
Systems Administration
by S. Lee Henry

42 SunExpert Magazine ■ November 1997

KE
N

CA
LL

The /proc File System
TT

he /proc file system is an
example of the procfs file
system type that was new to

SunOS with Solaris 2.x. For systems
administrators who seldom wander into
the /proc directory, its utility may
seem practically nonexistent. What does
one need, after all, with images of run-
ning processes? What could one do with
them? Good questions.

The concept of a virtual file system
seems odd at first and no more appeal-
ing than a virtual lunch. Try watching
the faces of fellow systems dweebs when
technotalk delves into virtual file systems
and you’ll see what I mean.

“Virtual file systems,” I grin. “They
don’t take up disk space.” “Good idea,”
says the guy watching the coffee pot fill-
ing up. “Maybe they should all be virtu-
al. Think of the disk space I’d save.”

In fact, procfs file systems (only
one of a number of virtual file system
types), don’t occupy space on disk, but
look and act like disk-based file sys-
tems. What I mean by this is that they

provide us with a familiar interface for
debugging running processes and add
to the information available to us
through commands like ps .

Take a look at the files in /proc .
You’ll notice that their names reflect the
procIDs of the particular processes
with prepended zeroes (for example,
/proc/00441). Each file is owned by
the user running the particular process,
and only he has read and write privi-
leges. The size of each file is the size of
the process image. Try the command in
Figure 2. Interestingly, all of the files are
in units of 4 KB. This isn’t a coinci-
dence, of course, but tells us something
about the way memory is allocated. If
you watch these files over time, some of
them will disappear. The commands or
applications that they correspond to will
finish processing or be killed. Others
will appear to be constant. Take a look

at /proc/00000 , for example. This file
has a size of 0 and a date reflecting your
last reboot. This file corresponds to the
scheduler. The /proc/00001 file corre-
sponds to the init process. You’ll
notice that this file also has the time-
stamp of your most recent reboot (even
if you’ve changed run states since), as
shown in Figure 4. Notice that the size
of /proc/00001 is considerably larger
than the size of the /usr/sbin/init

binary. Executing processes allocate
memory for data manipulation and stor-
age, so their process images are always
larger than the binaries on disk (see
Figure 1).

Most process images will stay the
same size while they are running. That
is, they allocate the memory required up
front. Processes can change size, especial-
ly when they suffer from memory leaks.

Memory leaks occur when memory

Figure 1. Process Image Size
-r-xr-xr-x 1 root sys 28064 Jul 16 1994 /usr/sbin/init

Systems Administration

44 SunExpert Magazine ■ November 1997

Figure 3. The /proc/00001 File
boson:/home/slee=> ls -l /proc/00000 /proc/00001 /proc/00441
-rw------- 1 root root 0 Sep 16 17:31 /proc/00000
-rw------- 1 root root 806912 Sep 16 17:31 /proc/00001
-rw------- 1 slee dweebs 954368 Sep 16 17:34 /proc/00441

Figure 5. Sample C Program
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/signal.h>
#include <sys/fault.h>
#include <sys/syscall.h>
#include <sys/procfs.h>
#include <stdio.h>
#include <netinet/in.h>
#include <errno.h>
#include <fcntl.h>
#if 0
typedef struct prstatus {

long pr_flags; /* Flags (see below) */
short pr_why; /* Reason for process stop (if stopped) */
short pr_what; /* More detailed reason */
siginfo_t pr_info; /* Info associated with signal or fault */
short pr_cursig; /* Current signal */
u_short pr_nlwp; /* Number of lwps in the process */
sigset_t pr_sigpend; /* Set of signals pending to the process */
sigset_t pr_sighold; /* Set of signals held (blocked) by the lwp */
struct sigaltstack pr_altstack; /* Alternate signal stack info */
struct sigaction pr_action; /* Signal action for current signal */
pid_t pr_pid; /* Process id */
pid_t pr_ppid; /* Parent process id */

Figure 2. /proc File Sizes
radman:/home/svr=> foreach SIZE (`ls -l /proc | awk ’{print $5}’`)
? echo $SIZE | awk ’{print $1 / 4096}’
? end
0
197
0
0
2004
2008
2008
2004
1270
437
328
364
350
338
435

Figure 4. The ps Command
boson:/home/slee=> ps -efl | head -12

F S UID PID PPID C PRI NI ADDR SZ WCHAN STIME TTY TIME COMD
19 T root 0 0 66 0 SY f0187950 0 17:31:52 ? 0:01 sched

8 S root 1 0 80 41 20 fc0bd998 187 fc0bdb68 17:31:55 ? 0:05 /etc/init
8 S slee 441 438 36 99 20 fc41d990 233 fc52d71e Sep 16 pts/8 0:00 /bin/csh

SunExpert Magazine ■ November 1997 45

Systems Administration

pid_t pr_pgrp; /* Process group id */
pid_t pr_sid; /* Session id */
timestruc_t pr_utime; /* Process user cpu time */
timestruc_t pr_stime; /* Process system cpu time */
timestruc_t pr_cutime; /* Sum of children’s user times */
timestruc_t pr_cstime; /* Sum of children’s system times */
char pr_clname[PRCLSZ]; /* Scheduling class name */
short pr_syscall; /* System call number (if in syscall) */
short pr_nsysarg; /* Number of arguments to this syscall */
long pr_sysarg[PRSYSARGS]; /* Arguments to this syscall */
id_t pr_who; /* Specific lwp identifier */
sigset_t pr_lwppend; /* Set of signals pending to the lwp */
struct ucontext *pr_oldcontext; /* Address of previous ucontext */
caddr_t pr_brkbase; /* Address of the process heap */
u_long pr_brksize; /* Size of the process heap, in bytes */
caddr_t pr_stkbase; /* Address of the process stack */
u_long pr_stksize; /* Size of the process stack, in bytes */
short pr_processor; /* processor which last ran this LWP */
short pr_bind; /* processor LWP bound to or PBIND_NONE */
long pr_instr; /* Current instruction */
prgregset_t pr_reg; /* General registers */

} prstatus_t;
#endif

char *progname;
char *procfnum;
FILE *procfile;
int procfd;
int retval;
struct stat *procstatus;

void
main (int argc, char **argv)
{
char ch=' ';

struct prstatus p;

progname = *argv++;
argc--;

if(argc == 0) {
printf("Usage: %s <filename>\n",progname);
return;

}

procfnum = *argv;

if ((procfd = open(procfnum,O_RDONLY)) == NULL) {
printf("cannot open input file\n");
return;

}

if (retval = ioctl(procfd, PIOCSTATUS, &p) == BADRET) {
printf("unable to access file %s\n",procfnum);
printf("errno = %i\n",errno);
return;

}

printf("parent process is: %i\n",p.pr_ppid);
printf("size of process heap: %i\n",p.pr_brksize);
printf("size of process stack: %i\n",p.pr_stksize);
}

46 SunExpert Magazine ■ November 1997

Systems Administration

allocated by a process is not deallocated
when it is no longer needed. Available
memory appears to dwindle. Several
memory leaks can cause a process to
run out of memory and can chew up
the swap space available on your sys-
tem to a point at which all processes
begin to suffer.

The “beauty” of the /proc file sys-
tem is that it provides a way to query

and, with care, control running process-
es without requiring that the processes
be child processes of a debugger. Using
standard system calls–open(2) ,
close(2) , read(2) , write(2) and
ioctl(2) –you can manipulate the
process images in much the same way as
you would any standard file (any stan-
dard binary file, that is). Remember,
these files will resemble core dumps

more closely than they will resemble
letters to Mom.

To make this point a little clearer,
I’ve included a sample C program (see
Figure 5). This program pulls some
data out of whatever /proc file is
given as an argument and displays it.
Notice that the data structure used
is separated by #if 0 and #endif

commands so that it is not compiled
with the rest of code. This structure is
defined in the procfs.h header file
and is included with the code only to
make it easier to follow.

Much of the information available
with the /proc file system is also
available through the ps command,
as shown in Figure 4.

Take a look at the proc man page
for more information on the data avail-
able through the procfs interface. ✒

S. Lee Henry is a security engi-
neer at Infonet in El Segundo, CA,
and lives in a part of LA that may
secede and be called Gridlockia
before you read this column. Send
your virtual thoughts to her using
the address slee@cpg.com .

	The /proc File System
	Figure 1. Process Image Size
	Figure 2. /proc File Sizes
	Figure 3. The /proc/00001 File
	Figure 4. The ps Command
	Figure 5. Sample C Program

