a

ss
oc

4

 b
tb

fu
lla

ss
oc

ta
gl

es
s

as
so

c1

as
so

c2

as
so

c4

fu
lla

ss
oc

hy
br

id
 ta

gl
es

s

hy
br

id
 a

ss
oc

1

hy
br

id
 a

ss
oc

2

hy
br

id
 a

ss
oc

4

Table A-1. Misprediction rates (per benchmark and averages) for different predictors and table sizes.

26

Technical Report TRCS97-19: Accurate Indirect Branch Prediction

BTB, two-level predictors with tagless, one-way, two-way, four-way and fully associative tables of
given entry size, and dual pathlength hybrid predictors with 2-bit confidence counters. The path-
lengths for the best predictor and component predictors is given in Table A-2. Note that the mispre-
diction rates of individual benchmarks in Table A-1 may occasionally increase even for a larger

edg jhm
32 40.88 42.59 54.99 47.48 37.97 34.57 42.59 54.99 47.48 37.97 11.45 14.05 12.24 11.81 14.40 14.03 14.05 12.24 11.81 14.40
64 37.97 29.48 35.61 31.89 27.78 23.89 35.85 42.99 34.40 27.78 11.16 12.92 15.14 13.03 12.88 12.49 12.54 12.19 12.04 12.88

128 35.99 32.48 29.80 23.77 22.36 21.72 27.51 31.20 28.14 27.08 11.13 15.12 12.22 11.96 11.76 13.36 13.08 13.93 12.81 11.81
256 35.91 27.09 23.22 22.07 19.86 18.73 24.12 25.05 21.50 20.72 11.13 13.81 11.80 12.98 12.40 11.31 11.97 11.70 12.08 11.35
512 35.91 23.17 23.84 18.18 16.36 15.18 21.98 20.76 18.85 17.57 11.13 12.75 14.64 12.18 11.27 10.59 11.95 11.88 11.43 11.00

1024 35.91 19.63 21.13 15.16 16.34 14.40 18.93 16.80 14.94 14.46 11.13 11.93 13.57 11.18 11.33 9.67 11.24 11.30 10.81 10.35
2048 35.91 17.40 18.73 15.53 14.19 13.46 16.57 14.86 13.43 11.59 11.13 11.59 13.03 12.10 10.92 9.41 10.75 10.94 10.23 9.85
4096 35.91 15.94 14.82 14.27 13.28 12.75 14.31 14.41 11.04 10.20 11.13 11.08 12.83 11.42 10.22 9.30 10.07 10.29 9.24 9.16
8192 35.91 15.10 17.25 13.58 13.81 11.94 12.92 11.34 10.36 9.62 11.13 11.12 11.89 11.20 10.75 9.44 9.39 9.85 8.62 8.45

16384 35.91 13.24 16.39 14.15 13.52 11.86 11.90 10.75 9.32 9.00 11.13 10.33 11.40 11.38 10.29 8.75 8.89 9.31 8.58 8.40
32768 35.91 12.65 15.97 13.37 13.06 11.86 11.06 10.33 9.14 8.38 11.13 10.14 10.89 10.51 10.21 8.75 8.54 8.20 7.90 8.32

eqn troff
32 36.87 37.65 39.37 37.60 33.44 32.77 37.65 39.37 37.60 33.44 17.50 21.21 22.12 18.05 20.20 19.48 21.21 22.12 18.05 20.20
64 35.82 32.30 32.68 29.38 29.16 28.00 35.99 31.82 29.57 29.16 15.16 18.57 19.47 17.08 16.45 16.70 20.30 19.85 16.12 16.45

128 34.78 38.22 28.85 26.17 25.56 29.27 33.25 31.42 28.89 24.95 13.70 21.56 15.39 13.44 12.72 17.32 18.76 18.07 16.52 12.91
256 34.78 34.08 26.35 27.28 25.97 25.58 27.99 26.61 24.53 21.95 13.70 17.20 13.14 13.27 12.06 9.38 13.76 13.20 11.61 10.43
512 34.78 28.22 26.77 23.17 21.20 18.69 26.06 24.72 22.39 21.04 13.70 10.93 12.69 10.28 9.64 8.29 12.24 9.70 8.67 8.37

1024 34.78 23.41 23.22 19.72 21.93 16.89 22.20 21.29 19.25 18.16 13.70 9.24 11.50 8.96 7.76 7.33 8.38 7.76 7.24 7.00
2048 34.78 20.18 19.82 20.29 17.62 15.27 19.65 19.09 18.59 17.85 13.70 8.39 10.17 7.68 7.37 7.20 7.46 7.00 6.95 6.75
4096 34.78 18.60 18.69 18.02 16.08 13.99 18.08 17.33 15.66 14.68 13.70 7.93 9.71 7.48 7.34 7.20 7.25 7.79 7.08 6.74
8192 34.78 17.22 20.24 17.23 15.01 13.52 15.64 15.55 13.42 12.55 13.70 7.79 8.29 7.41 7.26 7.13 6.88 7.05 6.82 6.54

16384 34.78 15.95 18.79 16.08 13.87 12.56 14.05 14.52 12.02 11.39 13.70 7.59 8.12 7.35 7.25 7.15 6.70 6.79 6.53 6.40
32768 34.78 14.81 17.39 14.74 13.71 12.56 12.71 12.84 11.26 10.61 13.70 7.45 7.91 7.53 7.16 7.15 6.56 6.88 6.50 6.49

gcc vortex
32 65.96 54.84 68.66 67.18 51.35 48.07 54.84 68.66 67.18 51.35 20.19 19.08 20.21 20.22 13.01 10.98 19.08 20.21 20.22 13.01
64 65.89 47.92 48.75 45.84 43.52 41.52 53.17 52.32 48.93 43.52 20.19 13.42 14.88 12.67 11.30 10.71 15.11 17.13 12.93 11.30

128 65.74 43.71 43.90 41.51 40.11 34.36 41.91 43.35 40.10 42.02 20.19 14.86 12.38 12.01 10.69 12.17 10.94 12.22 10.36 14.92
256 65.70 36.81 40.94 33.73 31.43 28.55 36.09 36.19 34.16 34.80 20.19 13.16 12.18 16.78 13.10 12.08 10.15 10.17 10.61 12.78
512 65.70 31.49 34.77 29.89 28.09 27.15 31.71 32.16 28.83 26.38 20.19 12.09 25.94 16.40 12.56 12.07 10.70 9.72 7.97 7.68

1024 65.70 28.12 30.68 27.31 23.59 21.96 28.03 27.95 24.88 22.89 20.19 11.37 24.43 15.16 7.12 6.36 10.22 9.20 7.86 7.63
2048 65.70 24.72 27.50 22.64 21.29 20.31 24.85 24.30 21.82 19.97 20.19 11.29 19.80 11.68 6.89 5.90 9.77 8.78 6.99 7.81
4096 65.70 21.45 25.23 19.97 18.82 18.02 22.98 20.49 17.90 16.70 20.19 11.03 13.60 11.65 6.39 5.90 9.55 11.90 9.09 8.24
8192 65.70 20.04 21.24 18.07 16.50 14.60 19.26 17.64 15.31 13.95 20.19 10.83 19.57 11.65 7.12 10.98 9.38 8.16 7.69 7.50

16384 65.70 18.48 19.83 15.92 14.49 12.93 17.26 15.65 13.81 12.56 20.19 11.92 19.02 11.48 11.49 9.89 9.35 8.06 7.87 8.12
32768 65.70 15.83 18.79 14.64 13.20 11.71 15.16 14.81 12.41 11.72 20.19 11.34 18.34 12.63 11.38 9.89 9.33 7.94 7.58 8.15

go xlisp
32 29.25 24.17 29.25 29.25 24.25 24.52 24.17 29.25 29.25 24.25 13.51 9.00 13.51 13.51 8.39 8.36 9.00 13.51 13.51 8.39
64 29.25 23.87 23.92 23.66 23.38 23.13 28.88 23.58 23.64 23.38 13.51 8.93 9.25 8.71 8.35 8.34 11.15 9.24 8.70 8.35

128 29.25 33.07 23.66 23.52 23.16 23.51 25.38 23.70 23.38 24.52 13.51 4.03 8.82 8.69 8.34 7.03 8.61 8.58 8.11 8.02
256 29.25 29.67 23.57 23.18 22.27 20.89 23.59 22.71 21.96 22.80 13.51 3.53 8.48 7.80 7.36 7.03 7.89 8.22 7.64 7.50
512 29.25 26.42 22.72 21.44 21.21 20.88 23.80 22.99 22.04 21.80 13.51 3.23 10.41 7.66 7.35 7.03 3.77 3.90 3.29 2.98

1024 29.25 25.08 22.34 21.25 21.57 20.39 22.32 21.86 20.98 20.18 13.51 2.90 10.12 7.62 2.17 2.09 3.59 3.73 3.09 2.77
2048 29.25 23.13 21.61 21.84 20.95 20.83 21.47 20.95 21.32 23.44 13.51 2.85 8.17 2.54 2.15 1.81 3.30 3.52 2.26 2.35
4096 29.25 21.29 21.51 20.81 20.52 20.45 23.56 21.84 20.93 22.37 13.51 2.84 8.15 2.53 2.14 1.81 2.15 3.04 2.10 1.83
8192 29.25 22.75 21.19 20.52 20.97 21.10 21.55 21.07 21.74 21.21 13.51 2.01 3.11 2.53 1.81 1.67 2.09 2.96 1.93 1.71

16384 29.25 23.73 20.80 21.31 22.23 23.09 21.91 20.60 22.19 21.81 13.51 2.06 2.90 1.83 1.76 1.37 2.22 2.84 1.95 1.78
32768 29.25 23.00 20.74 23.76 21.75 22.82 21.40 21.64 21.16 22.95 13.51 1.92 2.84 2.62 1.71 1.37 2.08 2.16 1.81 1.74

ta
bl

es
iz

e

bt
b

fu
lla

ss
oc

ta
gl

es
s

as
so

c1

as
so

c2

as
so

c4

fu
lla

ss
oc

hy
br

id
 ta

gl
es

s

hy
br

id
 a

ss
oc

1

hy
br

id
 a

ss
oc

2

hy
br

id
 a

ss
oc

4

 b
tb

fu
lla

ss
oc

ta
gl

es
s

as
so

c1

as
so

c2

as
so

c4

fu
lla

ss
oc

hy
br

id
 ta

gl
es

s

hy
br

id
 a

ss
oc

1

hy
br

id
 a

ss
oc

2

hy
br

id
 a

ss
oc

4

Table A-1. Misprediction rates (per benchmark and averages) for different predictors and table sizes.

27

Technical Report TRCS97-19: Accurate Indirect Branch Prediction

table size, since the pathlength is chosen to minimize the AVG misprediction rate, and some bench-
marks go against the general trend, especially for small tables of low associativity.

predictor type 32 64 128 256 512 1024 2048 4096 8192 16384 32768

tagless 1 1 3 3 3 3 3 3 4 5 5

assoc2 0 1 1 2 2 2 3 3 3 4 5

assoc4 1 1 1 2 2 3 3 3 4 5 5

fullassoc 1 1 2 2 2 3 4 4 5 6 6

hybrid tagless 1 0.2 1.4 1.3 3.1 3.1 3.1 3.7 3.7 3.9 3.9

hybrid assoc2 0 1.0 1.4 2.1 3.1 3.1 4.1 5.2 6.2 7.2 7.2

hybrid assoc4 1 1 2.0 2.0 3.1 3.1 5.1 6.2 6.2 7.2 8.2

Table A-2. Path length of best predictor for each associativity. Hybrid predictors have two path lengths,
one for each component. When the same-size non-hybrid predictor is better, we only give the single path
length.

