

bbc
 Transparency in PDF
Adobe Developer Technologies
Technical Note #5407
Revised: 30 November 2000

Copyright © 2000 Adobe Systems Incorporated. All rights reserved.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No part of this publication
(whether in hardcopy or electronic form) may be reproduced or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of Adobe Systems Incorporated.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the name PostScript in the text
are references to the PostScript language as defined by Adobe Systems Incorporated unless otherwise stated. The
name PostScript also is used as a product trademark for Adobe Systems’ implementation of the PostScript language
interpreter.

Except as otherwise stated, any reference to a “PostScript printing device,” “PostScript display device,” or similar
item refers to a printing device, display device or item (respectively) which contains PostScript technology created
or licensed by Adobe Systems Incorporated and not to devices or items which purport to be merely compatible.

Adobe, the Adobe logo, Acrobat, Illustrator, Photoshop, and PostScript are trademarks of Adobe Systems
Incorporated. All other trademarks are the property of their respective owners.

This publication and the information herein is furnished AS IS, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated
assumes no responsibility or liability for any errors or inaccuracies, makes no warranty of any kind
(express, implied, or statutory) with respect to this publication, and expressly disclaims any and all
warranties of merchantability, fitness for particular purposes, and noninfringement of third party rights.

.

Contents

iii

Introduction 1

About This Document 1
Related Documents 3
Intellectual Property 3

Overview 4

Basic Concepts 4
Notation 6

Color Compositing Computations 7

Blending Color Space 8
Blend Mode 9
Interpretation of Alpha 12

Shape and Opacity Computations 13

Source Shape and Opacity 14
Computing the Result Shape and Opacity 16
Summary of Compositing Computations 17

Groups 18

Notation 19
Group Structure and Nomenclature 20
Group Compositing Computations 21
Isolated Groups 25
Knockout Groups 26
Summary of Group Compositing Computations 28
Page Group 30

Soft Masks 31

Mask from group alpha 32
Mask from group luminosity 32
30 NOVEMBER 2000

iv

Contents

Color Space and Color Rendering Issues 33

Color Spaces 34
Spot Colors 35
Overprinting and Erasing 37
Rendering Parameters 40

Overview of PDF Extensions 42

Color Compositing Computations 42
Shape and Opacity Computations 42
Groups 44
Soft Masks 44
Color Space and Color Rendering Issues 45
Limitations in the PDF Transparency Model 45

PDF Specification 45

Adobe Imaging Model—2.1.2 45
Page Tree (Page Objects)—3.6.2 [6.4] 46
Graphics Objects—4.1 [8.1] 46
Details of Graphics State Parameters—4.3.2 [8.4] 47
Graphics State Parameter Dictionaries—4.3.4 [7.15] 49
Path-Painting Operators—4.4.2 [8.6.2] 50
Clipping Path Operators—4.4.3 [8.3.1.1] 51
Device Color Spaces—4.5.3 [7.12] 52
CIE-Based Color Spaces (Rendering intents)—4.5.4 [8.5.1.5] 52
Special Color Spaces (Separation Color Spaces)—4.5.5 [7.12.8] 52
Overprint Control—4.5.6 [8.4.9] 53
Tiling Patterns (PatternType 1)—4.6.2 [7.17.2] 54
Image Dictionaries—4.8.4 [7.13.1] 55
Form XObjects—4.9 [7.13.7] 57
Text State Parameters and Operators—5.2 [8.7] 63
Text Rendering Mode—5.2.5 [8.7.1.7] 63
Text-Showing Operators—5.3.2 [8.7.5] 64
Conversion from DeviceRGB to DeviceCMYK—6.2.3 [8.4.10] 64
Transfer Functions—6.3 [8.4.12] 65
Halftones—6.4 [8.4.13] 65
Annotation Appearances—7.4.4 [6.6.3] 66
30 NOVEMBER 2000

v

Contents

Terminology Summary 66

Compatibility 70

Backward Compatibility 70
Forward Compatibility 70
PostScript Printing 71

Overprinting, Erasing, and Transparency 72

Revision History 75
30 NOVEMBER 2000

vi

Contents
30 NOVEMBER 2000

1

P
R

E
L

IM
IN

A
R

Y

0

Transparency in PDF

November 30, 2000
1 Introduction

This document describes how the Adobe® imaging model is extended to include
transparency and specifies how transparency is represented in the Adobe Porta-
ble Document Format (PDF). Under the transparency model, graphics objects do
not necessarily obey a strict opaque painting model; instead, they can blend in in-
teresting ways with other objects that overlap.

Support for transparency is first introduced in PDF version 1.4, which will be the
native file format for Adobe Acrobat® 5. At the time of this writing, Acrobat 5
has not yet been introduced. The first Adobe application to support PDF transpar-
ency is Adobe Illustrator® 9, which supports PDF 1.4 as a native file format.

The purpose of this document is to provide preliminary information that will be
useful to developers working with Illustrator 9. This document describes only the
transparency features of PDF 1.4. Other features of PDF 1.4 will be published at
some future time in conjunction with the introduction of Acrobat 5.

1.1 About This Document

The transparency extensions to the Adobe imaging model are very general. This
document describes the general model to the extent necessary to understand the
PDF extensions for transparency. However, it does not describe the realization of
the transparency extensions in applications such as Adobe Illustrator or Adobe
Photoshop®.

This document also does not cover how the transparency model is to be imple-
mented. We use implementation-like descriptions at various points to describe

Transparency in PDF

1

2

P
R

E
L

IM
IN

A
R

Y

how things work, but this is only for the purpose of elucidating the behavior of
the model. Please bear in mind that the actual implementation will almost cer-
tainly be different from what might be implied in these descriptions.

This document is organized as follows:

• Section 2, “Overview,” introduces the basic concepts of the transparency mod-
el and its associated terminology, including shape, opacity, alpha, blend mode,
stack, backdrop, and group.

• Section 3, “Color Compositing Computations,” describes the mathematics of
computing a result color as a function of source and backdrop colors, alphas,
and blend mode.

• Section 4, “Shape and Opacity Computations,” continues in the same vein and
covers the related shape and opacity computations.

• Section 5, “Groups,” introduces the concept of groups and covers their proper-
ties and semantics.

• Section 6, “Soft Masks,” covers the creation and use of masks to specify posi-
tion-dependent shape and opacity.

• Section 7, “Color Space and Color Rendering Issues,” describes the interac-
tions between the transparency model and other aspects of color specification
and rendering in the existing Adobe imaging model.

• Section 8, “Overview of PDF Extensions,” gives a brief overview of how the
transparency extensions to the Adobe imaging model are represented in PDF.

• Section 9, “PDF Specification,” gives a detailed description of the PDF exten-
sions, organized according to PDF Reference.

• Section 10, “Terminology Summary,” is an alphabetized summary of terminol-
ogy used in this document.

• Section 11, “Compatibility,” discusses compatibility with PDF 1.3 and with
the PostScript® language.

• Section 12, “Overprinting, Erasing, and Transparency,” presents details of the
existing overprinting and erasing rules in PDF 1.3 and their equivalent repre-
sentation in PDF 1.4 as a form of transparency.

• There is a revision history at the end.

Introduction

1

3

P
R

E
L

IM
IN

A
R

Y

1.2 Related Documents

The PDF and PostScript specifications mentioned below are available on the
Adobe Solutions Network (ASN) Developer Program web site, located at:

< http://partners.adobe.com/asn/developer/ >

The official specification for PDF is now the book PDF Reference, second edi-
tion, published in July 2000 by Addison-Wesley (and also available on-line).
That book is a self-contained reference for PDF, incorporating all information
about the Adobe imaging model that formerly was documented only in Post-
Script Language Reference, third edition. Additionally, the PDF material has
been extensively reorganized and revised. PDF Reference, second edition super-
sedes the former Portable Document Format Reference Manual, version 1.3.

This document refers to the PDF specification as, for example, PDF Reference,
Section 1.4 [1.7]. The first number refers to a section in the new PDF Reference,
second edition. The second number (in brackets) refers to a section in the old
Portable Document Format Reference Manual, version 1.3, where the closest
equivalent material can be found.

PDF Reference, second edition (PDF version 1.3)
Addison-Wesley, June 2000

Portable Document Format Reference Manual, version 1.3
March 11, 1999
Superseded by PDF Reference, second edition.

PostScript Language Reference, third edition
Addison-Wesley, February 1999

Compositing Digital Images
T. Porter & T. Duff, Computer Graphics (ACM), vol. 18 no. 3, July 1984

1.3 Intellectual Property

The information in this document is subject to the copyright permissions stated
in PDF Reference, Section 1.4 [1.7]. Additionally, developers should be aware
that many of the transparency extensions to the Adobe imaging model are the
subject of patents and patents pending by Adobe Systems. The permission to use

Transparency in PDF

2

4

P
R

E
L

IM
IN

A
R

Y

the copyrighted material in the PDF specification does not include the right to
use any Adobe patents, except as may be permitted by an official Adobe Patent
Clarification Notice (published at Adobe’s web site or elsewhere).

2 Overview

This section introduces the general concepts behind the transparency extensions
to the Adobe imaging model. Subsequent sections go into the model in greater
detail. The technical terms introduced here are summarized in Section 10, “Ter-
minology Summary.”

2.1 Basic Concepts

The existing Adobe imaging model paints objects (fills, strokes, text, images),
possibly clipped by a path, opaquely onto a page. One can think of the objects on
a page as forming a stack, where the stacking order is defined to be the order in
which the objects are specified, bottommost object first. At any given point on
the page, the color of the page is defined to be the color of the topmost enclosing
object, disregarding any overlapping objects lower in the stack. This effect can
be—and often is—realized simply by rendering objects directly to the page in
the order in which they are specified.

Under the transparency imaging model, all of the objects in a stack can potential-
ly contribute to the result. At any given point, the color of the page is defined to
be the result of combining the colors of all enclosing objects in the stack, accord-
ing to some compositing rules that the transparency model defines.

Note: The order in which objects are specified determines the stacking order, but
not necessarily the order in which objects are actually painted onto the page. In
particular, the model does not require the implementation to rasterize objects im-
mediately or to commit to a raster representation at any time prior to rendering
the entire stack onto the page. This is important, since rasterization often causes
significant loss of information and precision that is best avoided during interme-
diate stages of the transparency computation.

A given object is composited with a backdrop. Ordinarily, the backdrop consists
of the stack of all objects that have been specified previously; the result is then
treated as the backdrop for compositing the next object. However, within certain
kinds of groups (see below), a different backdrop is chosen.

Overview

2

5

P
R

E
L

IM
IN

A
R

Y

When an object is composited with the backdrop, the color at each point is mod-
ified by a function called the blend mode, which is a function of both the object’s
color and the backdrop color. The blend mode determines how colors interact;
different blend modes can be used to achieve a variety of useful effects. A single
blend mode is in effect for compositing all of a given object, but different blend
modes can be applied to different objects.

Compositing of an object with the backdrop is mediated by two scalar quantities
called shape and opacity. Conceptually, for each object, these quantities are de-
fined at every point in the plane, just as if they were additional color components.
(In actual practice, they are often obtained from auxiliary sources, rather than be-
ing intrinsic to the object itself.)

Both shape and opacity vary from 0 (no contribution) to 1 (maximum contribu-
tion). At any point where either the shape or the opacity is 0, the color is unde-
fined. At any point where the shape is 0, the opacity is also undefined. The shape
and opacity themselves are subject to compositing rules, so that the stack also
has a shape and opacity at each point.

An object’s opacity, in combination with the backdrop’s opacity, determines the
relative contributions of the backdrop’s color, the object’s color, and the blended
color to the computed composite color. An object’s shape then determines the de-
gree to which the composite color replaces the backdrop color. Shape values of 0
and 1 identify points that lie “outside” and “inside” a familiar sharp-edged ob-
ject, but intermediate values are useful in defining soft-edged objects.

Shape and opacity are very similar concepts. In fact, in most situations, they can
be combined into a single value, called alpha, which controls both the color com-
positing computation and the fading between the object and the backdrop. How-
ever, there are a few situations in which they must be treated separately; see
Section 5.5, “Knockout Groups.” Moreover, raster-based implementations must
maintain a separate shape parameter in order to do anti-aliasing properly; it is
therefore convenient to have it be an explicit part of the model.

One or more consecutive objects in a stack can be collected together into a trans-
parency group, hereafter referred to simply as group. The group as a whole can
have various properties that modify the compositing behavior of objects within a
group and their interactions with the backdrop of the group. Additionally, an ad-
ditional blend mode, shape, and opacity can be associated with the group as a

Transparency in PDF2
6

P
R

E
L

IM
IN

A
R

Y

whole and used when compositing the group with its backdrop. Groups can be
nested within other groups, so that the group hierarchy forms a tree structure.

Note: The concept of transparency group is independent of the existing notions
of “group” or “layer” in applications such as Adobe Illustrator. Those group-
ings reflect logical relationships among objects that are meaningful when editing
those objects, but they are not part of the imaging model.

The color result of compositing a group can be converted to a single-component
luminosity value and treated as a soft mask, or just mask for short. Such a mask
can then be used as an additional source of shape or opacity values during subse-
quent compositing operations. When the mask is used as shape, this technique is
known as soft clipping; it is a generalization of the clipping path in the existing
Adobe imaging model.

The current page is generalized to be a group consisting of the entire stack of ob-
jects placed on the page, composited with a backdrop that is white and fully
opaque. Logically, this entire stack is then rasterized, determining the actual pix-
el values that are to be transmitted to the output device.

Note: In contexts where a PDF “page” is to be treated as a piece of artwork to
be placed on some other page, such as an Illustrator artboard or an encapsulat-
ed PostScript (EPS) file, we do not treat it as a page but as a group, whose back-
drop may be defined differently from a page.

2.2 Notation

The following are conventions for variable names used in this document. In gen-
eral, a lowercase letter represents a scalar quantity, such as an opacity. An upper-
case letter represents an n-tuple of scalar values, such as a color.

In the descriptions of the basic color compositing computations, color values are
generally represented by the letter C, with a mnemonic suffix that indicates
which of several color values is being referred to; for instance, Cs stands for
“source color.” Shape and opacity values are represented with the letters f (for
“form factor”) and q (for “opaqueness”), with a mnemonic suffix, such as qs for
“source opacity.” The symbol α (alpha) stands for the product of the correspond-
ing shape and opacity values.

Color Compositing Computations3
7

P
R

E
L

IM
IN

A
R

Y

In the descriptions of group transparency, the basic formulas are recast as recur-
rence relations and augmented with other formulas specifying group behavior.
Here, variables have a numeric subscript indicating the position in the stack that
the quantity is associated with, with the bottommost object numbered 0. Thus,
Csi stands for “source color of the ith object in the stack.”

In certain computations, one or more variables may have undefined values; for
instance, when opacity is zero, the corresponding color is undefined. A value can
also be undefined if it results from a division by zero. In any formula that uses
the undefined value, the value has no effect on the ultimate result because it is
subsequently multiplied by zero or otherwise cancelled out.

The important point is that any arbitrary value can be chosen for an undefined
value, but the computation must not malfunction due to exceptions caused by
overflow or division by zero. Additionally, it is convenient to adopt the conven-
tion that 0 / 0 = 0.

3 Color Compositing Computations

The primary change in the imaging model that comes with adding transparency
is in how colors are painted. In the transparent model the result of painting, the
result color, is a function of both the color being painted, the source color, and
the color it is being painted over, the backdrop color. Both of these colors may
vary as a function of position on the page, but for the purposes of this section we
will concentrate our attention on some fixed point in the page and assume a fixed
source and backdrop color.

Other parameters in this computation are the alpha, which specifies the relative
contributions of the source and backdrop colors, and the blend mode, which al-
lows one to customize how the source and backdrop colors are combined in the
painting operation. This color compositing function, or just compositing function
for short, determines the color result of a painting operation:

where the variable definitions are given in Table 1.

Cr 1 αs
αr
------– 

  Cb⋅ αs
αr
------ 1 αb–() Cs⋅ αb B Cb Cs,()⋅+()⋅+=

Transparency in PDF3
8

P
R

E
L

IM
IN

A
R

Y

TABLE 1 Variables in the color compositing formula

VARIABLE MEANING

αb Backdrop alpha

αr Result alpha

αs Source alpha

B(Cb, Cs) Function implementing the blend mode

Cb Backdrop color

Cr Result color

Cs Source color

This is actually a simplified form of the compositing function where the shape
and opacity values are combined and represented as a single alpha value. The
more general form is presented later. This function is based on the Porter & Duff
over operation, extended to include a blend mode in the region of overlapping
coverage.

The following sections elaborate on the meaning and implications of these for-
mulas.

3.1 Blending Color Space

First, note that the compositing function operates on colors. If the colors are rep-
resented by more than one scalar value then the computation treats them as vec-
tor quantities. To be precise, Cb, Cr, Cs, and B(Cb, Cs) will all have n elements,
where n is the number of components in the color space used for compositing.
The above formula is then a vector function: the ith component of Cr is obtained
by plugging in the ith components of Cs, Cb and B(Cb, Cs).

Thus, the result of the computation will depend on the color space in which the
colors are represented. For this reason, the color space used to represent colors
for this computation is explicitly made part of the model and is called the blend-
ing color space. When necessary, source colors are converted to the blending
color space prior to the compositing computation.

Color Compositing Computations3
9

P
R

E
L

IM
IN

A
R

Y

The following PDF color spaces are supported as blending color spaces:
DeviceGray, DeviceRGB, DeviceCMYK, CalGray, CalRGB, and the equiva-
lent ICCBased color spaces (including calibrated CMYK). The Lab space and
the ICCBased spaces that represent lightness and chromaticity separately (such
as Lab, Luv, and HSV) are not allowed, because the compositing computations in
such spaces do not give meaningful results when done on a per-component basis.
Additionally, blending can be done on spot colors individually, as specified in
Separation and DeviceN color spaces.

The blend mode functions assume that the range per color component is from 0
to 1, and that the color space is additive. The former is true for all of the allowed
blending color spaces, but the latter is not. In particular, the DeviceCMYK,
Separation, and DeviceN spaces are subtractive. When performing blending
operations in subtractive color spaces, we assume that the color component val-
ues are complemented before the blend mode function is applied and that the re-
sults of the function are then complemented before being used. By
complemented we mean that a color component value c is replaced with 1 – c.

This adjustment makes the effect of the blend modes numerically consistent
across all color spaces. However, the actual visual effect produced by a given
blend mode still depends on the color space. Blending in a device color space
produces device-dependent results. Blending in a CIE-based color space produc-
es results that are consistent across all devices. Additional details about color
space issues are given in Section 7, “Color Space and Color Rendering Issues.”

3.2 Blend Mode

The B(Cb, Cs) term of the compositing function is used to customize the blend-
ing operation. This function of two colors is called the blend mode. Abstractly,
this could be any function of the source and backdrop colors that returns another
color. PDF defines a standard set of named functions for the blend mode; see
Table 2 and Table 3.

All of the blend modes in Table 2 are defined by a scalar function that is applied
separately to each color component, expressed in additive form:

where the lowercase cr, cs, and cb denote one component of the colors Cr, Cs,
and Cb. Such a blend mode is called separable. This is in contrast to a function

cr B cb cs,()=

Transparency in PDF3
10

P
R

E
L

IM
IN

A
R

Y

where the result for a particular component is a function of components other
than the corresponding component in the backdrop and source colors. (In princi-
ple, a blend mode could have a different function for each component and yet re-
main separable; however, none of the blend modes listed below have that
property.) A separable blend mode can be used with any color space, since it ap-
plies to any number of components. Only separable blend modes can be used
when blending spot colors.

Some of the separable blend modes are defined by actual mathematical formulas;
the rest are defined only by a description of their intended effects.

TABLE 2 Separable blend modes

NAME RESULT

Normal
Replaces the backdrop color by the source color.

Compatible Similar to Normal, but it consults the overprint control parameters
to produce overprinting or erasing behavior compatible with
PDF 1.3. See Section 7.3, “Overprinting and Erasing,” and “Blend
Modes” on page 47.

Multiply
Multiples the backdrop and source color values. The result color is
always at least as dark as either of the two argument colors. Multi-
plying any color with black produces black. Multiplying any color
with white leaves the color unchanged. Painting successive over-
lapping objects with a color other than black or white produces
progressively darker colors.

Screen
Multiplies the complements of the backdrop and source color val-
ues. The result color is always at least as light as either of the two
argument colors. Screening with black leaves the color unchanged.
Screening with white produces white. The effect is similar to pro-
jecting multiple photographic slides simultaneously onto a single
screen.

Overlay Multiplies or screens the colors, depending on the backdrop color.
Source colors overlay the backdrop while preserving the highlights
and shadows of the backdrop. The backdrop color is not replaced
but is mixed with the source color to reflect the lightness or dark-
ness of the backdrop color.

Normal cb cs,() cs=

Multiply cb cs,() cb cs⋅=

Screen cb cs,() cb cs cb cs⋅–+ 1 1 cb–() 1 cs–()⋅–= =

Color Compositing Computations3
11

P
R

E
L

IM
IN

A
R

Y

SoftLight Darkens or lightens the colors, depending on the source color val-
ue. The effect is similar to shining a diffused spotlight on the back-
drop.

If the source color is lighter than 0.5, the backdrop is lightened, as
if it were dodged. This is useful for adding highlights to a scene. If
the source color is darker than 0.5, the backdrop is darkened, as if it
were burned in. Painting with pure black or white produces a dis-
tinctly darker or lighter area but does not result in pure black or
white.

HardLight Multiplies or screens the colors, depending on the source color val-
ue. The effect is similar to shining a harsh spotlight on the back-
drop.

If the source color is lighter than 0.5, the backdrop is lightened, as
if it were screened. This is useful for adding highlights to a scene.
If the source color is darker than 0.5, the backdrop is darkened, as
if it were multiplied. This is useful for adding shadows to a scene.
Painting with pure black or white produces pure black or white.

ColorDodge Brightens the backdrop color to reflect the source color. Painting
with black produces no change.

ColorBurn Darkens the backdrop color to reflect the source color. Painting
with white produces no change.

Darken
Selects the darker of the backdrop and source colors. The backdrop
is replaced with the source where the source is darker; otherwise it
is left unchanged.

Lighten
Selects the lighter of the backdrop and source colors. The backdrop
is replaced with the source where the source is lighter; otherwise it
is left unchanged.

Difference
Subtracts the source color from the backdrop color or the backdrop
color from the source color, depending on which has the greater
brightness value. Painting with white inverts the backdrop color;
painting with black produces no change.

Exclusion Produces an effect similar to but lower in contrast than the Differ-
ence mode. Painting with white inverts the backdrop color; paint-
ing with black produces no change.

Darken cb cs,() min cb cs,()=

Lighten cb cs,() max cb cs,()=

Difference cb cs,() cb cs–=

Transparency in PDF3
12

P
R

E
L

IM
IN

A
R

Y

Table 3 lists a standard set of non-separable blend modes. Their effects are de-
scribed, but no mathematical formulas are given. These modes all entail conver-
sion to and from an intermediate hue, saturation, and luminance representation.
Since the non-separable blend modes consider all color components in combina-
tion, their computation depends on the blending color space in which those col-
ors are interpreted.

TABLE 3 Non-separable blend modes

NAME RESULT

Hue Creates a color with the luminance and saturation of the backdrop
color and the hue of the source color.

Saturation Creates a color with the luminance and hue of the backdrop color
and the saturation of the source color. Painting with this mode in an
area of the backdrop that is a pure gray (no saturation) produces no
change.

Color Creates a color with the luminance of the backdrop color and the
hue and saturation of the source color. This preserves the gray lev-
els of the backdrop and is useful for coloring monochrome images
and for tinting color images.

Luminosity Creates a color with the hue and saturation of the base color and the
luminance of the blend color. This produces an inverse effect from
that of the Color mode.

Note: For illustrations of the visual effects of the blend modes, see the Adobe
Photoshop User Guide.

3.3 Interpretation of Alpha

The color compositing function (repeated below) produces a result color that is a
weighted average of the source color, the backdrop color, and the B(Cb, Cs)
term, with the weighting controlled by the source and backdrop alphas.

Cr 1 αs
αr
------– 

  Cb⋅ αs
αr
------ 1 αb–() Cs⋅ αb B Cb Cs,()⋅+()⋅+=

Shape and Opacity Computations4
13

P
R

E
L

IM
IN

A
R

Y

The simplest blend mode, Normal, is defined by B(Cb, Cs) = Cs. With this blend
mode, the compositing formula collapses to a simple weighted average of the
source and backdrop colors, controlled by the source and backdrop alpha values.

If the blend mode is a more interesting function of the source and backdrop col-
ors, the source and backdrop alphas control whether the effect of the blend mode
is fully realized or is toned down by mixing the result with the source and back-
drop colors. With any blend mode, αs = 0 or αb = 0 results in no blend mode ef-
fect; αs = 1 and αb = 1 results in maximum blend mode effect.

Mathematically, the influence of the source and backdrop colors is controlled by
the source and backdrop alphas, respectively. The influence of the blend function
is controlled by the product of the source and backdrop alphas.

Another variable, the result alpha, also appears in the function. This is actually a
computed result, described in Section 4, “Shape and Opacity Computations.”
The result color is normalized by the result alpha. This ensures that when this
color and alpha are subsequently used together in another compositing operation,
the color’s contribution will be correctly represented. Note that if the result alpha
is zero, the result color is undefined.

The above formula is a simplification of the following one, which presents the
relative contributions of backdrop, source, and blended colors in a more straight-
forward fashion:

The simplification requires a substitution based on the alpha compositing formu-
la, which is presented in the next section.

4 Shape and Opacity Computations

So far, we have covered the generation of the color that results when a source
color is composited with a backdrop color. This section describes the derivation
of the alpha values that control the compositing process.

αr Cr⋅ 1 αs–() αb Cb⋅ ⋅ 1 αb–() αs Cs⋅ ⋅ αb αs B Cb Cs,()⋅ ⋅+ +=

Transparency in PDF4
14

P
R

E
L

IM
IN

A
R

Y

As indicated earlier, alpha is actually a combination of shape and opacity; it is
defined simply to be their product. Thus, we define:

We now describe the various shape and opacity values individually. Once again,
keep in mind that conceptually these values are computed for every point on the
page.

4.1 Source Shape and Opacity

The shape and opacity values can come from several sources. The transparency
model defines three independent sources for each. However, the PDF representa-
tion imposes some limitations on the ability to specify all of these sources inde-
pendently.

• Object shape. Elementary objects, such as strokes, fills, and text, have an in-
trinsic shape, whose value is 1 for points inside the object and 0 outside. Simi-
larly, a masked image with a binary mask (as in PDF 1.3) has a shape that is 1
in the unmasked portions and 0 in the masked portions. The shape of a group
object is the union of the shapes of the objects it contains.

Note: Mathematically, elementary objects have “hard” edges, with shape val-
ue either 0 or 1 at any given point. However, when such objects are rasterized
to device pixels, the shape values along the boundaries may take on fractional
values, representing fractional coverage of those pixels. When such anti-alias-
ing is performed, it is important to treat the fractional coverage as shape, not
as opacity.

• Mask shape. There can be an additional source of shape values varying by po-
sition, independent of the object itself. (How such a mask might be generated
is discussed in Section 6, “Soft Masks.”) Using such a mask to modify the
shape of some object or group is called soft clipping. It can produce effects
such as a gradual transition between an object and its backdrop, as in a vi-
gnette.

• Constant shape. This is a scalar value that simply modifies the source shape
value at every point. The constant shape is just a convenience, since its effect
could be simulated with a mask that has the same value everywhere.

αb fb qb⋅=

αr fr qr⋅=

αs fs qs⋅=

Shape and Opacity Computations4
15

P
R

E
L

IM
IN

A
R

Y

• Object opacity. Elementary objects have an opacity of 1 everywhere. The
opacity of a group object is the result of the opacity computations for all the
objects it contains.

• Mask opacity. This is an additional source of opacity values varying by posi-
tion, independent of the object itself.

• Constant opacity. This is a scalar value that simply modifies the source opacity
value at every point. It is useful to think of this value as the “current opacity,”
analogous to the “current color,” used when painting elementary objects.

The range of all of the above shape and opacity inputs is from 0 to 1, and the de-
fault value for all of them is 1. The intent is that any of the inputs described
above will make the painting operation more transparent as it goes towards 0. If
more than one input goes towards 0 then the result is compounded. This is
achieved mathematically simply by multiplying the three inputs of each type,
producing intermediate values called the source shape and the source opacity.

where the variable definitions are given in Table 4.

TABLE 4 Variables in the source shape and opacity computations

VARIABLE MEANING

fj Object shape

fk Constant shape

fm Mask shape

fs Source shape

qj Object opacity

qk Constant opacity

qm Mask opacity

qs Source opacity

fs fj fm fk⋅ ⋅=

qs qj qm qk⋅ ⋅=

Transparency in PDF4
16

P
R

E
L

IM
IN

A
R

Y

4.2 Computing the Result Shape and Opacity

In parallel with computing a result color, the painting operation also computes a
result shape and a result opacity value. These values define the shape and opacity
associated with the result color.

Compositing of shape and opacity values is done by the union function:

where b and s are the backdrop and source values to be composited. This can be
thought of as an “inverted multiply”: it is just a multiply with the inputs and out-
puts complemented. The result tends toward 1; if either input is 1 then the result
is 1. This is a generalization of the conventional concept of “union” for opaque
shapes.

The result shape and opacity are given by:

where the variable definitions are given in Table 5.

TABLE 5 Variables in the result opacity computation

VARIABLE MEANING

fb Backdrop shape

fr Result shape

fs Source shape

qb Backdrop opacity

qr Result opacity

qs Source opacity

Union b s,() 1 1 b–() 1 s–()⋅– b s b s⋅–+= =

fr Union fb fs,()=

qr
Union fb qb⋅ fs qs⋅,()

fr
--=

Shape and Opacity Computations4
17

P
R

E
L

IM
IN

A
R

Y

These formulas can be interpreted as follows:

• The result shape is simply the union of the backdrop and source shapes.

• The result opacity is the union of the backdrop and source opacities, each of
whose contribution is determined by its respective shape. The result is then
normalized by the result shape. This ensures that when this shape and opacity
are subsequently used together in another compositing operation, the opacity’s
contribution will be correctly represented.

Since alpha is just the product of shape and opacity, it can easily be shown that

This formula can be used whenever the independent shape and opacity results are
not needed.

4.3 Summary of Compositing Computations

Below is a summary of all the computations from the previous section and this
one. They are given in an order such that no variable is used before it is comput-
ed; also, some of the formulas have been rearranged to simplify them.

For a list of the variables used in these formulas, see the tables in the preceding
sections; the information is summarized in Table 13 on page 66.

αr Union αb αs,()=

Union b s,() 1 1 b–() 1 s–()⋅– b s b s⋅–+= =

fs fj fm fk⋅ ⋅=

qs qj qm qk⋅ ⋅=

fr Union fb fs,()=

αb fb qb⋅=

αs fs qs⋅=

αr Union αb αs,()=

qr
αr
fr

------=

Cr 1 αs
αr
------– 

  Cb⋅ αs
αr
------ 1 αb–() Cs⋅ αb B Cb Cs,()⋅+()⋅+=

Transparency in PDF5
18

P
R

E
L

IM
IN

A
R

Y

5 Groups

A group is a sequence of consecutive objects in a stack that are collected together
and composited to produce a single color, shape, and opacity at each point. The
result is then treated as if it were a single object for subsequent compositing op-
erations. This facilitates creating independent pieces of artwork, each composed
of many objects, and then combining them, possibly with additional transparency
effects during the combination. Groups can be nested within other groups; this is
a strict nesting, so that the group hierarchy forms a tree structure.

The objects contained within a group are treated as a separate stack, called the
group’s stack. The objects in the stack are composited against some initial back-
drop (discussed later), producing a composite color, shape, and opacity for the
group as a whole. The result is an object whose shape is the union of the shapes
of all constituent objects and whose color and opacity are the result of the com-
positing operations. This object is in turn composited with the group’s backdrop
in the usual way.

In addition to the computed color, shape, and opacity, the group as a whole can
have several additional attributes:

• All of the input variables that affect the compositing computation for an object
can also be applied when compositing the group with its backdrop. These in-
clude mask and constant shape, mask and constant opacity, and blend mode.

• The group can be isolated or non-isolated, determining the initial backdrop
against which the group’s stack is composited.

• The group can be knockout or non-knockout, determining whether the objects
within the group’s stack are composited with one another, or only with the
group’s backdrop.

• An isolated group can specify its own blending color space, independent of the
blending color space of the group’s backdrop.

• Instead of being composited onto the current page, a group’s results can be
used as a source of shape or opacity values for creating a soft mask, described
in Section 6, “Soft Masks.”

The next section introduces some new notation for dealing with group composit-
ing. The following section describes the group compositing function for a non-

Groups5
19

P
R

E
L

IM
IN

A
R

Y

isolated, non-knockout group. Subsequent sections describe the special proper-
ties of groups having the isolated and knockout attributes.

5.1 Notation

Since we are now dealing with multiple objects at a time, it is useful to have
some notation for distinguishing among them. Accordingly, we alter the vari-
ables used earlier to include a subscript that indicates the associated object’s po-
sition in the stack. The subscript 0 indicates the initial backdrop; subscripts 1
through n indicate the bottommost through topmost objects in an n-element
stack; subscript i indicates the object that is currently of interest. Additionally,
we drop the b and r suffixes from the variables αb, Cb, fb, qb, αr, Cr, fr and qr;
other variables retain their suffixes.

This convention permits the compositing formulas to be restated as recurrence
relations among elements of a stack. For instance, the result of the color compos-
iting computation for object i is denoted by Ci (previously Cr). This computation
takes as one of its inputs the immediate backdrop color, which is the result of the
color compositing computation for object i – 1; this is denoted by Ci – 1 (previ-
ously Cb).

The revised formulas for a simple stack (not including any groups) are:

where the variable definitions are given in Table 6. Compare these with the for-
mulas summarized in Section 4.3, “Summary of Compositing Computations.”

f si f ji f mi f ki⋅ ⋅=

qsi q ji qmi qki⋅ ⋅=

f i Union f i 1– f si,()=

αsi f si qsi⋅=

α i Union α i 1– αsi,()=

qi

α i

f i
-----=

Ci 1
αsi

α i
--------–

 
 
 

Ci 1–⋅
αsi

α i
-------- 1 α i 1––() Csi⋅ α i 1– Bi Ci 1– Csi,()⋅+()⋅+=

Transparency in PDF5
20

P
R

E
L

IM
IN

A
R

Y

TABLE 6 Revised variables for basic compositing computations

VARIABLE MEANING

αsi Source alpha

αi Result alpha (after compositing object i)

Bi(Ci – 1, Csi) Function implementing the blend mode

Csi Source color

Ci Result color (after compositing object i)

fji Object shape

fki Constant shape

fmi Mask shape

fsi Source shape

fi Result shape (after compositing object i)

qji Object opacity

qki Constant opacity

qmi Mask opacity

qsi Source opacity

qi Result opacity (after compositing object i)

5.2 Group Structure and Nomenclature

As indicated earlier, the elements of a group are treated as a separate stack, the
group’s stack. Those objects are composited (against a selected initial backdrop,
to be described), and the resulting color, shape, and opacity are then treated as if
they belonged to a single object. The resulting object is in turn composited with
the group’s backdrop in the usual way.

This manipulation entails interpreting the stack as a tree. For an n-element group
that begins at position i in the stack, it treats the next n objects as an n-element
substack, whose elements are given an independent numbering of 1 through n.
Those objects are removed from the object numbering in the containing stack.
They are replaced by the group object, numbered i, followed by the remaining

Groups5
21

P
R

E
L

IM
IN

A
R

Y

objects that are painted on top of the group, renumbered starting at i + 1. This op-
eration applies recursively to any nested groups. Henceforth, the term element
(denoted Ei) refers to a member of some group; it can itself be either an object or
a group.

From the perspective of a particular element in a nested group, there exist three
different backdrops that are interesting to talk about:

• Group backdrop—the result of compositing all elements up to but not includ-
ing the first element of the group. (This definition is altered if the parent group
is a knockout group; see Section 5.5, “Knockout Groups.”)

• Initial backdrop—a backdrop that is selected for compositing the group’s first
element. This is either the same as the group backdrop (non-isolated group) or
a fully transparent backdrop (isolated group).

• Immediate backdrop—the result of compositing all elements of the group up to
but not including the current element of interest.

When all elements of a group have been composited, the result is treated as if the
group were a single object, which is then composited with the group backdrop.
(Note that this operation occurs regardless of whether the group backdrop or a
transparent backdrop was chosen as the initial backdrop for compositing the ele-
ments of the group. There is a special correction to ensure that the backdrop’s
contribution to the overall result is applied only once.)

5.3 Group Compositing Computations

The color and opacity of a group are defined by the group compositing function:

where the variable definitions are given in Table 7.

TABLE 7 Arguments and results of group compositing function

VARIABLE MEANING

α0 Alpha of the group’s backdrop

α Computed alpha of the group, to be used as the object alpha when
the group itself is treated as an object

C f α, ,〈 〉 Composite C0 α0 G, ,()=

Transparency in PDF5
22

P
R

E
L

IM
IN

A
R

Y

C0 Color of the group’s backdrop

C Computed color of the group, to be used as the source color when
the group itself is treated as an object

f Computed shape of the group, to be used as the object shape when
the group itself is treated as an object

G The group: a compound object consisting of all the elements
E1…En of the group—the n constituent objects’ colors, shapes,
opacities, and blend modes

Note that the opacity is not given explicitly as an argument or result of this func-
tion. When needed, the opacity can be computed by dividing the alpha by the as-
sociated shape. Almost all of the computations use the product of shape and
opacity rather than opacity by itself, so it is usually convenient to keep track of
shape and alpha, rather than shape and opacity.

The result of calling the Composite function is then treated as if it were an ob-
ject, which is composited with the group’s backdrop according to the normal for-
mulas. In those formulas, the returned color C is treated as the source color Cs;
the returned shape and alpha, f and α, are treated as the object shape and alpha, fj
and αj.

The definition of the Composite function (for a non-isolated, non-knockout
group) is as follows:

Initialization:

f g0 αg0 0= =

Groups5
23

P
R

E
L

IM
IN

A
R

Y

For each group element Ei in G, i ∈ [1, n]:

Result:

where the variable definitions are given in Table 8 (in addition to the ones in
Table 7).

TABLE 8 Variables in the group compositing function

VARIABLE MEANING

αsi Source alpha

αgi Group alpha: the accumulated source alphas of group elements E1
through Ei only, excluding the initial backdrop α0

αji Object alpha for Ei,—the product of the object shape and object
opacity. This is an intrinsic attribute of an elementary object (one
that isn’t a group); it is a computed result for a group.

Csi f ji α ji, ,〈 〉
Composite Ci 1– α i 1– Ei, ,() if Ei is a group

intrinsic color, shape, and shape opacity⋅() of Ei otherwise



=

f si f ji f ki f mi⋅ ⋅=

αsi α ji f ki qki⋅() f mi qmi⋅()⋅ ⋅=

f gi Union f gi 1– f si,()=

αgi Union αgi 1– αsi,()=

α i Union α0 αgi,()=

Ci 1
αsi

α i
--------–

 
 
 

Ci 1–⋅
αsi

α i
-------- 1 α i 1––() Csi⋅ α i 1– Bi Ci 1– Csi,()⋅+()⋅+=

C Cn Cn C0–()
α0

αgn
--------- α0–

 
 
 

⋅+=

f f gn=

α α gn=

Transparency in PDF5
24

P
R

E
L

IM
IN

A
R

Y

αi Accumulated alpha (after compositing object i), including the ini-
tial backdrop α0

Bi(Ci – 1, Csi) Function implementing the blend mode for Ei

Csi Source color for Ei. This is an intrinsic attribute of an elementary
object; it is a computed result for a group.

Ci Accumulated color (after compositing object i), including the ini-
tial backdrop

Ei Element i of the group. This is a compound variable representing
the color, shape, opacity, and blend mode parameters that either are
intrinsic to the object or are associated input variables.

fji Object shape for Ei. This is an intrinsic attribute of an elementary
object (one that isn’t a group); it is a computed result for a group.

fki Constant shape for Ei

fmi Mask shape for Ei

fsi Source shape

fgi Group shape: the accumulated source shapes of group elements E1
through Ei only, excluding the initial backdrop

qki Constant opacity for Ei

qmi Mask opacity for Ei

As stated above, Ei is a compound variable representing an element of a group. If
the element is itself a group, it represents all the elements of that group. When
Composite is called with Ei as an argument, this means to pass the entire group
that Ei represents. This group is represented by the G variable inside the recur-
sive call to Composite; it is expanded and its elements are denoted by E1…En.

Note that the elements of a group are composited onto a backdrop that includes
the group’s initial backdrop. This is to achieve the correct effects of the blend
modes, most of which are dependent on both the source and backdrop colors be-
ing blended. (This feature is what distinguishes a non-isolated group from an iso-
lated group, discussed in the next section.)

Special attention should be directed to the formulas at the end that compute the
C, f, and α results that are returned from the Composite function. Essentially,
they remove the contribution of the group backdrop from the computed results.

Groups5
25

P
R

E
L

IM
IN

A
R

Y

This ensures that when the group itself is subsequently composited with that
backdrop (possibly with additional shape or opacity inputs or a different blend
mode), the backdrop’s contribution is included only once.

For color, the backdrop removal is accomplished by an explicit calculation,
whose effect is essentially the reversal of compositing with Normal blend mode.
The formula is a simplification of the following formulas that present this opera-
tion more intuitively:

where bf is the backdrop fraction, that is, the relative contribution of the back-
drop color to the overall color.

For shape and alpha, backdrop removal is accomplished by maintaining two sets
of variables to hold the accumulated values. The group shape and alpha, fgi and
αgi, accumulate only the shape and alpha of the group elements, excluding the
group backdrop; their final values become the group results returned by Compos-
ite. The complete alpha, αi, includes the backdrop contribution as well; its value
used in the color compositing computations. (There is never any need to compute
the corresponding complete shape, fi, that includes the backdrop contribution.)

As a result of these corrections, the effect of compositing objects as a group is
the same as compositing them separately, without grouping, if all of the follow-
ing conditions are true:

• The group is non-isolated and has the same knockout attribute as its parent
group (see the next two sections).

• When compositing the group’s results with the group backdrop, the Normal
blend mode is used and the shape and opacity inputs are always 1.

5.4 Isolated Groups

An isolated group is one whose elements are composited onto a fully transparent
initial backdrop rather than onto the group’s backdrop. The resulting source col-

bf
1 αgn–() α0⋅

Union α0 αgn,()
--------------------------------------=

C
Cn bf C0⋅–

1 bf–
------------------------------=

Transparency in PDF5
26

P
R

E
L

IM
IN

A
R

Y

or, object shape, and object alpha for the group are therefore independent of the
group backdrop. The only interaction with the group backdrop occurs when the
group’s computed color, shape, and alpha are then composited with it.

In particular, the special effects produced by the blend mode of objects within the
group take into account only the intrinsic colors and opacities of those objects;
they are not influenced by the group’s backdrop. For example, applying the Mul-
tiply blend mode to an object in the group will produce a darkening effect upon
other objects lower in the group’s stack, but it won’t produce that effect on the
group’s backdrop.

The effect of an isolated group can be represented by a simple object that directly
specifies a color, shape, and opacity at each point. This so-called “flattening” of
an isolated group is sometimes useful for import and export of fully-composited
artwork in applications. Additionally, a group that specifies an explicit blending
color space must be an isolated group.

For an isolated group, the group compositing function is altered simply by add-
ing one statement to the initialization:

If the group is isolated:

That is, the initial backdrop on which the elements of the group are composited is
transparent, rather than being inherited from the group’s backdrop. This substitu-
tion also makes C0 undefined, but the normal compositing formulas take care of
that. Additionally, the result computation for C automatically simplifies to
C = Cn, since there is no backdrop contribution to be factored out.

5.5 Knockout Groups

In a knockout group, each individual element is composited with the group’s ini-
tial backdrop, rather than with the stack of preceding elements in the group.
When objects have binary shapes (1 for “inside,” 0 for “outside”), each object
“knocks out” the effects of any overlapping elements within the same group. At
any given point, only the topmost object enclosing the point contributes to the re-
sult color and opacity of the group as a whole.

This model is similar to the opaque painting model of the existing Adobe imag-
ing model, except that the “topmost object wins” rule applies to both the color
and the opacity. Knockout groups are useful in composing a piece of artwork

α0 0=

Groups5
27

P
R

E
L

IM
IN

A
R

Y

from a collection of overlapping objects, where the topmost object in any overlap
completely obscures the objects underneath. At the same time, the topmost ob-
ject interacts with the group’s initial backdrop in the usual way, with its opacity
and blend mode applied as appropriate.

The concept of “knockout” is generalized to accommodate fractional shape val-
ues. In that case, the immediate backdrop is only partially knocked out and re-
placed by only a fraction of the result of compositing the object with the initial
backdrop.

The restated group compositing function deals with knockout groups by intro-
ducing a new variable, b, which is a subscript that specifies which previous result
to use as the backdrop in the compositing computations: 0 in a knockout group;
i – 1 in a non-knockout group. When b = i – 1, the formulas simplify to the ones
given in Section 5.3, “Group Compositing Computations.”

In the general case, the computation proceeds in two stages:

1. Composite the object with the group’s initial backdrop, but disregarding the
object’s shape and using a source shape value of 1 everywhere. This produces
unnormalized temporary alpha and color results, αt and Ct. (For color, this
computation is essentially the same as the unsimplified color compositing for-
mula given in Section 3.3, “Interpretation of Alpha,” but using a source shape
of 1.)

2. Compute a weighted average of this result with the object’s immediate back-
drop, using the source shape as the weighting factor. Then normalize the result
color by the result alpha.

α t Union αgb qsi,()=

Ct 1 qsi–() αb Cb⋅ ⋅ qsi 1 αb–() Csi⋅ αb B⋅
i

Cb Csi,()+()⋅+=

αgi 1 f si–() αgi 1–⋅ f si α t⋅+=

α i Union α0 αgi,()=

Ci

1 f si–() α i 1– Ci 1– f si Ct⋅+⋅ ⋅
α i

--=

Transparency in PDF5
28

P
R

E
L

IM
IN

A
R

Y

This averaging computation is performed for both color and alpha. The above
formulas show this averaging directly. The formulas given below in Section 5.6,
“Summary of Group Compositing Computations,” are slightly altered to use
source shape and alpha, rather than source shape and opacity, avoiding the need
to compute a source opacity value explicitly. (Note that Ct there is slightly differ-
ent from Ct above; it is premultiplied by fsi.)

The extreme values of the source shape produce the straightforward “knockout”
effect. That is, a shape of 1 (“inside”) yields the color and opacity that result
from compositing the object with the initial backdrop. A shape of 0 (“outside”)
leaves the previous group results unchanged. The existence of the knockout fea-
ture is the main reason for maintaining a separate shape value, rather than only a
single alpha value that combines shape and opacity. The separate shape value
must be computed in any group that is subsequently used as an element of a
knockout group.

A knockout group can be non-isolated or isolated; that is, isolated and knockout
are independent attributes of a group. A non-isolated knockout group composites
its topmost enclosing element with the group’s backdrop; an isolated knockout
group composites the element with a transparent backdrop.

Note: When a non-isolated group is nested within a knockout group, the initial
backdrop of the inner group is the same as the initial backdrop of the outer
group; it is not the immediate backdrop of the inner group. This non-obvious
nesting behavior is a consequence of the formulas for Composite when b = 0.

5.6 Summary of Group Compositing Computations

The following restatement of the group compositing function also takes isolated
groups and knockout groups into account. See Table 7 on page 21 and Table 8 on
page 23 for the definitions of the variables.

Initialization:

C f α, ,〈 〉 Composite C0 α0 G, ,()=

f g0 αg0 0= =

If the group is isolated: α0 0=

Groups5
29

P
R

E
L

IM
IN

A
R

Y

For each group element Ei in G, i ∈ [1, n]:

Result:

Note: Once again, keep in mind that these formulas are in their most general
form. They can be significantly simplified when some sources of shape and opac-
ity are not present or when shape and opacity need not be maintained separately.
Furthermore, in each specific type of group (isolated or not, knockout or not),
some terms of these equations cancel or drop out. An efficient implementation
should use the derived simplified equations.

b
0 if the group is knockout

i 1 otherwise–



=

Csi f ji α ji, ,〈 〉
Composite Cb αb Ei, ,() if Ei is a group

intrinsic color, shape, and shape opacity⋅() of Ei otherwise



=

f si f ji f ki f mi⋅ ⋅=

αsi α ji f ki qki⋅() f mi qmi⋅()⋅ ⋅=

f gi Union f gi 1– f si,()=

αgi 1 f si–() αgi 1–⋅ f si αsi–() αgb⋅ αsi+ +=

α i Union α0 αgi,()=

Ct f si αsi–() αb Cb⋅ ⋅ αsi 1 αb–() Csi⋅ αb B⋅
i

Cb Csi,()+()⋅+=

Ci

1 f si–() α i 1– Ci 1– Ct+⋅ ⋅
α i

---=

C Cn Cn C0–()
α0

αgn
--------- α0–

 
 
 

⋅+=

f f gn=

α α gn=

Transparency in PDF5
30

P
R

E
L

IM
IN

A
R

Y

5.7 Page Group

All of the elements painted directly onto a page—both top-level groups and top-
level objects that are not part of any group—may be treated as if they were con-
tained in an isolated group P, which in turn is composited with a context-
dependent backdrop. This group is called the page group.

Ordinarily, the page group is imposed on media, such as paper or a display
screen. The backdrop is nominally white, though varying according to actual
properties of the media. However, some applications may choose to provide a
different backdrop, such as a checkerboard that is useful for visualizing the ef-
fects of transparency in the artwork.

Note: A “page” of a PDF file can also be treated as a graphics object that is to
be used as an element of a page of some other document. This case arises, for ex-
ample, when placing a PDF file containing a piece of artwork produced by Illus-
trator into a page layout produced by InDesign™. In that situation, the PDF
“page” is not composited with white, as described below; instead, it is treated as
an ordinary transparency group, which is composited with its backdrop in the
normal way.

The color C of the page at a given point is defined by a simplification of the gen-
eral group compositing formula:

where the variable definitions are given in Table 9. The first formula computes
the color and alpha for the group given a transparent backdrop—in effect, treat-
ing P as an isolated group. The second formula composites the results with the
context-dependent backdrop (using the equivalent of Normal blend mode).

TABLE 9 Variables for page group computation

VARIABLE MEANING

αg Computed alpha of the group

C Color of the page

Cg Computed color of the group

Cg fg αg, ,〈 〉 Composite U 0 P, ,()=

C 1 αg–() W αg Cg⋅+⋅=

Soft Masks6
31

P
R

E
L

IM
IN

A
R

Y

fg Computed shape of the group (this result is discarded)

P A group consisting of all elements E1…En in the page’s top-level
stack

U An undefined color (which is not used, since the α0 argument of
Composite is 0)

W The initial color of the page, which is nominally white but can be
context-dependent depending on properties of the media or the
needs of the application.

If not otherwise specified, the page group’s color space is inherited from the na-
tive color space of the output device—that is, a device color space, such as De-
viceRGB or DeviceCMYK. It is often preferable to specify an explicit color
space, particularly a CIE-based color space, to ensure more predictable results of
the compositing computations within the page group. In this case, all page-level
compositing is done in that color space, with the entire result then converted to
the native color space of the output device before being composited with the con-
text-dependent backdrop. This case also arises when the page is not actually be-
ing rendered but is converted to a “flattened” representation in an opaque
imaging model, such as PostScript.

6 Soft Masks

Earlier sections have mentioned the mask shape, fm, and mask opacity, qm, that
are contributors to the source shape and opacity. These enable shape and opacity
to originate from a source that is independent of the objects being composited. A
soft mask (or just mask for short) defines values that can vary across different
points on the page. The word “soft” emphasizes that the mask value at a given
point is not just 0 or 1 but can take on fractional values.

A mask used as a source of shape values is also called a soft clip. The term soft
clip arises from analogy with the “hard” clipping path of the existing Adobe im-
aging model. The soft clip is a generalization of the hard clip: a hard clip can be
represented as a soft clip having shape value 1 inside and 0 outside the clipping
path. Everywhere inside a hard clipping path, a source object’s color replaces the
backdrop; everywhere outside, the backdrop shows through unchanged. With a
soft clip, on the other hand, one can create a gradual transition between an object
and the backdrop, such as in a vignette. (Although “soft clip” suggests a vignette

Transparency in PDF6
32

P
R

E
L

IM
IN

A
R

Y

around an enclosed area, in fact the value of the mask can be an arbitrary func-
tion of position.)

A mask is typically the only means of providing position-dependent opacity,
since elementary objects do not have intrinsic opacity.

A mask can be defined by creating a group and then painting objects into it,
thereby defining color, shape, and opacity in the usual way. The resulting group
can then be treated as a mask by following one of the two procedures described
below.

6.1 Mask from group alpha

The color, shape, and opacity of the group G are first computed by the usual for-
mula:

where C0 and α0 are an arbitrary backdrop whose value does not contribute to
the eventual result. The C, f, and α results are the group’s color, shape, and alpha,
with the backdrop factored out.

The mask value at each point is then derived from the alpha of the group. In this
case, the group’s color is not used, so there is no need to compute it. The alpha
value is passed through a separately-specified transfer function, enabling the
masking effect to be customized.

6.2 Mask from group luminosity

The group is composited with a fully-opaque backdrop of some selected color.
The mask value at any given point is then defined to be the luminosity of the re-
sulting color. This enables the mask to be derived from the shape and color of an
arbitrary piece of artwork, drawn with ordinary painting operators.

The color C used to create the mask from a group G is defined by:

C f α, ,〈 〉 Composite C0 α0 G, ,()=

Cg fg αg, ,〈 〉 Composite C0 1 G, ,()=

C 1 αg–() C0 αg Cg⋅+⋅=

Color Space and Color Rendering Issues7
33

P
R

E
L

IM
IN

A
R

Y

where C0 is the selected backdrop color.

G can be any kind of group—isolated or not, knockout or not—with various ef-
fects in the C result produced in each case. The color C is then converted to lumi-
nosity in one of the following ways, depending on the group’s color space:

• For CIE-based spaces, convert to CIE XYZ and use the Y component as lumi-
nosity. This procedure produces a colorimetrically correct luminosity. In the
case of a PDF CalRGB space, the formula is:

using components of the Gamma and Matrix entries of the color space dictio-
nary (see PDF Reference, Table 4.14 [7.28]). An analogous computation ap-
plies to other CIE-based color spaces.

• For device color spaces, convert the color to DeviceGray by device-dependent
means and use the resulting gray value as luminosity, with no compensation
for gamma or other color calibration. This method makes no pretense of colo-
rimetric correctness; it merely provides a numerically simple means to produce
contone mask values. Here are some recommended formulas for converting
from DeviceRGB and DeviceCMYK, respectively:

Following this conversion, the result is then passed through a separately-speci-
fied transfer function, enabling the masking effect to be customized.

The backdrop color that is most likely to be useful is black. If the backdrop is
black, any areas outside the group’s shape will end up with a zero luminosity val-
ue in the resulting mask. If we view the contents of the group as a positive mask,
this result matches our expectations with respect to the points that are outside the
shape.

7 Color Space and Color Rendering Issues

This section describes the interactions between the transparency model and other
aspects of color specification and rendering in the Adobe imaging model.

Y Y A A
GR⋅ Y B B

GG⋅ YC C
GB⋅+ +=

Y 0.3 R⋅ 0.59 G⋅ 0.11 B⋅+ +=

Y 0.3 1 C–() 1 K–()⋅ ⋅ 0.59 1 M–() 1 K–()⋅ ⋅ 0.11 1 Y–() 1 K–()⋅ ⋅+ +=

Transparency in PDF7
34

P
R

E
L

IM
IN

A
R

Y

7.1 Color Spaces

A group can have either an explicitly declared color space or the color space in-
herited from the parent group. In either case:

1. A source object’s color is converted to the group’s color space if necessary.

2. The blending and compositing computations are done in that color space (see
Section 3.1, “Blending Color Space”).

3. The group’s resulting color is interpreted as being in that color space when the
group is subsequently composited with the backdrop.

Under this arrangement, we envision that all or most of a piece of artwork will be
created in a single color space—most likely, the working color space of the ap-
plication that generated it. Use of multiple color spaces typically will arise only
when assembling independently-produced artwork onto a page. When the com-
plete artwork is placed on a page, the conversion from the group’s color space to
the page’s device color space will be done as the last step, without any further
transparency compositing.

The transparency model does not impose any requirement that such a convention
be followed. The reason for adopting it is to avoid loss of color information and
introduction of errors due to performing unnecessary conversions.

Only isolated groups may have an explicitly declared color space; non-isolated
groups must inherit their color space from the parent group. Use of an explicit
color space in a non-isolated group would require converting colors from the
backdrop’s color space to the group’s color space in order to perform the com-
positing computations. This may not be possible, since some color conversions
are one-way.

The choice of group color space will have significant effects on the results that
are produced. In particular:

• As indicated in Section 3.1, “Blending Color Space,” if the group uses a device
color space, then the transparency compositing computations will produce de-
vice-dependent results.

• In order for the compositing computations to work in a device-independent
way, the group’s color space must be a CIE-based color space.

Color Space and Color Rendering Issues7
35

P
R

E
L

IM
IN

A
R

Y

• A consequence of choosing a CIE-based group color space is that only CIE-
based color spaces can be used to specify the colors of objects within the
group. This is because conversion from device to CIE-based colors is not pos-
sible in general; the defined conversions work only in the opposite direction.

• The compositing computations and blend modes generally compute linear
combinations of color component values, based on the assumption that the col-
or component values themselves are linear. Therefore, it is usually best to
choose a group color space that is linear (that is, it has a linear gamma curve).
If a non-linear color space is chosen, the results are still well-defined, but the
appearance may not match the user’s expectations.

Note: In this connection, note that RGB is a non-linear CIE-based color space,
hence possibly unsuitable for use as a group color space.

Note: An implementation of the transparency model is advised to use as much
precision as possible to represent colors during the compositing computations
and in the accumulated group results. More precision is needed for intermediate
results than is typically used to represent either the original source data or the fi-
nal rasterized results. This is to minimize accumulation of roundoff errors and to
avoid additional errors that arise from the use of linear group color spaces.

7.2 Spot Colors

The preceding discussion about color spaces has been concerned about process
colors—that is, the colors that are produced by combinations of the device’s pro-
cess colorants. (Process colors are sometimes called “composite colors,” but we
will avoid that term here due to possible confusion with the transparency com-
positing operations.) Process colors may be specified directly in the device’s col-
or space (such as DeviceCMYK), or they may be produced by conversion from
some other color space, such as a CIE-based color space (CalRGB or
ICCBased). Whatever means is used to specify them, process colors are subject
to conversion to and from the group’s color space.

A spot color is an additional color component, independent of the color compo-
nents that are used to produce process colors. A spot color can represent either an
additional separation that is to be produced or an additional colorant that is to be
applied to the composite page. The color component value for a spot color is
called a tint, representing the concentration of the spot colorant. (Tints are con-
ventionally represented as subtractive values, not additive.)

Transparency in PDF7
36

P
R

E
L

IM
IN

A
R

Y

Spot colors are inherently device-dependent and are not always available. In the
Adobe imaging model as represented in PostScript and PDF, each use of a spot
color (in a Separation or DeviceN color space) is accompanied by an alternate
color space and a function for mapping tint values into that color space. This en-
ables the spot color to be approximated with process colors when the spot colo-
rant is not available in the device.

Spot colors can be accommodated straightforwardly in the transparency model,
except for issues relating to overprinting, discussed in Section 7.3, “Overprinting
and Erasing.” If an object that is an element of a group is painted with a spot col-
or, one of two things can happen:

• The group maintains a separate color value for each spot color component, in-
dependent of the group’s color space. Effectively, the spot color passes directly
through the group hierarchy to the device, with no color conversions per-
formed; however, it is still subject to blending and compositing with other ob-
jects that use the same spot color.

• The spot color is converted to its alternate color space. The resulting color is
then subject to the usual compositing rules for process colors.

Only a single shape value and opacity value are maintained at each point in the
computed group results; they apply to both process and spot color components.
In effect, every object is considered to paint every color component that exists.
Where no value has been specified for a given color component in a given object,
an additive value of 1 (or subtractive tint value of 0) is assumed.

For instance, when painting an object with a color specified as DeviceCMYK or
ICCBased, the process color components are painted as specified and the spot
color components are painted with additive value 1. Likewise, when painting an
object with a color specified as Separation, the named spot color is painted as
specified and the other components (both process and other spot colors) are
painted with additive value 1. The consequences of this are discussed in Section
7.3, “Overprinting and Erasing.”

The existing Adobe imaging model also allows the process color components to
be addressed individually, as if they were spot colors. For instance, one can spec-
ify a Separation color space named Cyan, which paints just the cyan component
in a CMYK output device.

Color Space and Color Rendering Issues7
37

P
R

E
L

IM
IN

A
R

Y

This is very difficult to extend to work in transparency groups. In general, the
color components in a group are not the process colorants themselves, but are
converted to process colorants only after completion of all color compositing
computations for the group (and perhaps some of the group’s parents as well).
For instance, if the group’s color space is ICCBased, the group has no Cyan
component to be painted.

Therefore, treating a process color component as if it were a spot color is permit-
ted only within a group that inherits the native color space of the output device.
Attempting to do so in a group that specifies its own color space will result in
conversion of the requested spot color to its alternate color space.

7.3 Overprinting and Erasing

This section addresses the relationship between overprinting and transparency
and discusses how the Adobe imaging model is altered to deal with it. This dis-
cussion is limited to what can be represented in PDF. There is an entirely sepa-
rate question of how applications can use transparency to simulate the effects of
overprinting colorants; that topic is beyond the scope of this specification.

Background

PDF has an overprint parameter and an nonzero overprint mode parameter in the
graphics state. They are documented in PDF Reference, Section 4.5.6. (The older
PDF 1.3 specification lacks detailed documentation of these parameters. The
overprint parameter, but not the nonzero overprint mode, also exists in Post-
Script; it is documented in PostScript Language Reference, third edition, Section
4.8.5.)

Briefly, in the existing imaging model, painting an object causes some specific
set of device colorants to be marked according to the current color space and col-
or value. The remaining colorants are either erased or left unchanged, according
to whether the overprint parameter is false or true. The nonzero overprint mode
parameter additionally enables this selective marking of colorants to be applied
to individual components of DeviceCMYK according to whether the component
value is zero or nonzero.

This model of overprinting is very device-dependent. It deals directly with the
painting of device colorants, independent of the color space in which source col-

Transparency in PDF7
38

P
R

E
L

IM
IN

A
R

Y

ors have been specified. It primarily addresses production needs, not design in-
tent. Overprinting is usually reserved for an opaque colorant or for a very dark
color such as black. It is also invoked during late-stage production operations,
such as trapping, when the actual set of device colorants has already been deter-
mined.

It is best to think of transparency as taking place in appearance space, but over-
printing of device colorants in device space. This means that colorant overprint
decisions should be made at output time based on the actual resultant colorants
of any transparency compositing operation. On the other hand, effects similar to
overprinting can be achieved in a device-independent manner by taking advan-
tage of blend modes; this is described below.

Use of Blend Modes to Erase or Overprint

As indicated in Section 7.2, “Spot Colors,” each object paints every color com-
ponent that exists—both the process color components in the group’s color space
and any available spot color components. For color components whose value has
not been specified, a source color of 1 is assumed. When objects are fully opaque
and Normal blend mode is used, this has the effect of erasing those components.
This is consistent with the existing opaque imaging model when the overprint
flag is turned off.

The transparency model defines some blend modes, such as Darken, that can be
used to achieve effects similar to overprinting. The definition of Darken is:

If the blend mode is Darken, its result will always be the same as the backdrop
color when the source color is 1, as it is for all unspecified color components.
When the backdrop is fully opaque, painting with a source color of 1 and the
Darken blend mode leaves the result color unchanged from the backdrop. This is
consistent with the existing opaque imaging model when the overprint flag is
turned on.

If the object or backdrop are not fully opaque, the above actions are altered cor-
respondingly. That is, the “erasing” effect is reduced, and “overprinting” an ob-
ject with color value 1 may affect the result color. While these results may or
may not be useful, they lie outside the realm of the erasing and overprinting that
are defined in the existing opaque imaging model.

Darken cb cs,() min cb cs,()=

Color Space and Color Rendering Issues7
39

P
R

E
L

IM
IN

A
R

Y

When process colors are erased or overprinted (because a spot color is being
painted), the blending computations described above are done componentwise in
the group’s color space. If the group’s color space is different from the native col-
or space of the output device, its components are not the actual process colorants
of the output device; the blending computations affect the process colorants only
after the group’s results are converted to the device color space. Thus, the effect
is different from erasing or overprinting the device’s process colorants directly.
On the other hand, this is a fully general operation that works uniformly, regard-
less of the type of object and regardless of what computations produced the
source color.

The above discussion has concentrated on the color components whose values
have not been specified and that are to be either erased or left unchanged. The
Normal or Darken blend modes used for those purposes may not be suitable for
use on the components whose color values have been specified. In particular, the
Darken blend mode for those components would preclude overpainting a dark
color with a lighter color. Moreover, some other blend mode may be specifically
desired for those components.

PDF provides means to specify only one blend mode, which always applies to
process colorants and sometimes applies to spot colorants as well. Specifically,
only white-preserving blend modes can be used for spot colors—that is, func-
tions having the property that B(1, 1) = 1. If a non-white-preserving blend mode
is specified, it applies only to the process color components; Normal blend mode
is substituted for the spot colors. This ensures that when objects accumulate in an
isolated group, the accumulated values for unspecified components remain 1.
The group’s results can then be overprinted using Darken (or other useful
modes) while avoiding unwanted interactions with the components whose values
were never specified within the group.

Interpretation of Overprint Parameters

The previous section describes how effects similar to overprinting can be
achieved using blend modes. Those methods do not make direct use of the over-
print flag and nonzero overprint mode; they are usable only by transparency-
aware applications.

PDF provides for compatibility with PDF 1.3 overprint control by defining a spe-
cial Compatible blend mode that consults the overprint control parameters to

Transparency in PDF7
40

P
R

E
L

IM
IN

A
R

Y

compute its result. See “Blend Modes” on page 47 for the precise definition of
the Compatible blend mode.

7.4 Rendering Parameters

PDF has several graphics state parameters dealing with the rendering of color:
halftone, transfer functions, color rendering intent, undercolor removal, and
black generation. How should these parameters work in the presence of transpar-
ency?

The problem is this: The rendering parameters can be specified on a per-object
basis; they control how that object will be rendered. When all objects are opaque,
it is easy to define what this means. When they are transparent, more than one
object can contribute to the color at a given point. It is unclear which rendering
parameters to apply in an area where transparent objects overlap. (Devising a
way to “blend” the effects of these parameters seems hopelessly difficult.)

Furthermore, the operations that the rendering parameters control—halftoning in
particular—can be performed only when the final color at a given point is known.
When objects are transparent, rendering of an object does not occur at the time
the object is specified, but at some later time. The implementation must keep
track of the rendering parameters at each point from the time they are specified
until the time the rendering actually occurs. In other words, rendering parameters
must be associated with regions of the page rather than with individual objects.

At the same time, we would like the transparency imaging model to be compati-
ble with the existing opaque imaging model in the case that only opaque objects
are painted.

For the halftone and transfer function parameters, the problem is solved in the
following way. Conceptually, there is a map over the entire page defining the ren-
dering parameters to be used at each point. This map is defined as follows:

• Initially, the rendering parameters for the entire page have default values,
which are the values in effect at the beginning of the current page.

• If the topmost object at a given point is fully opaque, then the rendering param-
eters associated with the object are used at that point. This provides exact com-
patibility with the existing opaque imaging model. The definitions of “topmost
object” and “fully opaque” are given below.

Color Space and Color Rendering Issues7
41

P
R

E
L

IM
IN

A
R

Y

Only elementary objects define the rendering parameters map; the rendering pa-
rameters associated with a group object are ignored. At a given point, the top-
most object is the topmost elementary object in the entire page stack that has a
nonzero object shape value (fj) at that point (in other words, the point is “inside”
the object). An object is considered to be fully opaque if its source alpha is 1, its
blend mode is Normal or Compatible, and each direct ancestor group likewise
specifies a source alpha of 1 and a blend mode of Normal or Compatible. These
conditions ensure that only the object itself contributes to the color at that point;
it completely obscures the backdrop.

The color rendering intent parameter needs to be handled a little differently. This
parameter determines how to convert from CIE-based color spaces to device col-
or spaces. It is needed at the moment such a conversion must be performed—that
is, when painting an elementary object with a CIE-based color or a group whose
color space is CIE-based into a parent group or page having a device color space.
This is unlike the halftone and transfer function parameters, whose values are
used when rasterization is performed.

The color rendering intent to be used during a conversion is determined by defin-
ing a map that resembles the one used for the halftone and transfer function but is
applied only at the group level:

• When painting an elementary object (not a group) having a CIE-based color
directly into a group or page having a device color space, the color rendering
intent associated with that object is used directly. This occurs without regard
for whether the object is fully opaque.

• When painting a group object whose color space is CIE-based into a group or
page having a device color space, the color rendering intent to use at each point
is determined by the topmost object within the group (including nested sub-
groups) if it is fully opaque. If there is no such object, the color rendering in-
tent to use is the one associated with the group object itself.

A similar approach works for the undercolor removal and black generation func-
tions, which are applied only during conversion from DeviceRGB to
DeviceCMYK color spaces.

Transparency in PDF8
42

P
R

E
L

IM
IN

A
R

Y

8 Overview of PDF Extensions

The preceding sections have described the transparency model at a fairly abstract
level, with relatively little mention of how it is represented in PDF. This section
introduces the PDF representation; it is organized according to the presentation
of the transparency model above. The next section specifies the PDF extensions
for transparency in detail; it is organized according to the presentation in PDF
Reference.

8.1 Color Compositing Computations

The object color Cs comes from the usual sources of color, that is, the current
color in the graphics state or the source samples in an image. The backdrop color
Cb is the result of previous painting operations.

The blending color space is an attribute of the transparency group within which
an object is painted. The page as a whole is also treated as a group (the page
group) that has a color space attribute. If not otherwise specified, the page
group’s color space is inherited from the native color space of the output device.

The blend mode B(Cb, Cs) is a parameter in the graphics state. It is a name se-
lecting among a fixed enumeration of blend modes.

8.2 Shape and Opacity Computations

Every object painted by PDF painting operators has a shape value fj at each
point, defined as follows:

• The shape of an object defined by a path (fill, stroke, text) and painted with a
simple paint is always 1 inside and 0 outside the path.

• The shape of an image is nominally 1 inside and 0 outside the image rectangle.
This can optionally be reduced by a binary mask accompanying the image,
which is specified by either an explicit mask or a color key (using the PDF 1.3
masked image feature).

• The shape of an image mask is 1 for painted regions and 0 for masked regions.

• The shape of a shading object (painted by the sh operator) is 1 inside and 0
outside the bounds of the shading’s painting geometry, disregarding the Back-
ground entry.

Overview of PDF Extensions8
43

P
R

E
L

IM
IN

A
R

Y

• The shape of an object painted with a tiling pattern is recursively determined
by the objects that define the pattern.

• The shape of an object painted with a shading pattern is the intersection of the
object itself and the geometry of the shading.

All elementary objects have an intrinsic opacity qj of 1 everywhere. Any desired
opacity less than 1 must be applied by means of the qk and qm parameters de-
scribed below.

The graphics state contains a constant alpha value and a position-dependent al-
pha mask. There is a separate parameter that specifies whether these alpha sourc-
es are to be treated as shape (fk and fm) or as opacity (qk and qm).

The constant alpha is specified by two simple scalar parameters in the graphics
state: one for strokes; one for all nonstroking operations. It is reasonable to think
of these parameters as the “current alpha,” analogous to the current color used
when painting elementary objects. (Note, however, that the nonstroking alpha is
also applied when painting a group’s results onto the backdrop.)

There can be at most one mask input in any compositing operation. It can be
specified in either of the following ways:

• The graphics state contains a soft mask parameter. If present, its value is a soft-
mask dictionary, which includes a transparency group that is to be used as a
position-dependent source of alpha values. By this means, an arbitrary collec-
tion of objects can be used to define the shape or opacity that is then imposed
on the objects painted onto the page.

• An image XObject can contain a soft-mask image, specified as a subsidiary im-
age XObject. This mask, if present, overrides the PDF 1.3 masked image fea-
ture. Either form of mask in the image XObject overrides the soft mask
parameter in the graphics state.

Note: The limitation of one mask per compositing operation causes no loss of
generality in the transparency model. A soft mask can also be applied to a group,
and groups can be nested to multiple levels.

Transparency in PDF8
44

P
R

E
L

IM
IN

A
R

Y

8.3 Groups

A group is represented in PDF as a transparency-group XObject—a form XOb-
ject having some additional transparency-related attributes, which are carried in a
separate group attributes subdictionary. The elements of the group consist of the
graphics objects that are painted by execution of the XObject’s content stream.
The results of the group compositing computations—color, shape, and opacity—
are then painted into the group’s parent group or page. The Do operator invokes
both of the above operations.

The entries in the group attributes dictionary include:

• Color space for blending and compositing, if different from the one used in the
parent group or page

• Isolated and knockout boolean attributes

For a non-isolated group, the group’s backdrop is defined as the computed color,
shape, and opacity of everything that has been painted into the parent group or
page prior to execution of the Do operator.

8.4 Soft Masks

A soft mask is represented by a soft-mask dictionary. This dictionary contains the
following:

• A transparency-group XObject describing the group that is to be used as the
source of position-dependent mask values

• Backdrop color and blending color space to use for the group compositing op-
eration

• Other entries controlling conversion from the group results to mask values

A soft mask created in this way can be established as the soft mask parameter in
the graphics state. This causes it to be treated as a position-dependent source of
shape or opacity (fm or qm) in subsequent compositing operations.

PDF Specification9
45

P
R

E
L

IM
IN

A
R

Y

8.5 Color Space and Color Rendering Issues

The issues and proposed model for color spaces, spot colors, and overprinting are
quite thoroughly covered in Section 7, “Color Space and Color Rendering Is-
sues.” The PDF representation follows straightforwardly from that description.

8.6 Limitations in the PDF Transparency Model

The PDF realization of the general transparency model has several limitations in
order to simplify the representation and the implementation. The following is a
summary of these limitations, which are further described elsewhere in this spec-
ification.

• In any given transparency compositing operation, there is at most one mask in-
put, which can be treated as either shape or opacity. (This is in addition to the
shape and opacity that are intrinsic to the source object itself.)

• There are not independent parameters for constant shape and constant opacity.
Instead, there is a constant alpha value, which can be treated as either shape or
opacity (the other parameter is implicitly 1).

• There is only one blend mode specified per object, regardless of the number of
color components that are affected when the object is painted. It always applies
to the process color components. If it is a separable, white-preserving blend
mode, then it also applies to any spot color components that exist; otherwise,
Normal blend mode is substituted for those components. There is a fixed enu-
meration of blend modes, with no provision for specifying an arbitrary func-
tion as a blend mode.

9 PDF Specification

This section describes the additions and changes to the PDF specification. It is
organized according to the presentation in PDF Reference, second edition. The
numbers in brackets refer to sections in the older Portable Document Format Ref-
erence Manual, version 1.3, where the closest equivalent material can be found.

9.1 Adobe Imaging Model—2.1.2

[This section needs to be revised to incorporate the transparency extensions to
the Adobe imaging model, described here in Section 2, “Overview.”]

Transparency in PDF9
46

P
R

E
L

IM
IN

A
R

Y

9.2 Page Tree (Page Objects)—3.6.2 [6.4]

[Add the following entry to Table 3.17:]

Table 3.17 [6.5] Entries in a page dictionary

KEY TYPE VALUE

Group dictionary (Optional) A group attributes dictionary, which specifies the group attributes
of the page group. See Table 11 on page 58 for the contents of this dictio-
nary. See also Section 5.7, “Page Group.”

9.3 Graphics Objects—4.1 [8.1]

[Replace the sentence “Each graphics object is painted...opaque painting mod-
el...” with the following:]

A PDF content stream represents a sequence of graphics objects. Each of these
objects has a shape. Within the shape, every point has a color and an opacity. For
some objects, the color and opacity are constant within the entire shape; for oth-
ers, they can vary at different points within the shape.

In the case that all the objects are fully opaque, one can consider the objects sim-
ply to be painted onto the current page, obscuring any existing marks they may
overlay. However, in the general case where transparency can occur, it is neces-
sary to think of the objects as forming a stack, where the stacking order is defined
to be the order in which the objects are specified, bottommost object first. All of
the objects in a stack can potentially contribute to the result, according to the col-
or, shape, and opacity compositing rules specified in Section 3, “Color Compos-
iting Computations,” and Section 4, “Shape and Opacity Computations.”

[Append the following:]

These graphics objects are also treated as the elementary objects for transparency
compositing purposes (subject to special treatment for text objects, described in
Section 9.15). That is, all of a given object is considered to be one element of a
stack. Portions of an object are not composited with one another, even if they are
described in a way that would seem to cause overlaps, such as a self-intersecting
path, combined fill and stroke of a path, or a shading pattern containing an over-
lap or fold-over.

PDF Specification9
47

P
R

E
L

IM
IN

A
R

Y

The result of compositing a transparency-group XObject is itself treated as if it
were an elementary graphics object, having shape, opacity, and color at each
point. It is then composited with its parent group or page. Note that this treatment
applies only to form XObjects having a Group entry specifying a group at-
tributes dictionary whose S (Subtype) is Transparency. Painting an ordinary
form XObject (lacking a Group entry) is equivalent to painting the form’s con-
stituent graphics objects individually; there is no transparency grouping behav-
ior.

9.4 Details of Graphics State Parameters—4.3.2 [8.4]

[Add the following subsection:]

Blend Modes

The blend mode graphics state parameter is specified as the value of the BM entry
in a graphics state parameter dictionary. Its value can be one of the following:

• The name of a standard blend mode, which is one of: Compatible, Normal,
Multiply, Screen, Difference, Darken, Lighten, ColorDodge, ColorBurn,
Exclusion, HardLight, Overlay, SoftLight, Luminosity, Hue, Saturation,
and Color. These blend modes are explained in Section 3.2, “Blend Mode,” ex-
cept for the blend mode named Compatible, which is explained below.

• An array of one or more blend modes, each specified by a name as described
above. This specifies alternate blend modes that can be used; the viewer will
use the first blend mode that it recognizes in the array. If the viewer does not
recognize any of the blend modes, it will use Normal mode. This allows a PDF
file to use a new blend mode that has been introduced, while specifying reason-
able fall-back behavior in a viewer that doesn’t recognize the new mode.

There is only one blend mode parameter in the graphics state. This blend mode
always applies to process color components and sometimes applies to spot color
components as well. Specifically:

• If the blend mode is separable and white-preserving, then it applies to all spot
color components that exist, as well as to process color components. A separa-
ble blend mode is one that is performed componentwise, with no interaction
between components. A white-preserving blend mode is a function B(cb, cs)
having the property that B(1, 1) = 1. Of the named blend modes listed above,

Transparency in PDF9
48

P
R

E
L

IM
IN

A
R

Y

the following are separable and white-preserving: Compatible, Normal,
Multiply, Screen, Darken, Lighten, ColorDodge, ColorBurn, HardLight,
Overlay, SoftLight.

• Otherwise, the blend mode applies only to process color components. Any spot
color components are blended using Normal mode.

As explained in Section 7.2, “Spot Colors,” components whose values are not ex-
plicitly specified in the current color space are implicitly painted with additive
value 1 (that is, subtractive tint 0). When objects accumulate in an isolated group,
the accumulated values for unspecified components remain 1 so long as only
white-preserving blend modes are used. This enables the group’s results to be
overprinted using Darken (or other useful modes) while avoiding unwanted in-
teractions with the components whose values were never specified within the
group.

There is a special blend mode named Compatible, which is the default value of
the blend mode parameter. This blend mode implements overprinting and erasing
behavior that is compatible with the existing Adobe imaging model and PDF 1.3
when painting opaque objects. To do this, it consults the current values of the
overprint flag (set by op or OP in a graphics state parameter dictionary) and non-
zero overprint mode (set by OPM), as follows:

• If the object being painted is a group (not an elementary object), the
Compatible blend mode is equivalent to Normal—it just returns the source
color. In other words, the special compatibility behavior applies only when
painting elementary objects: fills, strokes, text, images, and shading objects.

• If the overprint flag is false, the Compatible blend mode is equivalent to
Normal.

• If the overprint flag is true, the overprint mode is 1 (nonzero overprint mode
enabled), and the current color space and group color space are both
DeviceCMYK, then the Compatible blend mode returns the backdrop color
for any DeviceCMYK component whose (subtractive) color value is zero; it re-
turns the source color otherwise. For spot color components, Compatible re-
turns the backdrop color.

• Otherwise, the Compatible blend mode returns the source color for a color
components that is specified in the current color space; it returns the backdrop
color otherwise. For instance, if the current color space is DeviceCMYK or
CalRGB, Compatible returns the source color for process color components

PDF Specification9
49

P
R

E
L

IM
IN

A
R

Y

and the backdrop color for spot color components. On the other hand, if the
current color space is a Separation color space, Compatible returns the
source color for that spot color component and the backdrop color for process
colors and all other spot color components.

In the above description, “current color space” refers to the color space used for a
painting operation. This may be the color space parameter in the graphics state, a
color space used implicitly by operators such as rg, or an attribute of an image
XObject. In the case of an Indexed space, this refers to the underlying color
space; likewise for Separation and DeviceN spaces that revert to their alternate
color space.

See Section 12, “Overprinting, Erasing, and Transparency,” for tables giving de-
tails of the overprinting and erasing behavior described above.

9.5 Graphics State Parameter Dictionaries—4.3.4 [7.15]

[Add the following entries to table 4.8:]

Table 4.8 [7.49] Entries in a graphics state parameter dictionary

KEY TYPE VALUE

ca number (Optional) Constant alpha, used in the computation of the source shape or
opacity for each object painted by operations other than stroke. It must be in
the range 0 to 1. Default value: 1. This parameter is implicitly reset to its de-
fault value at the beginning of execution of a transparency-group XObject.

CA number (Optional) Similar to ca, but applies only when stroking paths and glyph
outlines.

SMask dictionary or name(Optional) Soft mask, used to provide the mask shape or opacity value at
each point when computing the source shape or opacity for an object being
painted. This is described by a soft-mask dictionary; see “Soft-Mask Dictio-
naries” on page 61. If this parameter is the name None, the mask value is im-
plicitly 1 everywhere. Default value: None. This parameter is implicitly reset
to its default value at the beginning of execution of a transparency-group
XObject.

When painting an image XObject, the soft mask parameter in the graphics
state is ignored (treated the same as None) if the image XObject contains a
Mask or SMask entry.

Transparency in PDF9
50

P
R

E
L

IM
IN

A
R

Y

AIS boolean (Optional) Alpha is shape, indicating whether the sources of alpha are to be
treated as shape (true) or opacity (false). This determines the interpretation
of the constant alpha (ca and CA) and soft mask (SMask) parameters of the
graphics state, as well as a soft-mask image (SMask entry) of an image
XObject. Default value: false.

BM name or array (Optional) The blend mode for color compositing for each object painted. It
must be the name of a blend mode or an array of alternate blend modes. See
“Blend Modes” on page 47. Default value: Compatible. This parameter is
implicitly reset to its default value at the beginning of execution of a trans-
parency-group XObject.

TK boolean (Optional) Text knockout parameter, which determines the behavior of over-
lapping glyphs within a text object. If the value of TK is false, each glyph in
a text object is treated as a separate elementary object; when glyphs overlap,
they will composite with one another. If the value of TK is true, all the
glyphs in a text object are treated together as a single elementary object;
when glyphs overlap, later glyphs will knock out earlier ones in the area of
overlap. See Section 9.15. Default value: true.

Note: When the gs operator alters any of the above parameters, the new values
completely replace the old ones. In particular, the soft mask is not intersected
with its former value, as might be inferred from its role as a “soft clip” that is a
generalization of the clipping path.

Note: Although the soft mask is defined as a parameter in the graphics state, its
intended use is to clip only a single object at a time (either an elementary object
or a group). If a mask is applied when painting two or more objects that overlap,
the effect of the mask will multiply with itself in the area of overlap (except in a
knockout group), producing a result shape or opacity that is probably not what is
intended. To apply a soft mask to multiple objects, it is usually best to treat those
objects as a group and apply the mask when painting the group. The foregoing
considerations also apply to the constant alpha parameter in the graphics state.

9.6 Path-Painting Operators—4.4.2 [8.6.2]

[Change the following entries in Table 4.10:]

PDF Specification9
51

P
R

E
L

IM
IN

A
R

Y

Table 4.10 Path-painting operators

OPERANDS OPERATOR DESCRIPTION

— B Fill and then stroke the path, using the nonzero winding number rule to de-
termine the region to fill. This produces the same result as specifying two
path objects with the same path, painting the first with f and the second with
S. Note that the filling and stroking portions of the operation consult differ-
ent values of several graphics state parameters, such as color.

For transparency compositing purposes, the combined fill and stroke are
treated as a single graphics object. That is, the stroke replaces the fill in the
area of overlap. The effect is equivalent to performing the fill and stroke as
separate operations in a knockout group. (Otherwise, a non-opaque stroke
would composite with the results of the fill, producing a “double border” ef-
fect. If that is the effect desired, it can be achieved by specifying the fill and
stroke with separate path objects.)

Note: These transparency semantics also apply to the B*, b, and b* opera-
tors. However, this does not change their descriptions, which are based on
the behavior of the B operator.

9.7 Clipping Path Operators—4.4.3 [8.3.1.1]

[Append the following to the first paragraph:]

In the context of the transparency model, the clipping path constrains an object’s
shape. The effective shape is the intersection of the object’s intrinsic shape and
the current clipping path: the source shape value is 0 outside this intersection. In
the same vein, the shape of a transparency group is defined as the union of the
shapes of all constituent objects. This shape is likewise influenced by the clip-
ping path in effect when each of those objects is painted; it is additionally con-
strained by the clipping path in effect at the time of the Do operator, when the
group’s results are painted onto the backdrop.

Note: The clipping path and the soft mask are independent parameters of the
graphics state. Even though the “soft” shape mask could be considered a gener-
alization of the “hard” clip, attempting to unify these parameters would disrupt
the existing PDF graphics model unacceptably.

Transparency in PDF9
52

P
R

E
L

IM
IN

A
R

Y

9.8 Device Color Spaces—4.5.3 [7.12]

[Append the following:]

Use of device color spaces is subject to special treatment within a transparency
group whose group color space is CIE-based; see “Transparency-Group XOb-
jects” on page 57. In particular, the device color space operators should be used
only if the device color spaces have been remapped to CIE-based color space by
means of the DefaultGray, DefaultRGB, and DefaultCMYK color space re-
sources. Otherwise, the results will be implementation-dependent and unpredict-
able.

9.9 CIE-Based Color Spaces (Rendering intents)—4.5.4 [8.5.1.5]

[Append the following:]

For an introduction to the problem of determining rendering parameters in the
face of transparency, see Section 7.4, “Rendering Parameters.” The rendering in-
tent parameter is needed whenever a CIE-based color must be converted to a de-
vice color space. This can occur:

• when painting an elementary object with a CIE-based color directly into a
transparency group having a device color space. In this case, the rendering in-
tent used is the current rendering intent in the graphics state at the time of the
painting operation.

• when painting a group whose color space is CIE-based into a parent group
having a device color space. In this case, the rendering intent used at any given
point is determined by the rendering intent for the topmost enclosing object
within the group (including nested subgroups), but only if that object is fully
opaque. If there is no such object, the rendering intent used is the current ren-
dering intent in effect at the time of the Do operator for the group.

What it means for an object to be fully opaque is explained in Section 9.18.

9.10 Special Color Spaces (Separation Color Spaces)—4.5.5 [7.12.8]

[Append the following:]

PDF Specification9
53

P
R

E
L

IM
IN

A
R

Y

A Separation color space is ordinarily used to produce a spot color—an addi-
tional color component, independent of the ones that are used to produce process
colors. When an object is painted transparently with a spot color, that color is
composited with the corresponding spot color component of the backdrop, inde-
pendent of the compositing that is performed for process colors. A spot color re-
tains its own identity; it is not subject to conversion to or from the color space of
the enclosing transparency group or page.

Any object, including a transparency group, is considered to have been painted
with all color components that exist, both process and spot. Components that ha-
ven’t been explicitly painted have an additive color value of 1 (that is, a subtrac-
tive tint value of 0). This has consequences that are discussed in Section 7.3,
“Overprinting and Erasing.”

Instead of producing a spot color, a Separation color space can be used to paint
a single process colorant, such as the Cyan component in a device whose native
color space is DeviceCMYK. However, this is permitted only in a group that in-
herits the native color space of the output device. If such a Separation color
space is used in a transparency group that specifies its own color space, the alter-
nate color space will be substituted.

Spot colors are never available in a transparency-group XObject that is used to
define a soft mask. The alternate color space will always be substituted in that
situation.

(DeviceN Color Spaces)

[Append the following:]

The transparency considerations described above for Separation color spaces
also apply to DeviceN color spaces.

9.11 Overprint Control—4.5.6 [8.4.9]

[Append the following:]

The overprint control parameters (set by the op, OP, and OPM entries in a graph-
ics state parameter dictionary) are respecified in terms of transparency blend

Transparency in PDF9
54

P
R

E
L

IM
IN

A
R

Y

modes; see Section 7.3, “Overprinting and Erasing” and “Blend Modes” on page
47. These parameters have no effect if the blend mode is not Compatible.

9.12 Tiling Patterns (PatternType 1)—4.6.2 [7.17.2]

[Include the following subsection somewhere:]

Tiling Patterns and Transparency

A tiling pattern is defined by an arbitrary sequence of graphics objects that are
used to paint the pattern cell, which is then replicated to tile the region being
painted. Those objects can include transparent objects and transparency groups.
Transparent compositing can occur both within the pattern cell and between it
and the backdrop wherever the pattern is painted.

In the general case, the effect of tiling with a pattern must be as if the definition
of the pattern were re-executed for each tile. This is unlike painting with a com-
pletely opaque pattern, where the pattern cell can be evaluated once and then rep-
licated.

Note: This can be significantly optimized in the common case in which the pat-
tern consists entirely of objects painted with Normal blend mode. In that case,
the same effect can be produced by treating the pattern cell as if it were an isolat-
ed group. The pattern cell can have color, shape, and opacity at each point, but
those results do not depend on the backdrop or on the graphics state parameters
at the time of use. This means that the pattern cell can be evaluated once and
then replicated, just as it can for a pattern defined with opaque painting.

The above discussion applies to both colored (PaintType 1) and uncolored
(PaintType 2) tiling patterns. These two types of patterns differ in how colors
are specified. A colored tiling pattern specifies colors as part of the definition of
the pattern cell; an uncolored tiling pattern uses a single color that is specified
separately when the pattern is used. An uncolored pattern’s definition may not
specify colors; this restriction extends to any transparency group that the defini-
tion includes. However, there are no corresponding restrictions on specifying
transparency parameters in the graphics state.

PDF Specification9
55

P
R

E
L

IM
IN

A
R

Y

9.13 Image Dictionaries—4.8.4 [7.13.1]

[Add the following entry to Table 4.35:]

Table 4.35 [7.33] Entries in an image dictionary

KEY TYPE VALUE

SMask stream (Optional) A subsidiary image XObject defining a soft-mask image to be
used as a source of shape or opacity values for transparency purposes. Unlike
a general soft mask that can be derived from arbitrary objects (see Section 6,
“Soft Masks”), this mask is defined solely by an image, whose samples are
interpreted as mask values directly. The contents of the soft-mask image are
described in Table 10. If this entry is absent, no soft mask is associated with
the image (though the soft mask in the graphics state may still apply).

If SMask is present, the Mask entry, if present, is disregarded. Furthermore,
if either SMask or Mask is present, it overrides the soft mask parameter in
the graphics state. (However, the other transparency-related graphics state
parameters—constant alpha and blend mode—remain in effect.) The alpha is
shape (AIS) parameter in the graphics state determines whether this soft-
mask image is to be treated as shape or opacity.

Soft-Mask Images

Table 10 documents the entries in a soft-mask image dictionary. Except as noted,
the syntax and semantics of the entries are the same as in a regular image XOb-
ject, documented in Table 4.35. The image XObject entries that are not men-
tioned here are not relevant to this type of image and are ignored.

TABLE 10 Entries in a soft-mask image dictionary

KEY TYPE VALUE

Type name (Optional) If present, must be XObject.

Subtype name (Required) Must be Image.

Width integer (Required) If a Matte entry is specified, the value of Width must be the same
as the Width of the parent image. Otherwise, the Width of the mask image is
independent of the Width of the parent image. Both images are mapped to
the unit square in user space (as all images are), whether or not the samples
coincide individually.

Transparency in PDF9
56

P
R

E
L

IM
IN

A
R

Y

Height integer (Required) Same considerations as for Width.

BitsPerComponent integer (Required)

ColorSpace name (Required) Must be DeviceGray.

Decode array (Optional) Default value: [0 1].

Interpolate boolean (Optional)

ImageMask boolean (Optional) Must be false or absent.

Mask stream (Optional) Must be absent.

SMask stream (Optional) Must be absent.

Matte array (Optional) Specifies a color, the matte color, with which the image data in
the parent image has been pre-blended (see below). The array must contain n
numbers, where n is the number of components in the ColorSpace entry for
the parent image; the numbers must be valid color components in that color
space. If the Matte entry is absent, the image data is not pre-blended.

Pre-Blended Image Data

When an image is accompanied by a soft-mask image, it is sometimes advanta-
geous for the image data to be pre-blended with some background color, called
the matte color. Each image sample represents a weighted average of the original
source color and the matte color, using the corresponding mask sample as the
weighting factor. (This is a generalization of a technique that is commonly called
“pre-multiplied alpha.”)

If the image data is pre-blended, the matte color must be specified by a Matte en-
try in the soft-mask image XObject. The pre-blending computation, performed
componentwise, is as follows:

where c is the original image component value, m is the matte color component
value, and α is the corresponding mask sample. The result, c′, is the value that
should be provided in the image source data.

Note: This computation uses actual color component values, with the effects of
the Filter and Decode transformations already performed. The computation is
the same whether the color space is additive or subtractive.

c ′ m α c m–()⋅+=

PDF Specification9
57

P
R

E
L

IM
IN

A
R

Y

When pre-blended image data is used in transparency blending and compositing
computations, the results are the same as if the original, unblended image data
was used and no matte color was specified. In particular, the inputs to the blend
mode function are the original color values. This may sometimes require the im-
plementation to invert the above formula to derive c from c′. If this produces a c
value that lies outside the bounds of color component values for the image color
space, the results are unpredictable.

The pre-blending computation is done in the color space specified by the parent
image’s ColorSpace entry. This is independent of the group color space into
which the image may be painted; if a color conversion is required, inversion of
the pre-blending must precede the color conversion. If the image color space is
an Indexed color space, the color values in the color table (not the index values
themselves) must be pre-blended.

9.14 Form XObjects—4.9 [7.13.7]

[Add the following entry to Table 4.41:]

Table 4.41 [7.37] Entries in a type 1 form dictionary

KEY TYPE VALUE

Group dictionary (Optional) A group attributes dictionary, which indicates that the entire con-
tents of the form XObject are to be treated as a group and specifies the at-
tributes of that group. See Table 11 for the contents of this dictionary.

Note: The following paragraph refers to a PDF 1.4 feature, referenced PDF,
whose specification has not yet been published.

If the form XObject contains a Ref entry specifying a referenced PDF file,
these group attributes also apply to the referenced PDF page when it replaces
the proxy. This allows an arbitrary external PDF page to be treated as a trans-
parency group, without requiring that the referenced PDF file be modified.

Transparency-Group XObjects

A form XObject containing a Group entry is to be treated as a group. The value
of this entry is a group attributes dictionary containing the entries described in
Table 11. A transparency-group XObject is a form XObject whose group at-

Transparency in PDF9
58

P
R

E
L

IM
IN

A
R

Y

tributes dictionary has subtype Transparency, which is the only group subtype
defined at present.

A page object may also have a Group entry, which specifies the group attributes
dictionary for the page as a whole. Some entries in the dictionary are interpreted
slightly differently for a page group than for a transparency-group XObject, as
indicated in the descriptions of those entries below. See also Section 5.7, “Page
Group.”

TABLE 11 Entries in a group attributes dictionary

KEY TYPE VALUE

Type name (Optional) If present, must be Group.

S name (Required) Group subtype. At present, the only defined value is Transparen-
cy; the remaining entries described below apply to this subtype. Future ex-
tensions may introduce other group subtypes, which will most likely have a
different set of additional entries.

CS name or array (Sometimes required, as discussed below) Group color space. This specifies
the color space into which colors are converted when painted into this group,
and it defines the blending color space; see Section 3.1, “Blending Color
Space.” It also defines the color space of the group as a whole when it in turn
is painted as an object onto the group’s backdrop.

CS may be any device or CIE-based color space that treats its components as
independent additive or subtractive values in the range 0 to 1. This excludes
Lab and lightness-chromaticity ICCBased color spaces (see Section 3.1,
“Blending Color Space”), as well as the special color spaces Indexed, Sepa-
ration, DeviceN, and Pattern. Device color spaces are subject to remapping
according to the DefaultGray, DefaultRGB, and DefaultCMYK entries in
the ColorSpace dictionary in the current Resources dictionary; see PDF
Reference, Section 4.5.4 [7.12.12].

Ordinarily, the CS entry is allowed only if I (Isolated) is true, and even then
it is optional. However, CS is required in the group attributes dictionary for a
transparency-group XObject that has no parent group or page from which to
inherit. This situation arises for a transparency-group XObject that is the val-
ue of the G entry in a soft-mask dictionary of subtype Luminosity; see
“Soft-Mask Dictionaries” on page 61.

Additionally, it is always permissible to specify CS in the group attributes
dictionary associated with a page object, even if I is false or absent. In the
normal case in which the page is imposed directly on the output media, the

PDF Specification9
59

P
R

E
L

IM
IN

A
R

Y

page group is effectively isolated, regardless of the I value; thus, the CS val-
ue can take effect. But if the page is in turn used as an element of some other
page and if the group is non-isolated, CS is ignored; the color space is inher-
ited from the actual backdrop with which the page is composited. See Sec-
tion 5.7, “Page Group.”

Default value: color space of the parent group or page into which this trans-
parency-group XObject is painted by Do. (The parent’s color space in turn
can be either explicitly specified or inherited.) If a transparency-group XOb-
ject is used as an annotation appearance, its default CS value inherits from
the page.

I boolean (Optional) Specifies the isolated attribute of the group. This determines
whether the initial backdrop for compositing the objects within the group is
the group’s backdrop (false) or a transparent backdrop (true). See Section
5.4, “Isolated Groups.” Default value: false.

In the group attributes dictionary for a page, the interpretation of the I value
is slightly altered. In the normal case in which the page is imposed directly
on the output media, the page group is effectively isolated, regardless of the I
value. But if the page is in turn used as an element of some other page, the
page is treated as if it were a transparency-group XObject; the I value is in-
terpreted in the normal way to determine that group’s isolated attribute.

K boolean (Optional) Specifies the knockout attribute of the group. This determines
whether each object is composited with earlier objects in the group (false) or
with the group’s initial backdrop (true). See Section 5.5, “Knockout
Groups.” Default value: false.

When a transparency-group XObject is invoked by Do, the following actions oc-
cur in addition to the normal actions for invoking a form XObject:

1. If the value of I (Isolated) is false, the initial backdrop (within the bounding
box specified by the XObject’s BBox entry) is defined to be the accumulated
color and alpha of the parent group or page—that is, the result of everything
that has been painted in the parent up to that point. (However, if the parent is a
knockout group, the initial backdrop is the same as the parent’s initial back-
drop.) If the value of I is true, the initial backdrop is defined to be transparent.

2. In the graphics state, the current nonstroking and stroking alpha are initialized
to 1, the current soft mask is initialized to None, and the blend mode is initial-
ized to Compatible.

Transparency in PDF9
60

P
R

E
L

IM
IN

A
R

Y

Note: The purpose of initializing the soft mask, alpha, and blend mode param-
eters in the graphics state at the beginning of execution is to ensure that these
parameters aren’t applied twice: once when objects are painted into the group
and again when the group is painted into the parent group or page.

3. Objects painted by operators in the transparency-group XObject’s content
stream are composited into the group according to the rules described in Sec-
tion 3, “Color Compositing Computations,” and Section 4, “Shape and Opaci-
ty Computations.” The K (Knockout) entry in the group attributes dictionary
and the transparency parameters of the graphics state contribute to this com-
putation.

4. If CS (Color Space) is specified in the group attributes dictionary, all painting
operators convert source colors to the specified color space prior to composit-
ing objects into the group. The resulting color at each point in the group is in-
terpreted in that color space. If CS is not specified, the prevailing color space
is dynamically inherited from the parent group or page. (If not otherwise spec-
ified, the page group’s color space is the device color space of the output de-
vice.)

5. After execution of the transparency-group XObject’s content stream, the
graphics state reverts to its former state prior to the execution of Do (as occurs
for any form XObject, not just a transparency-group XObject). The group’s
shape—the union of all objects painted into the group, clipped by the XOb-
ject’s bounding box—is then painted into the parent group or page, using the
group’s accumulated color and opacity at each point within the shape.

Note: If a given transparency-group XObject is invoked by Do more than once,
each invocation is treated as a separate transparency group. That is, the result
must be as if the group were independently composited with the backdrop on
each invocation. If the implementation performs any caching of rendered form
XObjects, it must take this requirement into account.

The above actions occur only for a transparency-group XObject—one having a
group attributes subdictionary whose S (Subtype) is Transparency. A regular
form XObject—one having no Group entry—is not subject to any grouping be-
havior for transparency purposes. That is, the graphics objects that it contains are
composited individually, just as if they were painted directly into the parent
group or page.

If the group’s color space (either specified by CS or inherited) is a CIE-based
color space (CalGray, CalRGB, or ICCBased), any use of device color spaces

PDF Specification9
61

P
R

E
L

IM
IN

A
R

Y

for painting objects is subject to special treatment. Device colors cannot be paint-
ed directly into such a group, since there is no generally-defined method for con-
verting them to the CIE-based color space. This problem arises in the following
cases:

• DeviceGray, DeviceRGB, and DeviceCMYK color spaces, unless remapped
to CIE-based color spaces by means of the corresponding DefaultGray,
DefaultRGB, or DefaultCMYK color space resources.

• Operators that specify a device color space implicitly, such as rg, unless that
space is remapped.

• Special color spaces whose underlying space is a device color space, unless
that space is remapped.

We recommend that the color space remapping mechanism always be employed
when defining a transparency group whose color space is CIE-based. However, if
a device color is specified and is not remapped, it will be converted to the CIE-
based color space in an implementation-defined fashion, producing unpredict-
able results.

Soft-Mask Dictionaries

Instead of being painted on the current page, a transparency-group XObject can
be used as a soft mask—a source of position-dependent shape or opacity values
to apply as a mask when painting other objects; see Section 6, “Soft Masks.” The
soft mask is a parameter of the graphics state; see Section 9.5. Its value is a soft-
mask dictionary, one of whose entries is the transparency-group XObject that is
to be treated as the source of the mask values. The soft-mask dictionary describes
how the mask is to be derived from the results of compositing the transparency
group; see Table 12.

TABLE 12 Entries in a soft-mask dictionary

KEY TYPE VALUE

Type name (Optional) If present, must be Mask.

S name (Required) Subtype that specifies how the mask is to be computed. Alpha
means to just use the group’s computed alpha (product of shape and opacity),
disregarding its color. Luminosity means to convert the group’s computed
color to a single-component luminosity value. See Section 6, “Soft Masks.”

Transparency in PDF9
62

P
R

E
L

IM
IN

A
R

Y

G stream (Required) Transparency-group XObject that is to be used as the source of
alpha or color values for generating the mask. If the value of S (Subtype) is
Luminosity, the group attributes dictionary (value of Group in the transpar-
ency-group XObject) must contain a CS entry that defines the color space in
which the compositing computation is to be done.

BC array (Optional; consulted only if S (Subtype) is Luminosity) The color that is to
be used as the backdrop with which the transparency-group XObject G is to
be composited. The value of BC is an array of n numbers, where n is the
number of components in the color space specified by the CS entry in the
group attributes dictionary. Default value: the color space’s initial value,
which represents black.

TR function or name (Optional) Transfer function, used during the conversion to mask values.
This is either a function object (dictionary or stream) or the name Identity.
The input to this function is the computed alpha or luminosity (depending on
the value of the S (Subtype) entry), in the range 0 to 1. The output is the
mask value in the range 0 to 1; it is clipped to that range if necessary. Default
value: Identity.

If S (Subtype) is Alpha, the transparency-group XObject G is evaluated to com-
pute a group alpha only; the colors of the constituent objects are ignored and the
color compositing computations are not performed. The computed group alpha is
then passed through the TR function to produce the mask. Outside the bounding
box of the transparency-group XObject, the mask value is the result of presenting
0 as input to the TR function.

If S is Luminosity, the transparency-group XObject G is composited with a ful-
ly-opaque backdrop whose color is BC everywhere. The computed result color is
then converted to a single-component luminosity value, which is passed through
the TR function to produce the mask. Outside the bounding box of the transpar-
ency-group XObject, the mask value is the BC color transformed to luminosity
and passed through the TR function.

The coordinate system of the soft mask is defined as the Matrix of the transpar-
ency-group XObject concatenated with user space at the moment the soft-mask
dictionary is established in the graphics state by the gs operator.

In a transparency-group XObject that defines a soft mask, spot color components
are never available, regardless of whether they are available in the group or page
on which the soft mask is used. If the content stream specifies a Separation or

PDF Specification9
63

P
R

E
L

IM
IN

A
R

Y

DeviceN color space that uses spot color components, the alternate color space
will be substituted.

9.15 Text State Parameters and Operators—5.2 [8.7]

[Add the following somewhere:]

Text Knockout

The text knockout parameter determines what are considered to be the elementa-
ry objects for transparency compositing purposes. If text knockout is false, each
glyph in a text object is treated as a separate elementary object; when glyphs
overlap, they will composite with one another. If text knockout is true, all the
glyphs in a text object are treated together as a single elementary object; when
glyphs overlap, later glyphs will knock out earlier ones in the area of overlap.
(The latter behavior is equivalent to treating the entire text object as if it were a
knockout group.)

The text knockout parameter is specified as the value of the TK entry in a graph-
ics state parameter dictionary. (Unlike other text state parameters, there is no spe-
cial operator for specifying this parameter.) The text knockout parameter applies
to entire text objects; it may not be set between the BT and ET operators that de-
limit a text object.

9.16 Text Rendering Mode—5.2.5 [8.7.1.7]

[Add the following somewhere:]

Rendering modes 2 and 6 specify both fill and stroke. If glyphs in the text object
overlap, the result must be as if the fill and stroke are done on a glyph-by-glyph
basis. That is, perform the fill and stroke for the first glyph, then the fill and
stroke for the second glyph, and so on; not all of the fills followed by all of the
strokes for multiple glyphs together. This produces the correct visual appearance
of stacking of opaque glyphs.

For transparency compositing purposes, text rendering modes 2 and 6 have the
same effect as applying the B operator to the glyph outline path. That is, the
stroke replaces the fill in the area of overlap; it does not composite with the result

Transparency in PDF9
64

P
R

E
L

IM
IN

A
R

Y

of the fill. Note that this behavior is independent of the value of the text knockout
(TK) graphics state parameter.

9.17 Text-Showing Operators—5.3.2 [8.7.5]

[Add the following somewhere:]

Note: Within a text object, there is no significance in the grouping of glyphs into
strings presented to text-showing operators such as Tj. Showing multiple glyphs
with one invocation of Tj produces the same results as showing them with a sep-
arate invocation for each glyph.

9.18 Conversion from DeviceRGB to DeviceCMYK—6.2.3 [8.4.10]

[Append the following:]

For an introduction to the problem of determining rendering parameters in the
face of transparency, see Section 7.4, “Rendering Parameters.” The undercolor
removal and black generation functions are needed whenever a DeviceRGB col-
or must be converted to a DeviceCMYK color. This can occur:

• when painting an elementary object with a DeviceRGB color directly into a
transparency group whose color space is DeviceCMYK. In this case, the func-
tions used are the current undercolor removal and black generation parameters
in the graphics state at the time of the painting operation.

• when painting a group whose color space is DeviceRGB into a parent group
whose color space is DeviceCMYK. In this case, the functions used at any giv-
en point are determined by the parameters in effect when painting the topmost
enclosing object within the group (including nested subgroups), but only if that
object is fully opaque. If there is no such object, the functions used are the ones
in effect at the time of the Do operator for the group.

PDF Specification9
65

P
R

E
L

IM
IN

A
R

Y

An object is considered to be fully opaque if all of the following conditions are
true at the time the object is painted:

• The constant alpha parameter (ca or CA, whichever applies to the painting op-
eration) is 1.

• The soft mask parameter (SMask) in the graphics state is None. If the object is
an image, there is no SMask entry in the image dictionary.

• The blend mode parameter (BM) is either Compatible or Normal.

• The foregoing three conditions were also true at the time the group containing
the object (or any direct ancestor group) was invoked by Do.

• If the current color is a tiling pattern, all of the objects comprising its definition
also satisfy the above conditions.

9.19 Transfer Functions—6.3 [8.4.12]

[Append the following:]

For an introduction to the problem of determining rendering parameters in the
face of transparency, see Section 7.4, “Rendering Parameters.” The transfer func-
tion to be used at any given point on the page is the transfer function parameter
that is in effect at the time of painting the last (topmost) graphics object enclos-
ing that point, but only if that object is fully opaque. What it means for an object
to be fully opaque is explained in Section 9.18 above and further qualified below.

The transfer function to use at a given point must be determined on a per-compo-
nent basis if any graphics object is painted using the Compatible blend mode.
An object is considered opaque for a given component only if the Compatible
blend mode returns the source color (not the backdrop color) for that component.
See “Blend Modes” on page 47.

For portions of the page whose topmost object is not fully opaque or that are nev-
er painted at all, the default transfer function for the page is used.

9.20 Halftones—6.4 [8.4.13]

[Append the following:]

Transparency in PDF10
66

P
R

E
L

IM
IN

A
R

Y

For an introduction to the problem of determining rendering parameters in the
face of transparency, see Section 7.4, “Rendering Parameters.” The halftone to be
used at any given point on the page is the halftone parameter that is in effect at
the time of painting the last (topmost) graphics object enclosing that point, but
only if that object is fully opaque. The conditions for applying it are the same as
for the transfer function parameter, described in Section 9.19 above.

9.21 Annotation Appearances—7.4.4 [6.6.3]

[Add the following somewhere:]

An annotation appearance can include transparency if the form XObject that de-
fines the appearance has a Group entry whose value is a group attributes dictio-
nary of subtype Transparency, indicating that the XObject is a transparency-
group XObject. This group is composited with a backdrop consisting of the page
content and any other annotation appearances that are below this one. The final
compositing operation is performed using a constant alpha of 1, None soft mask,
and Normal blend mode.

If a transparent annotation appearance is placed on top of an annotation that is
visible but is drawn without using an annotation appearance dictionary, the effect
is implementation-dependent. This is because such annotations are sometimes
drawn by means that do not conform to the Adobe imaging model. Also, the ef-
fect of highlighting a transparent annotation appearance is implementation-de-
pendent.

10 Terminology Summary

Table 13 lists terms used in Section 2 through Section 7 to explain the transpar-
ency model. Where a term refers to some variable, the table gives the variable
name that is conventionally used. This table does not include specific terms for
PDF objects used to represent the transparency model.

TABLE 13 Terminology summary

TERM VARIABLE(S) MEANING

Alpha α The product of shape and opacity.

Backdrop The stack of preceding objects onto which a new object is being painted.

Terminology Summary10
67

P
R

E
L

IM
IN

A
R

Y

Backdrop alpha αb, αi – 1 The computed alpha of the backdrop at a given point.

Backdrop color Cb, Ci – 1 The computed color of the backdrop at a given point.

Backdrop fraction bf The fraction of the group’s accumulated color that is attributable to the initial
backdrop color.

Backdrop opacity qb, qi – 1 The computed opacity of the backdrop at a given point.

Backdrop shape fb, fi – 1 The computed shape of the backdrop at a given point.

Blend mode B(Cb, Cs) A function in the color compositing computation that customizes how source
and backdrop colors combine.

Blending color space The color space in which all colors in the compositing function are repre-
sented. Input colors are converted to this color space when necessary. Same
as group color space.

Color compositing function The function that computes the color result of painting an object over a back-
drop.

Constant opacity qk, qki A simple scalar contribution to the source opacity.

Constant shape fk, fki A simple scalar contribution to the source shape.

Current page The result produced by compositing the entire stack of objects onto a back-
drop that is initially white and fully opaque.

Element Ei A compound variable representing all the parameters of an object being
treated as an element of a group. The parameters include color, shape, and
opacity (either intrinsic or computed), as well as the separately-specified
shape, opacity, and blend mode parameters that are to be used when compos-
iting the object. The element can correspond to either an elementary object
or a group.

Elementary object A unitary object in the imaging model, such as a fill, stroke, glyph, or sam-
pled image. (Contrast with group.)

Group A sequence of consecutive objects in a stack that are composited together
and then treated as a single object to be composited with the group’s back-
drop.

Group alpha αgi Accumulated alpha of objects within a group, excluding the group’s back-
drop.

Group backdrop Ordinarily, the result of compositing all elements up to but not including the
first element of the current group. However, if the parent of the current group
is a knockout group, then the group backdrop is the same as the parent’s
group backdrop.

Transparency in PDF10
68

P
R

E
L

IM
IN

A
R

Y

Group color space A color space associated with the group as a whole. Source colors are con-
verted into this color space if necessary. All blending and compositing com-
putations among objects in the group occur using colors in this color space.
The group’s result color is interpreted as being in this color space.

Group opacity qgi Accumulated opacity of objects within a group, excluding the group’s back-
drop. (This is rarely represented alone; it is usually combined with shape in
the corresponding alpha value.)

Group shape fgi Accumulated shape of objects within a group, excluding the group’s back-
drop.

Immediate backdrop The result of compositing all elements of a group up to but not including the
current element of interest.

Initial backdrop A backdrop that is selected for compositing the current group’s first element.
This is either the same as the group backdrop (non-isolated group) or a fully
transparent backdrop (isolated group).

Isolated group A group whose elements are composited with a transparent initial backdrop,
rather than with the group’s backdrop.

Knockout group A group whose elements are composited with the group’s initial backdrop,
rather than with the results of compositing elements lower on the group’s
stack.

Mask A source of position-dependent shape or opacity values that is independent
of the objects being composited.

Mask opacity qm, qmi The value of an opacity mask at a given point.

Mask shape fm, fmi The value of a shape mask at a given point.

Non-separable blend mode A blend mode in which a component of the result color is a function of com-
ponents other than the corresponding component of the backdrop and source
colors.

Object Either an elementary object or a group.

Object color The intrinsic color of the source object at a given point, in its original color
space.

Object opacity qj, qji The intrinsic opacity of the source object at a given point.

Object shape qj, qji The intrinsic shape of the source object at a given point.

Opacity q A weighting factor that determines the relative contribution of the associated
color to the overall result of a color compositing computation. Its value is in
the range 0 (fully transparent) to 1 (fully opaque).

Terminology Summary10
69

P
R

E
L

IM
IN

A
R

Y

Opacity compositing function The function that computes the opacity result of painting an object over a
backdrop.

Opacity mask See mask.

Page group A group consisting of all the objects (both elementary objects and groups)
that are painted directly onto the current page.

Process color Any color that is produced by combinations of the device’s process colo-
rants. (Contrast with spot color.)

Result alpha αr, αi The result of the alpha compositing function at a given point, which becomes
the backdrop alpha for the next object painted.

Result color Cr, Ci The result of the color compositing function at a given point, which becomes
the backdrop color for the next object painted.

Result opacity qr, qi The result of the opacity compositing function at a given point, which be-
comes the backdrop opacity for the next object painted. (This is rarely repre-
sented alone; it is usually combined with shape in the corresponding alpha
value.)

Result shape fr, fi The result of the shape compositing function at a given point, which be-
comes the backdrop shape for the next object painted.

Separable blend mode A blend mode in which each component of the result color is a function of
the corresponding component of the backdrop and source colors.

Shape f A weighting factor that determines the degree to which the results of a com-
positing operation (color and opacity) replace the backdrop. The extreme
values 0 and 1 represent the familiar notions of “outside” and “inside” a
hard-edge shape.

Shape compositing function The function that computes the shape result of painting an object over a
backdrop.

Shape mask See mask.

Soft clip See shape mask.

Soft mask Same as mask; the “soft” adjective emphasizes that this is a continuous-tone
value, not just 0 or 1.

Source alpha αs, αsi The product of source shape and source opacity.

Source color Cs, Csi The intrinsic color of the source object at a given point, converted to the
blending color space if necessary.

Source opacity qs, qsi The product of all input opacity values: object opacity, constant opacity, and
mask opacity.

Transparency in PDF11
70

P
R

E
L

IM
IN

A
R

Y

Source shape fs, fsi The product of all input shape values: object opacity, constant opacity, and
mask opacity.

Spot color A color that is produced by application of a separate colorant, such as special
ink, that is independent of the normal process colorants.

Stack An ordered sequence of objects painted onto the page or collected into a
group.

Transparency group See group.

Union Union(b, s) The function used to composite shape and opacity values. It is a generaliza-
tion of the conventional concept of “union” for solid shapes.

White-preserving blend mode A separable function B(cb, cs) having the property that B(1, 1) = 1 for all
color components (expressed in additive form).

11 Compatibility

11.1 Backward Compatibility

A PDF 1.3 or earlier viewer will ignore all transparency-related parameters, such
as alpha, soft mask, and blend mode. All graphics objects, including ones defined
in transparency-group XObjects, will be painted opaquely.

11.2 Forward Compatibility

The PDF 1.3 overprint control parameters (set by the op, OP, and OPM entries in
a graphics state parameter dictionary) are respecified to work as special transpar-
ency blend modes. Their behavior should be compatible when only opaque
painting operations are performed. When they are combined with other transpar-
ency operations, their behavior, though well-defined, is not a logical extension of
the selective colorant marking semantics of PDF 1.3.

A process colorant (e.g., Cyan in a DeviceCMYK device) may not be treated as a
spot color (via a Separation or DeviceN color space) within a transparency
group whose color space is not inherited from the device. The alternate color
space will be used instead. This isn’t really a compatibility issue, since PDF 1.3
doesn’t have transparency groups to begin with. The concern is about legacy art-
work that might be imported and then have transparency applied to it globally.

Compatibility11
71

P
R

E
L

IM
IN

A
R

Y

If a transparency group’s color space is CIE-based, any objects that are painted
using device color spaces will be converted into the group’s color space by im-
plementation-defined means, possibly producing unexpected results. This prob-
lem can be circumvented by properly defining the DefaultGray, DefaultRGB,
and DefaultCMYK color space resources. Once again, this is not really a compat-
ibility issue, but it may arise when attempting to apply transparency to legacy art-
work.

11.3 PostScript Printing

The PostScript language does not support the transparency model. Therefore, a
PDF 1.4 viewer must have means to produce a completely opaque description of
the appearance of a document that uses transparency. A similar operation can
produce a PDF file that can be correctly viewed by a PDF 1.3 viewer.

This involves some combination of shape decomposition and pre-rendering to
“flatten” the stack of transparent objects on a page, perform all the transparency
computations, and describe the final appearance using opaque objects only. This
is an irreversible operation, since all of the information about how the transpar-
ency effects were produced has been lost.

Note: Determining if a page contains transparency needing to be “flattened”
can be accomplished by straightforward analysis of the page’s resources; it isn’t
necessary to analyze the content stream.

In order to perform the transparency computations properly, the PDF viewer
needs to know the native color space of the output device. When the viewer con-
trols the output device directly, this is no problem. However, when the viewer is
generating PostScript output, it has no way to know the native color space of the
PostScript output device. Making an incorrect assumption will ruin the calibra-
tion of any CIE-based colors appearing on the page. This problem can be ad-
dressed in a couple of ways:

• If the entire page consists of CIE-based colors, then flatten the colors to a sin-
gle CIE-based color space, rather than to a device color space. The preferred

Transparency in PDF12
72

P
R

E
L

IM
IN

A
R

Y

color space for this purpose can easily be determined in the case that the page
has a Group dictionary that specifies a CIE-based color space.

• Otherwise, flatten the colors to some assumed device color space with prede-
termined calibration. In the generated PostScript output, paint the flattened col-
ors in a CIE-based color space having that calibration.

During conversion to PostScript, a decision must also be made about the set of
available spot colors to assume. This is because the choice of spot colorant ver-
sus alternate color space affects the flattened results of the process colors. (This
is unlike the situation with strictly opaque painting, where the decision can be
deferred until the generated PostScript is executed.)

12 Overprinting, Erasing, and Transparency

This section provides details of the overprinting and erasing rules in PDF. The in-
formation here duplicates material that can be found elsewhere. However, the
rules are complex and interact with transparency in non-obvious ways, so it is
useful to have the information collected in one place and the results spelled out
for every case. This material should be read in conjunction with Section 7.2,
“Spot Colors,” and Section 7.3, “Overprinting and Erasing.”

Table 14 shows the existing rules as defined in the opaque imaging model of
PDF 1.3 (which is an extension of the PostScript imaging model). Table 15
shows the equivalent rules, respecified as a special Compatible blend mode in
the transparency imaging model of PDF 1.4.

OP and OPM refer to the overprint flag and nonzero overprint mode control pa-
rameters in PDF. OP is equivalent to the setoverprint value in PostScript. There
is no PostScript equivalent to OPM; it enables or disables the interpretation of

Overprinting, Erasing, and Transparency12
73

P
R

E
L

IM
IN

A
R

Y

DeviceCMYK color values to specify componentwise overprinting, as described
in Section 7.3, “Overprinting and Erasing.”

TABLE 14 Overprinting and erasing rules in PDF 1.3

Source color space Affected color
component

Effect on that color component

OP false OP true, OPM 0 OP true, OPM 1

DeviceCMYK &
specified directly &
not image

C, M, Y, or K Paint source Paint source Paint source if
source ≠ 0
Don’t paint if
source = 0

Process colorant ≠
CMYK

Paint source Paint source Paint source

Spot colorant Paint 0 Don’t paint Don’t paint

Any process color
space (including
other cases of
DeviceCMYK)

Process colorant Paint source Paint source Paint source

Spot colorant Paint 0 Don’t paint Don’t paint

Separation or
DeviceN

Process colorant Paint 0 Don’t paint Don’t paint

Spot colorant
named in source
space

Paint source Paint source Paint source

Spot colorant not
named in source
space

Paint 0 Don’t paint Don’t paint

Transparency in PDF12
74

P
R

E
L

IM
IN

A
R

Y

In these tables, color component values are represented as subtractive tint values,
because one ordinarily thinks of overprinting inks, not additive light values. The
Compatible blend mode is described as if it took subtractive arguments and re-
turned subtractive results. However, in reality, the Compatible blend mode (like
all blend modes) treats color components as additive values; subtractive compo-
nents must be complemented before and after application of the blend mode.

TABLE 15 Overprinting and erasing recast as blend modes in PDF 1.4

Source color space Affected color
component of
group color space

Value of blend mode Compatible(Cb, Cs), expressed as
tint

OP false OP true, OPM 0 OP true, OPM 1

DeviceCMYK &
specified directly &
not image

C, M, Y, or K Cs Cs Cs if Cs ≠ 0
Cb if Cs = 0

Process color com-
ponent ≠ CMYK

Cs Cs Cs

Spot colorant Cs (= 0) Cb Cb

Any process color
space (including
other cases of
DeviceCMYK)

Process color com-
ponent

Cs Cs Cs

Spot colorant Cs (= 0) Cb Cb

Separation or
DeviceN

Process color com-
ponent

Cs (= 0) Cb Cb

Spot colorant
named in source
space

Cs Cs Cs

Spot colorant not
named in source
space

Cs (= 0) Cb Cb

Source is a group
(not an elementary
object)

All color compo-
nents

Cs Cs Cs

Revision History13
75

P
R

E
L

IM
IN

A
R

Y

Please note an important difference between the two tables. In Table 14, the pro-
cess color components being discussed are the actual device colorants—the color
components of the native color space of the output device (DeviceRGB,
DeviceCMYK, or DeviceGray). In Table 15, the process color components are
those of the group’s color space, which is not necessarily the same as that of the
output device (and can even be something like CalRGB or ICCBased). For this
reason, the process color components of the group color space cannot be treated
as if they were spot colors (in a Separation or DeviceN color space); see Sec-
tion 7.2, “Spot Colors.”

This difference between PDF 1.3 and PDF 1.4 overprinting and erasing rules
arises only within a transparency group, not when painting directly on the page.
Since PDF 1.3 doesn’t have transparency groups to begin with, this difference is
not considered to be an incompatibility. (There is no difference in the treatment
of spot color components.)

Table 15 has one additional row at the bottom. It applies when painting an object
that itself is a transparency group instead of an elementary object (fill, stroke,
text, image). As explained in Section 7.2, “Spot Colors,” a group is considered to
paint every color component, both process and spot. Color components that were
not explicitly painted by any object in the group have an additive color value of 1
(subtractive tint 0).

Since no information is retained about which components were actually painted
within the group, compatible overprinting is not possible in this case. The
Compatible blend mode reverts to Normal, with no consideration of the OP and
OPM parameters. (Note that a transparency-aware application can choose a more
suitable blend mode, such as Darken, if it desires to produce an effect similar to
overprinting.)

13 Revision History

November 30, 2000

Changed the semantics of the page group. The compositing formula for the page
group is now applied only if the page is imposed on output media, not if it is
placed on other content by an aggregating application. The formula itself is
changed to isolate the page group from the backdrop. If a page object has a
group-attributes dictionary, it specifies attributes of the page group, rather than

Transparency in PDF13
76

P
R

E
L

IM
IN

A
R

Y

being a shorthand for specifying a subsidiary transparency-group XObject. The
interpretation of the transparency group attributes for a page group is slightly
changed.

Clarified the kinds of ICCBased color spaces that are permitted as group color
spaces.

	1 Introduction
	1.1 About This Document
	1.2 Related Documents
	1.3 Intellectual Property

	2 Overview
	2.1 Basic Concepts
	2.2 Notation

	3 Color Compositing Computations
	3.1 Blending Color Space
	3.2 Blend Mode
	3.3 Interpretation of Alpha

	4 Shape and Opacity Computations
	4.1 Source Shape and Opacity
	4.2 Computing the Result Shape and Opacity
	4.3 Summary of Compositing Computations

	5 Groups
	5.1 Notation
	5.2 Group Structure and Nomenclature
	5.3 Group Compositing Computations
	5.4 Isolated Groups
	5.5 Knockout Groups
	5.6 Summary of Group Compositing Computations
	5.7 Page Group

	6 Soft Masks
	6.1 Mask from group alpha
	6.2 Mask from group luminosity

	7 Color Space and Color Rendering Issues
	7.1 Color Spaces
	7.2 Spot Colors
	7.3 Overprinting and Erasing
	7.4 Rendering Parameters

	8 Overview of PDF Extensions
	8.1 Color Compositing Computations
	8.2 Shape and Opacity Computations
	8.3 Groups
	8.4 Soft Masks
	8.5 Color Space and Color Rendering Issues
	8.6 Limitations in the PDF Transparency Model

	9 PDF Specification
	9.1 Adobe Imaging Model—2.1.2
	9.2 Page Tree (Page Objects)—3.6.2 [6.4]
	9.3 Graphics Objects—4.1 [8.1]
	9.4 Details of Graphics State Parameters—4.3.2 [8.4]
	9.5 Graphics State Parameter Dictionaries—4.3.4 [7.15]
	9.6 Path-Painting Operators—4.4.2 [8.6.2]
	9.7 Clipping Path Operators—4.4.3 [8.3.1.1]
	9.8 Device Color Spaces—4.5.3 [7.12]
	9.9 CIE-Based Color Spaces (Rendering intents)—4.5.4 [8.5.1.5]
	9.10 Special Color Spaces (Separation Color Spaces)—4.5.5 [7.12.8]
	9.11 Overprint Control—4.5.6 [8.4.9]
	9.12 Tiling Patterns (PatternType 1)—4.6.2 [7.17.2]
	9.13 Image Dictionaries—4.8.4 [7.13.1]
	9.14 Form XObjects—4.9 [7.13.7]
	9.15 Text State Parameters and Operators—5.2 [8.7]
	9.16 Text Rendering Mode—5.2.5 [8.7.1.7]
	9.17 Text-Showing Operators—5.3.2 [8.7.5]
	9.18 Conversion from DeviceRGB to DeviceCMYK—6.2.3 [8.4.10]
	9.19 Transfer Functions—6.3 [8.4.12]
	9.20 Halftones—6.4 [8.4.13]
	9.21 Annotation Appearances—7.4.4 [6.6.3]

	10 Terminology Summary
	11 Compatibility
	11.1 Backward Compatibility
	11.2 Forward Compatibility
	11.3 PostScript Printing

	12 Overprinting, Erasing, and Transparency
	13 Revision History

