
Systems Administration
by S. Lee Henry

36 SunExpert Magazine ■ August 1997

Inside Run States
OO

ne way that I can always
impress computer neophytes
with my system wizardry is to

allow them to stand behind me as I
boot my system. While the messages
run down the screen, I murmur dispas-
sionately “hmm” and then in a slightly
higher tone “ahhh.” Immediately, they
think, “Wow, look at all that complicat-
ed stuff and she understands it.” Little
do they suspect that the booting process
is really quite straightforward. After all,
anything a person doesn’t understand
appears complicated and magical, espe-
cially if you throw in a bunch of num-
bers along with unpronounceable
strings of characters.

If I then proceed to explain to my
admirers that this computer doesn’t only
know “on” and “off ” but has eight possi-
ble run states, they will likely smile
weakly and nod their heads at roughly
half the normal speed. Little do they
know that run states can simply be
thought of as particular configurations
of running processes.

The init Process
Of course, I know that the init

process, which runs as long as the system
is running, is responsible for ensuring that
all the necessary processes are running
when they are needed. All the messages
filling up my screen are just the result of a
very predictable sequence of things that
must happen before my system is ready
for use. Any wizardry evident during this
process belongs to the good design and
not any particular prowess on my part.

The init process is itself controlled
through commands provided in a typical
colon-separated initialization file (e.g.,
/etc/inittab). The four fields in
/etc/inittab are the entry name, the
init states in which the command–in
the fourth field–should be active, one of
the ways in which the command can be
run (e.g., wait for it to finish or not) and
the command itself.

My favorite line in the file is this:

I like this line because (a), run state
2 involves a lot of familiar processes
starting and stopping, and (b), the
entry “23” causes me to pause while I
sort out its meaning. “Ahhh,” I say (this
time with genuine feeling), “this line is
tells me that the processes required in
run state 2 [invoked with the script
/sbin/rc2] must also be running in
run state 3!”

The options for the third field are
also rather interesting. If the field says
“wait,” it means that init should wait
for the command to complete before
moving on. This is the most commonly
used option. The sysinit option
means that the command is run before
init ever tries to access the console.

Notice the absence of run states when
sysinit is specified. Some commands
in the inittab file are specified with
the option respawn . This means just
what it suggests–the process is started

s2:23:wait:/sbin/rc2 >/dev/console 2>&1 </dev/console

HA
NK

 O
SU

NA

Systems Administration

when the system enters the particular run state and is respawned
if it stops running. This ensures that some processes, like the
one that keeps your console in touch with reality, continue run-
ning despite whatever else happens on the system.

Less often used options include:
Off Kill the named command.
Once Execute the command when entering the run

state, but don’t wait for completion.
Ondemand Equivalent to respawn .
Powerfail Execute if init receives a power fail signal.
Boot Only run at boot time, and don’t wait.
Bootwait Only run at boot time, and wait.
Initdefault The state to enter at startup (usually “3”

for multiuser).

The rc? Scripts
The /sbin/rc? (i.e., rc0 , rc1 …) scripts are higher level

scripts run only by init . Whenever the system boots or a
privileged user issues the init command (e.g., init 2), the
init process runs the appropriate script(s) as defined in the
/etc/inittab file. These higher level scripts, in turn,
invoke any number of start and kill scripts in the corre-
sponding directories (e.g., /etc/rc2.d).

Could you modify the /etc/inittab file to do “inter-
esting” things with your system? Well, yes, but most of the
time, you’ll change the processes that run in any particular
run state by creating and installing run scripts in the
/etc/rc?.d directories. These scripts control the opera-
tions of the system at a much finer granu-
larity than the /sbin/rc? scripts. Each
starts or stops a particular process or set of
related processes.

The proper way to add run scripts to the
system is to add them to the /etc/init.d

directory and create hard links in the directo-
ries that correspond to the run state in which

they should be invoked. These commands, therefore, relate the
files that have the same associated inode by generating a list of
run scripts in /etc/init.d (where they all should reside)
along with the files in the /etc/rc?.d directories that are
hard-linked to them. Let’s see what scripts are set up in these
directories on a typical system. To display the scripts in a use-
ful format, I ran the commands shown below:

38 SunExpert Magazine ■ August 1997

psycho> foreach runscript (`ls /etc/init.d/*`)
? echo $runscript ? set INODE=`ls -i $runscript | awk '{print $1}'`
? find /etc -inum $INODE -print >> /tmp/rs
? echo "-----" >> /tmp/rs
? end
psycho> cat /tmp/rs

Figure 2. mktab awk Script

BEGIN { FS = "/" } { if (NR == 1) {
print "Proc 0 1 2 3"
print "============== ============== ============== ============== ==============="
}

if ($0 == "-----") {
print COL[-1] COL[0] COL[1] COL[2] COL[3]
for (RUNSTATE = -1; RUNSTATE <= 3; RUNSTATE++)

COL[RUNSTATE] = " "
}

else {
RUNSTATE = substr($0,8,1)
if (RUNSTATE == "i")

RUNSTATE = -1
PROC = $4
BLANKS = substr(" ",1,15-length(PROC))
COL[RUNSTATE] = PROC cat BLANKS

}
}

Figure 1. Start/Kill Script Data Sample

/etc/init.d/autofs

/etc/rc2.d/S74autofs

/etc/rc0.d/K69autofs

/etc/rc1.d/K68autofs

/etc/init.d/nfs.client

/etc/rc2.d/K65nfs.client

/etc/rc2.d/S73nfs.client

/etc/rc0.d/K75nfs.client

/etc/rc1.d/K80nfs.client

/etc/init.d/nfs.server

/etc/rc2.d/K60nfs.server

/etc/rc3.d/S15nfs.server

/etc/rc0.d/K66nfs.server

/etc/rc1.d/K65nfs.server

Systems Administration

40 SunExpert Magazine ■ August 1997

The file names in the /etc/rc?.d directories start with
an “S” or “K” (for start or kill) followed by a two-digit num-
ber that controls the relative sequence number for running
the script. Whenever the system enters a state (e.g., 0 or 2)
the rc? script(s) specified in /etc/inittab will execute
the scripts in the corresponding /etc/rc?.d directory that
start with “K” (stop argument) and then those that start
with “S” (start argument). Example data collected with the
commands I listed earlier is shown in Figure 1.

The “K” scripts kill processes that should not be running
in that particular run state. The “S” scripts start those
processes that should be running.

Each group of linked files in Figure 1 is separated by a
line of dashes. I processed this file through the script shown
in Figure 2 (i.e., awk -f mktabs /tmp/rs), which results
in the table shown in Figure 3.

Notice that processes are killed but none are started in
state 0 (firmware). Many start processes are invoked in run

Figure 3. Run States and Scripts

Proc 0 1 2 3

============== ============== ============== ============== ===============

ANNOUNCE K00ANNOUNCE K00ANNOUNCE

MOUNTFSYS S01MOUNTFSYS S01MOUNTFSYS

PRESERVE S80PRESERVE

README

RMTMPFILES S05RMTMPFILES

acct

asppp K47asppp K47asppp S47asppp

audit K42audit K42audit S99audit

autofs K69autofs K68autofs S74

autofs autoinstall S72

autoinstall

buildmnttab

buttons_n_dials-setup

cron K70cron K70cron S75cron

devlinks

drvconfig

gsconfig S91gsconfig

gtconfig S91gtconfig

inetinit S69inet

inetsvc S72inetsvc

leoconfig S91leoconfig

lp K20lp S80lp

mkdtab

nfs.client K75nfs.client K80nfs.client S73nfs.client

nfs.server K66nfs.server K65nfs.server K60nfs.server S15nfs.server

perf S21perf

rootusr

rpc K85rpc K67rpc S71rpc

rtvc-config S92rtvc-config

sendmail K57sendmail K57sendmail S88sendmail

standardmounts

sxcmem

sysetup S20sysetup

sysid.net S30sysid.net

sysid.sys S71sysid.sys

syslog K55syslog K55syslog S74syslog

ufs_quota

utmpd K50utmpd K50utmpd S88utmpd

uucp S70uucp

volmgt S92volmgt

42 SunExpert Magazine ■ August 1997

Systems Administration
state 2 (multiuser without shared file systems). However,
almost no processes are started in run state 3 (multiuser);
this is because both the /sbin/rc2 and /sbin/rc3

scripts are run when the system enters run state 3. Also
notice that most of the services started in run state 2 are
killed in run states 0 and 1. Whenever there is a start and
kill script for the same process in the same /etc/rc?.d

directory, the process is killed and then restarted.
Another interesting feature of the rc1 , rc2 and rc3

scripts is their use of the who -r command to determine
the current and previous run states. An excerpt from
/sbin/rc2 is shown in Figure 4. Notice how the actions
taken depend on the response from who -r . The kill scripts
are only invoked when the previous state was not “S” or “1”
and the state being moved into is “2” (keep in mind that
/sbin/rc2 is also run when entering run state 3). The out-

put from this command will look roughly like this:

psycho% /usr/bin/who -r

. run-level 3 May 18 10:13 3 0 S

The x$9 value (ninth field in this output) is “S” and the x$7

value is “3.”
Whether or not you’re trying to dazzle your friends, the

proper configuration of run state scripts will allow you to best
take advantage of init . ✒

S. Lee Henry is on the board of directors of the Sun
User Group and works as a security services engineer
for Infonet (where no one else necessarily shares any
of her opinions). Her current running state is California.

Like her readers, she gets lots of email.
Send her more by addressing it to
slee@cpg.com . Figure 4. Excerpt from /sbin/rc2

set `/usr/bin/who -r`

if [x$9 = "xS" -o x$9 = "x1"] then

echo 'The system is coming up. Please wait.'

BOOT=yes

elif [x$7 = "x2"] then

echo 'Changing to state 2.'

	Inside Run States
	The init Process
	The rc? Scripts
	Figure 1. Start/Kill Script Data Sample
	Figure 2. mktab awk Script
	Figure 3. Run States and Scripts
	Figure 4. Excerpt from /sbin/rc2

