
TT his column concludes my ramblings on systems
administration, adapted from some decade-old
lecture notes by Jim Joyce, Doug Merritt and myself.

I hope you have found it useful.

Inspecting Files
UNIX allows many sorts of things to reside in the file

system. The file /dev/cua1 , for instance, could be a con-
nection to the device driver for the modem serial port. The
file /dev/modem , in contrast, could be a symbolic link to
/dev/cua1 . This provides great convenience and flexibili-
ty for both programmers and users. On occasion, however,
it’s nice to know exactly what a given item is. I can inspect
any item in the file system by means of the ls command:

% ls -alg ~rdm/foo

-rwxr-x--- … rdm staff … /u/rdm/foo

The first character in the output line is the file type flag,
which indicates what kind of “file” this is. Here are some
common file type flags:
- Ordinary file
b Block special file
c Character special file
d Directory
l Symbolic link
p Named pipe special file

In this case, the “file” is really a file. Further, it is owned
by a user named rdm , has group staff , and has permis-
sions -rwxr-x--- . For more information on the flags and
output of the ls command, try running man ls .

I discussed file mode bits last month. Now let’s look at
some. In the example above, the first set of file mode flags
(rwx) allows the file’s owner (rdm) to read, write and execute
the file. The second set (r-x) allows any member of group
staff to read and execute the file. Finally, the third set (---)
prevents anyone else from accessing the file in any way.

The actual situation is a bit more complicated, of course.
To gain access to ~rdm/foo , a user must also satisfy the per-
missions on directories / , /u and /u/rdm . And, of course,
root can almost entirely ignore permissions.

Permissions on symbolic links are even more convoluted.
The link itself displays modes rwxrwxrwx , but this is mis-
leading. In fact, a symbolic link has no real file modes of its
own. Assuming that the system can get to the symbolic link
(satisfying the permissions on any directories it encounters
along the way), it must now start again at the root directory,
walking down the complete path specified in the link.

Initial Permissions
The permissions acquired by a newly created file are

determined by the creator’s current umask (usage mask),
as set by the umask command:

% umask 077 # create files as "rwx------"

% umask 027 # create files as "rwxr-x---"

% umask 002 # create files as "rwxrwxr-x"

The argument to umask is interpreted as an octal value.

34 SUNEXPERT Magazine February 1997

JA
CQ

UE
S

CO
UR

NO
YE

R

UNIX Administration Notes, Part 2

II /Opener/Opener by RICHARD MORIN, Technical Editor

Each bit in the value masks (by means of an “exclusive OR”)
the default permission (777), yielding the permission bits for
the resulting file. Thus, a mask value of 27 results in permis-
sions of rwxr-x--- (i.e., 750 or 027 XOR 777).

Changing Permissions
The owner of a file (or root) may change the permis-

sions on a file, using the chmod command. Permissions may
be specified either symbolically or numerically. For example,

% chmod go+x foo

% chmod 750 foo

See the chmod manual page for more detailed coverage of its
usage. A file’s group may also be changed by means of the
chgrp command:

% chgrp staff foo

The file’s owner can change a file’s group to any group of
which the owner is a member. Group membership is con-
trolled by the /etc/passwd and /etc/group files.

Predictably, root may change a file’s group to any group,
even if it isn’t listed in /etc/group :

chgrp fubar foo

chgrp 12345 bar

Finally, root may change a file’s ownership, using the
chown command:

chown root foo

Editing /etc/group
Each user has a default group, as specified in his or her

/etc/passwd entry. Although it is not necessary to enter
default groups into the /etc/group file, your ls output
will be prettier if you do. It is also a good idea to list the
membership of default groups in /etc/group , as a bit of
useful documentation.

There are several ways of handling default group IDs. On
a small system, each account can have its own group, with all
joint groups being explicitly defined. A dedicated group (and
possibly a dedicated directory) is then created whenever
users need to share a set of files. A staff group, for exam-
ple, can let certain users do mundane systems management
functions without becoming root .

On larger systems, default groups are often useful for
project teams or user classes. Note, however, that the
umask should be set appropriately to avoid accidental
security holes.

Each line in /etc/group has four colon-separated
fields:
1. Group name alphanumeric
2. Group password encrypted (see below)
3. Group ID numeric
4. Members comma-separated login names
Note: Group passwords are poorly supported and are gener-

ally a bad idea. Users don’t tend to care for their own pass-
words very well, and they take no care whatsoever of group
passwords. Fill this field with an asterisk, then ignore it.

Backing Up and Restoring Files
There are several reasons for doing backups, but the

essential reason is risk avoidance. If you have an adequate
backup system, few problems can do serious harm to your
data; if you do not, almost anything can cause you grief.

Here is a sampling of the risks your data faces:
• Human error – UNIX is quite willing to let users

damage or delete their own files. More files are damaged by
slipping fingers than by any other cause. And, of course,
the root account can remove anything on the system.

• Software problems – If a data structure gets damaged,
UNIX may get confused and lose one or more files. Alterna-
tively, a program could crash, damaging working files.

• Hardware problems – Hard drives sometimes start
getting read errors; less frequently, they simply jam and
start smoking.

• Environmental problems – Mother nature can cause
real problems for your data. How well are you prepared for
an earthquake, fire, flood or other natural disaster?

• Intentional damage – Arson is always a possibility, as
are theft and malicious tampering. Physical security reduces
these threats but cannot entirely eliminate them.

It is quite possible to do complete system backups on a
daily basis. It is a lot of work, however, and is probably in-
appropriate for most UNIX systems. I recommend a mixed
backup strategy, which should meet your needs at a lower
cost than a brute-force approach.

Here is a list of backup approaches:
• Full backups – Every so often, you should make a full

backup of your system. This ensures that you don’t overlook
something that may later turn out to have been critically
important.

• Partial backups – By selecting important parts of your
system for backup, you can reduce the amount of work
involved. How many copies of the /usr partition do you
really need?

• Delta backups – Some backup programs allow you to
save only files that have been modified since the last full
backup. If your data is relatively stable, this can greatly
reduce the backup effort.

• Disk-to-disk backups – Many risks (human error, hard-
ware and software problems) can be reduced by automated
disk-to-disk backups. Have cron run your favorite backup
program during the middle of the night, compress the out-
put, and save it on a different disk drive. To save space, you
can do mostly delta backups.

Media Considerations
Your backups are important; handle them with care. Treat

your backup media with care. You don’t want it to be stolen,
damaged, examined or modified by malicious intruders.

Be sure to employ backup media. It is possible that your
system could crash during the backup process. Alternatively,
your backup tape (disk, etc.) could develop an error and

36 SUNEXPERT Magazine February 1997

I/OPENER

become unreadable. If you only have one backup, you could
be in big trouble. Use sets of at least three tapes, cycling
through them as you perform your backups.

You should make use of off-site storage. If your building
burns down, will you still have copies of your data? It is very
easy to save copies of your backups in another location; the
hard part is remembering to do it.

Even with occasional use, your tapes will eventually wear
out. Sheer age will also cause your tapes to degrade. Keep
track of the age and usage of your tapes; after a few dozen
uses or a couple of years of use, take them out of service.

Note: Many sites are beginning to use write-once media
(recordable CD-ROMs) for archival purposes. These devices
are physically robust, have long shelf lives, and are quite
resistant to tampering.

Finally, if you are making frequent backups and saving
them forever, you could easily run out of storage space. On
the other hand, how important is data from several months
or years ago? In most cases, I recommend that you save some
snapshots forever, but refrain from trying to save everything.

Backup Frequency
How often, when and how should backups be done?

These aren’t easy questions; several interrelated factors are
involved:

• How much data can you afford to lose? Your data is
changing constantly; anything short of instantaneous backup
(e.g., mirrored disk drives or a RAID system) may lose some
amount of data.

• How often can you take your system down? Backups
are best done while the system is quiescent, but kicking off
your users too often has a cost as well. You may want to take
your chances on a few files being in transition during the
occasional backup.

• How many resources do you want to allocate to doing
backups? Your time has a value, even if you aren’t getting
paid for it. If you are paying operators to hang tapes, there is
a real cost involved.

Like any other form of insurance, backups must be evalu-
ated on a cost-benefit basis. Decide how much risk you are
willing to sustain and how much effort you are willing to
spend in risk reduction. Just don’t let the decision get made
by default; you may not like the results.

Backup Methods
UNIX has several programs that can be used for backups,

including:
• cpio – The cpio utility will archive a specified list of

files. It combines well with the find command, which can
create file lists according to assorted criteria.

• dd – The dd utility is able to copy a bit-for-bit image
of a disk partition, or even an entire disk drive. dd is seldom
a useful tool for general-purpose backups, but it can be quite
useful for, say, copying one hard disk (partition) to another.
On the other hand, the created images aren’t too portable:
The destination operating system must be able to read the
format used on the initial partition.

• dump – The dump utility is able to make a logical copy
of a disk partition. It is also able to create “delta” backups,
containing material modified since a previous backup. dump

is a useful tool for general-purpose backups, but it is some-
what inflexible–it only dumps entire partitions. With a bit of
advance planning, however, this needn’t be a problem.
Divide your system’s disks into a number of partitions, based
on expected use and dump frequency.

• tar – The tar utility is very facile at archiving speci-
fied directory subtrees. It is also the tool of choice for
exchanging subtrees between disparate systems. The stan-
dard UNIX tar has two problems worth noting. First, it is
unable to deal with path names longer than 100 characters.
Second, it cannot archive “special” files, such as devices. So,
get a copy of GNU tar from ftp://prep.ai.mit.edu .

Setting Up Disks
UNIX allows disks to be added, but a number of things

have to be done correctly, and in the right order. First,
wiring it up. A UNIX system will have one or more SCSI
buses, each of which can support several devices. Each device
is addressed by means of its SCSI ID. Devices on the bus are
“daisy-chained,” usually by means of external cables.
Termination must be provided at each end of the bus.

Each device on a given SCSI bus must have its own
unique ID (the CPU almost always has ID 7). An external
SCSI device will normally have a switch that sets its ID to a
value ranging from 0 to 7. Internal devices use removable
jumpers for this purpose.

SCSI devices are commonly daisy-chained, with several
units being linked in series. Each end of the bus must be ter-
minated by a set of resistors or an active (solid-state) termi-
nator. The inboard (CPU) end of the SCSI bus is normally
terminated by the vendor; terminating the outboard end is
the responsibility of the user.

Some SCSI devices are shipped with removable packs of
resistors. I suggest that you remove any such “internal” ter-
mination, as it is a frequent source of confusion. Use an
external terminator (preferably an active one) attached to the
last device in the chain.

Next, new disks need to be formatted. A newly acquired
disk is a bit of an unknown. It may have bad tracks, inap-
propriate sectoring, or any number of other problems.
Fortunately, Sun and other vendors provide tools for dealing
with these issues.

38 SUNEXPERT Magazine February 1997

I/OPENER

Many sites are
beginning to use
write-once media
for archival purposes.
These devices are
physically robust,
have long shelf
lives, and are
quite resistant
to tampering.

Disk formatting sets up the disk
correctly for the system, scans for bad
spots, and generally readies the disk for
use. On UNIX systems, disk labeling
is then performed. The label allows the
system to know what kind of disk is
being used, how it is laid out (parti-
tioned) and so on.

UNIX wants to find all of its
devices in /dev , even the disks them-
selves. In general, however, any needed
entries will be present in the standard
UNIX system.

If you need a device entry that is not
present, try using the MAKEDEVscript,
located in /dev . If this does not meet
your needs, you can use the mknod

command to make a file system node
for a device, and the chmod command
to set appropriate permissions.

If a disk partition is to be used for
storing UNIX files, it must first be par-
titioned into UNIX file systems. The
mkfs and newfs commands do this,
setting up the assorted control blocks
and directories that UNIX needs.
newfs is easier to use.

Creating a Mount Point
When a file system is “mounted”

on a directory, the original contents
of the directory disappear. The con-
tents reappear when the disk is dis-
mounted, but you might want to look
at them before then. So, it is generally
appropriate to create an empty direc-
tory to be used as the mount point for
the new file system. UNIX provides
the /mnt directory for the temporary
mounting of file systems.

The mount point directory can
have any desired name, but short
names are preferable. Some adminis-
trators prefer to name mount points
for the SCSI device ID and partition
involved, /1a , for example; others like
to name them topically, /wombats ,
for example. Be sure to set the mode of
the directory to 777; other modes can
cause the mounted file system to
behave weirdly:

mkdir /1a

chmod 777 /1a

Use the mount command to mount
file systems, and the umount com-
mand to unmount them. If the

umount command fails, check for a
shell session whose current directory
lies within the mounted file system.
UNIX will not unmount a file
system that is in use.

If a file system is going to be
mounted frequently, you should add a
line for it in /etc/fstab . Use the
noauto flag if the file system should
not be mounted automatically at sys-
tem boot. ✒

Richard Morin operates Prime
Time Freeware (ptf@cfcl.com),
which publishes mixed-media
(book/CD-ROM) freeware collec-
tions. He also consults and writes
on UNIX-related topics. He may
be reached at Canta Forda Computer
Laboratory, P.O. Box 1488, Pacifica,
CA 94044 or by email at rdm@
cfcl.com .

SUNEXPERT Magazine February 1997 39

I/OPENER

	UNIX Administration Notes, Part 2
	Inspecting Files
	Initial Permissions
	Changing Permissions
	Editing /etc/group
	Backing Up and Restoring Files
	Media Considerations
	Backup Frequency
	Backup Methods
	Setting Up Disks
	Creating a Mount Point

