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Abstract

Operating systems should support fine-grained ob-
jects in two important ways. One is the use of fairly
small pages (e.g.,  1KB))and fast, flexible virtual mem-
ory primitives. Another is the use of a binary code
format that supports precise identification of pointers
in registers and stacks.

These features can support many novel and effi-
cient uses of conventional hardware. Pointer swiz-
zling (address translation) at page fault time c a n
eficiently support huge address spaces with modest
word sizes. Compressed paging implements a new
level in the memory hierarchy (compressed in-memory
storage) to bridge the growing gap betwen RAM and
disk. Adaptive prefetching promises to reduce page
fault costs more effectively than increasing page sizes.
Many other applications would also benefit, includ-
ing garbage collection, checkpointing, distributed vir-
tual memories, lazy evaluation, and memory striping
to reduce cache conflicts.

1 Introduction

Several recent developments in OS and language
implementation depend heavily on virtual memory
system flexibility and performance [AL91],  and it’s
likely more will be invented soon. This means that old
benchmarks and measurements may have little bear-
ing on the future importance of virtual memory prim-
itives and their implementation [ALBL91]. This po-
sition paper will briefly describe our own uses for ad-
vanced virtual memory features, and outline their per-
formance characteristics. We conclude that OS kernel
designers (and hardware architects) should pay very
careful attention to virtual memory and trap-handling
mechanisms.

We also believe that the standard format of com-
piled code should support the identification of pointers

in registers and the stack, so that a true heap abstrac-
tion can be supported. This support could be specified
either at the OS level or through a common runtime
system layered on top of the OS.

Many of the costs of object oriented systems can be
minimized by software techniques on standard hard-
ware. To properly exploit the hardware, however, sys-
tem designers must take pointers very seriously. Given
a true pointer abstraction, software and hardware can
be coordinated for improved performance.

2 Pointer Swizzling at Page Fault
Time—A RISC address translation
scheme

We have designed and implemented an address
translation mechanism that uses virtual memory page
protections to allow pointer swizzling (address trans-
lation) at page fault time [Wil90a]. This scheme can
support essentially infinite address spaces on standard
(e.g., 32-bit) h ar d ware, without incurring either con-
tinual software overhead or frequent hardware traps.
The basic idea is similar to (and inspired by) the Ap-
pel, Ellis and Li incremental garbage collection scheme
[AEL88].  We h ave used it to implement a simple per-
sistent store that incurs almost no overhead for pro-
grams with good locality.

The basic technique is to translate pointers from
o n e  ( l o n g )  f o r m a t  t o  a n o t h e r  ( s h o r t , ,  hardware-
supported) format at page fault time. When a page is
brought into a processor’s memory, all of the pointers
in the page are immediately translated into the short.
format. This requires reserving a page of the proces-
sor’s address space for each referred-to page.

For example, if we touch a page A, and it. holds
pointers to pages B and C, space must be reserved
for B and C in the processor’s address space, so t h a t
the pointers in page A can be translated into nor-
mal addresses. That is, before allowing the program
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to see page A, we have to ensure that it contains
only hardware-supported addresses–i.e., pointers into
other pages of the processor’s address space. To allow
this, we must reserve a place for each pointed-into
page. Once we know where the page will be in the
address space, we can translate pointers into actual
addresses.

Reserved pages are access-protected, and their con-
tents are only brought into the local memory if the
page is actually referenced. Then the pointers in the
page are “swizzled” as described above–any pointed-
to pages must have corresponding pages in the local
memory, and those reserved pages are access-protected
until they’re actually touched.

The result is that address translation occurs in a
“wavefront” just ahead of the actual access patterns of
the program. Only touched pages have their pointers
swizzled, and pages immediately reachable from them
have pages reserved. By translating pointers eagerly
(one page’s pointers per fault), the fault overhead is
kept low.

This address translation is static, in a certain
sense-addresses are not translated at each use, but
only when pages are brought into a processor’s (vir-
tual) memory. While we currently use this scheme
to translate pointers from a persistent store’s format
into normal virtual memory addresses, it’s possible
to imagine an architecture in which this is the only
kind of address translation–the “translation looka-
side buffer” would be used only for caching protection
bits, not for address translation [Wil90a].

We view this as an extension of the RISC philos-
ophy to address translation, in that it only requires
minimal hardware, plus the ability to trap to software
as needed. In the usual case, we don’t need more than
32 address bits because address streams are highly re-
dundant (i.e., there’s locality of reference, hence little
real information). We just use a 32-bit shorthand to
represent much longer addresses, and trap to software
when we encounter an unusual case. We incremen-
tally build up a table of translations from long page
numbers to short ones.

(In effect, this is an adaptive compression of the dy-
namic stream of addresses; it is philosophically similar
to the hardware mechanism called dynamic base reg-
ister allocation, used to compress addresses commu-
nicated between a CPU and memory modules. Un-
like dynamic base register allocation,, it requires no
special hardware support, yet is more aggressive–it
compresses addresses in memory, within the pagewise
wavefront, as well as those dynamically used by the
running program.)

One potential problem with this scheme is the ex-
haustion of address space. If too many pages are re-
served, a processor’s address space may be exhausted
even if most of those pages go untouched. To avoid
this, we have designed an incremental scheme for con-
tinuously invalidating and rebuilding address map-
pings, so that address space is never exhausted. This
“reswizzling” is not free, however, and must be done
more often if many unused pages get reserved.

In the worst case, the cost of incremental reswiz-
zling is proportional to the number of pointers per
page. In this case, every word of each touched page
contains a pointer to a different page, which will not
be touched. If there are n pointers per page, then max-
imum memory utilization is l/(n+l), because each
touched page will require a page of address space for
itself, plus n more pages of reserved address space for
the pages it holds pointers into.

On 32-bit hardware using 1KB pages, the worst
case allows us to touch about sixteen thousand 1KB
pages before reswizzling. That’s probably bearable–
you can usually execute a lot of instructions with-
out touching sixteen thousand pages. On the other
hand, if pages are 8KB,  as in some current machines,
the worst case is very much worse: pages hold 2048
pointers, so only l/2049  of the address space can be
used, or roughly 2 megabytes–only 256 8KB pages.
Clearly, the worst-case performance of pointer swiz-
zling is much improved by using smaller pages. The
likely cases are significantly improved as well.

Even with 64-bit hardware architectures, pointer
swizzling is still valuable. In some systems, especially
Lisp- and Smalltalk-like systems, many things must
be the size of a pointer. It may be desirable to use
32-bit hardware addressing, and be able to load or
store two values–say, a whole Lisp cons cell–with
one 64-bit machine operation. The costs of pointer
swizzling may be more than repaid by the reduction
in instructions and memory bandwidth requirements.

For other systems, with very large amounts of mem-
ory and worse locality, increasing addresses past 32
bits may be desirable. Pointer swizzling is still attrac-
tive, because it will allow a fixed number of bits to
address an indefinitely large amount of data. A world-
wide network of millions of machines, each holding
billions of objects, could easily be addressed without
ever  requiring another increase in hardware address-
ing size. In fact, a handful of those bits could even
be devoted to processor numbers and bit addressing
support, with no problem. 64 bits would be the last
hardware address size.

It is interesting to note that a swizzling facility
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needn’t cost anything if it is not actually necessary.
In a system with a “large enough” address word, page
mappings may never need to be changed. In that case,
the actual swizzling of pointers can be skipped when
pages are faulted in. A swizzled system is more flex-
ible, however, because it can grow beyond hardware
word-size restrictions without any problem. It can
also be used for reconciling conflicting mappings be-
tween systems–it is not necessary to ensure that any
page always occupies the same part of virtual memory
across different machines or local networks.

3 Checkpointing and Reconstructive
Memory

Another application of virtual memory facilities is
for checkpointing. In [WM89a],  we presented a scheme
for efficiently checkpointing garbage collected heaps,
to build a reconstructive memory for time-travel de-
bugging [FB88, WM89a, TA90].l A time travel de-
bugger uses checkpointing and replay to provide the
illusion of storing all past states of a program, allow-
ing the programmer to jump backward in time to find
the point where a program went astray. Checkpoint-
ing is also valuable for fault tolerance and concurrency
control.

Since its original publication, our scheme has
changed somewhat; we now avoid relying s o  heavily
on copy-on-write techniques. We changed this to avoid
overhead in SunOS  trap handling, and also to avoid
locality problems on machines with large pages. We
now use a dirty bit scheme that saves copies of dirty
areas of memory as our primary checkpointing mech-
anism (as did Feldman and Brown), but we imple-
ment the dirty bits in software to allow checkpointing
smaller areas of memory. (This is much cheaper than
it sounds, because most memory writes don’t actually
require setting a dirty bit.) We only use copy-on-write
for the initial copy of pages faulted in from disk.

(When using a dirty page scheme rather than copy-
on-write, there must be two copies of everything,
because you don’t know until later what has been
changed. Since you can’t catch a write before it hap-
pens, you can’t be as lazy about copying-a write
could destroy information that you’ll need later. (For
initial page contents faulted in from disk, e.g., the sys-
tem image or a persistent store, the original version on

1The term “time-travel debugging,” which we like very much,
is from Tolmach and Appel, but the concept was explicit in
[WM89a],  as was the coordination of checkpointing and garbage
collection (though Tolmach and Appel neatly invert the rela
tionship between them).

disk can be used as one of the copies.))
To keep marking costs low, we actually use a whole

byte as a dirty bit, so that we can exploit byte store
instructions, and set a mark with only three instruc-
tions. (We got this idea from David Ungar, who re-
fined our “card marking” scheme in this way before
incorporating it into his latest garbage collector. We
also use card marking for garbage collection purposes,
killing two birds with one stone.)

4 Adaptive Prefetching and Replace-
ment

Adaptive Prefetching schemes can also exploit
small pages and fast virtual memory operations. We
believe that the major advantages of large pages are
better achieved by transferring several small pages at
a time. Using smaller pages also gives you the flexibil-
ity to choose which pages are grouped together, and
to change those groupings dynamically.

A very simple and cheap form of adaptive prefetch-
ing is to recluster pages according to the actual access
patterns that bring them into memory. Future faults
on a page will bring in a whole cluster of pages. If
access patterns tend to be similar across time, this
should be an effective heuristic.

This technique was simulated in the mid-seventies
[BS76],  with disappointing results. We believe the
poor performance of the scheme was caused by ac-
cidents of the experimental design, however, and arti-
facts of mid-seventies memory technology. In particu-
lar, the page sizes used for the simulations were unre-
alistically small relative to the total memory sizes sim-
ulated; reserving pages for prefetching was thus very
expensive. The cost for typical 1991 memories would
be more than an order of magnitude smaller, because
of the much larger number of pages or blocks at each
level of the memory hierarchy.

We have found supporting evidence for the desir-
ability of adaptive prefetching. [HH87] describes a
prefetching policy that obeys an inclusion property;2
like (non-prefetching) LRU, this allows many sizes of
memory to be simulated efficiently in a single pass
through a trace. While their policy was intended
as an approximation of sequential One Block Looka-
head, their modifications (to preserve inclusion) made
it work significantly better than OBL.

We believe that the superiority of this prefetch pol-
icy is because it approximates what we call a “fool me

2That  is, the page faults you get for one size memory are a
subset of the ones you’d get for any smaller memory.
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once” policy. If a prefetched page is not touched, it
will typically not be prefetched next time. This is a
very simple form of adaptive prefetching.

Another technique, analogous to Baer and Sager’s,
is to reorganize objects within pages according to
dynamic access patterns. This has been simulated
for Smalltalk [WWH87]] with good results (but see
[WLM91]), and comparable techniques have been used
with Baker-style incremental garbage collectors, ex-
ploiting the gc’s ability to move objects when they’re
accessed by the running program [Whi80, Cou88,
Joh91].

While these techniques (like Baer and Sager’s) have
been described as “reorganization,” we think they
should be viewed as a variety of adaptive non-linear
prefetching that happens to have some very convenient
properties. (In particular, it’s easy to prefetch things
without an extra seek, because they’ve been laid out
consecutively on a disk.)

Rather than seeing these techniques as reorganizing
objects within pages, we conceptualize them as trans-
ferring multiple tiny (object-sized) pages within larger
units of disk transfer.

Given this perspective, it is natural to ask whether
this is the right granularity for prefetching, and we
suspect that it’s not. In the first place, it requires
specialized hardware support and some overhead per
object; in the second place, fine-grained reorganiza-
tion is most advantageous when memories are small.
Larger-grained reorganization should work better for
large memories, as are increasingly common, for es-
sentially the same reasons that optimal page sizes get
larger as memories do. We therefore choose to use very
cheap static clustering [WLM91] to organize small ob-
jects within pages, but we believe that dynamic group-
ing of pages could yield significant additional benefits.

Clustering pages (rather than objects) limits the ef-
fectiveness of prefetching/reorganization schemes, but
the lower frequency of traps could allow the use of
more sophisticated clustering–doing a little more
computation at each page fault could pay off hand-
somely if it results in a better grouping. For example,
it may be better not to reorganize things that are al-
ready satisfactorily grouped; this might adapt to one
access pattern at the expense of another.

We would also like to investigate adaptive replace-
ment policies, which recognize patterns of use, and
base replacement on expected time until future use.
The very first virtual memory replacement policy (the
“loop detecting” policy on the Ferranti ATLAS) at-
tempted to do this, in a crude way, but did not work
as well as LRU. We think that this failure may be due

to the fact that the ATLAS policy keyed off of the
highest observable frequency component, of access pat,-
terns, rather than the lowest, leading t o  premature
eviction of pages.3

We are particularly interested in applying adap-
tive prefetching and replacement to large persistent
object stores and object-oriented databases. It seems
likely that the virtual memory could he designed t o  re-
spond appropriately to both stereotypical “database-
like” reference patterns and more program-like “navi-
gational” access patterns.

5 Compressed Paging

Another approach to improving paging perfor-
mance is to add a level to the memory hierarchy, with
price and performance intermediate between normal
RAM and disk. Our candidate for this is compressed
in-memory storage  [WLM91]; we have discovered that
heap data can be easily and cheaply compressed by
an algorithm that is tuned to the garbage collector’s
placement of data with pages. This exploits the fact
that pointer data typically hold very little real infor-
mation, in much the same way that CDR-coding does
for Lisp linked lists.

One of the interesting characteristics of compressed
paging is that it comports well with adaptive memory
management policies. Compressed disk storage allows
more pages to be prefetched, and only the pages that
are actually referenced need be uncompressed.

As processor cycles become progressively cheaper
relative to disk seeks, it becomes increasingly attrac-
tive to keep more pages in RAM in compressed form,
adding a new level to the memory hierarchy. The
proportion of memory devoted to compressed storage
can be varied dynamically, adapting to different local-
ity characteristics. (Due to space limitations, we will
not discuss this further-interested readers should see
[Wil90b] and [WLM91] .)

6 Garbage Collection

Garbage collectors can benefit from the use of vir-
tual memory primitives in several ways, as described in

3Lower  frequencies should be more important, unless they
are too low to be relevant to paging decisions. Consider data
referenced in the bodies of nested loops-the period of the  outer
loop is the important one, because it may predict another oc-
currence of the whole spate of higher-frequency accesses in the
inner loop. If the outer loop’s frequency is lower than the time
pages typically spend in memory, however, the pages should be
evicted anyway. (See also [Wil90b].)
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[AL91].  One application is to use pagewise protection
to support incremental copy collection, with scanning
a page of tospace  as the increment of work [AEL88].
Unfortunately, this does not yield true real-time per-
formance because the increments of work can be fairly
large4  and very closely spaced [WM89b].  Johnson has
recently modified the Appel, Ellis and Li algorithm to
put a much lower bound on the increment of work,
but it is still proportional to the page size [Joh].

Another garbage collector application is the use
of virtual memory dirty bits to help a generational
garbage collector locate recently-created pointers from
one generation to another [Sha88].5  Shaw’s technique
can suffer greatly from poor locality of writes, and
we believe that our card marking (software dirty bit)
scheme is superior [WM89a] because it keeps track
of smaller areas of memory. (Ungar’s variant of our
scheme is faster, but the bitmaps are really bytemaps,
and therefore much larger. This incurs extra costs
in scanning the maps to find dirty cards. This cost
could be decreased by combining Shaw’s technique
with ours, and using virtual memory dirty bits to
guide the scanning of (software) bytemaps–only dirty
pages hold any dirty cards. This amounts to a two-
level dirty bit scheme, with the virtual memory dirty
bits providing the coarser resolution.)

7  Conclusions

We’ve discussed several applications that rely on
advanced virtual memory primitives to support large
heaps of small objects, and this only scratches the sur-
face. Clearly, the performance of these techniques de-
pends directly on the efficiency of trap handling, pro-
tection setting, and so on. Most depend on page size
as well, with the ideal page size being smaller if traps
are cheaper.

Many more applications of virtual memory primi-
tives are possible if small areas of memory can be pro-
tected and traps are truly cheap, e.g., lazy evaluation
and bounds checks, memory striping to reduce cache
conflicts [Wil91] or reblocking to reduce false sharing
in distributed systems.

We therefore view virtual memory primitives as
more than just a means of implementing a memory
hierarchy. They are the fundamental hook into ba-

4When  a page of tospace is scanned, all of the objects it
holds pointers to are also moved to tospace.  If the objects are
large, this can involve considerable work.

5This is necessary so that the generational garbage collector
can collect young generations often, without actually traversing
data in older generations [LH83].

sic parallel hardware (memory protection checking)
that can support a large variety of features. This sug-
gests that hardware and OS designers should consider
separating out issues of protection from those of ad-
dress translation, perhaps having multiple protectable
blocks per page.

In addition, many of  these desirable applica-
tions would benefit from the ability to unambigu-
ously discriminate between object references and non-
references. This can be done in software, w i t h o u t
any specialized hardware support for objects (e.g., a
tagged architecture or “object-oriented” memory hi-
erarchy).

Object-oriented systems can be efficient on stock
hardware, but hardware and OS designers must real-
ize that the heap abstraction is very important, even
if it’s not implemented in hardware. Programs should
be written in languages that support precise pointer
finding, so that implementors have more freedom in
implementing object references. This is not a very
restrictive requirement—it does not require writing
programs in dynamically typed languages like Lisp or
Smalltalk. Modula-3, ML, Oberon, Eiffel, Ada, and
even FORTRAN-90 all provide the necessary level of
abstraction; unfortunately, C does not.

Languages should discr iminate  between object
pointers and raw addresses, so that garbage collectors
and other low-level runtime  facilities are not confused
by casts, etc. In particular, C++ should be extended
to support classes which are garbage collected, and
whose pointers are swizzle-able, in much the  same way
that Modula-3 does.6

If we are ever to rid ourselves of the scourge of least,-
common-denominator C-and-UNIX, we need t o  clean
up our act with respect to virtual memory and point-
ers. If we do, operating systems can support, small

objects efficiently on standard hardware.
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