
LL ooking through some lecture notes for a decade-old
course on UNIX systems administration, I ran into
some material that still seems timely today.

Systems Administration Mythology
All of us, at one time or another, encounter some rather

peculiar mythology concerning systems administration. I
know that you don’t believe these myths, but you may be
able to use some ammunition when discussing these issues
with your peers (and/or management):

• Systems administration is optional. UNIX loves to
create files: log files, temporary files, spool files and so on.
And, unfortunately, it doesn’t always clean up after itself.
With all this activity, it is quite possible for things to break.
If they don’t get fixed, they can break worse. File system
damage, in particular, tends to propagate over time.

• System administration is just “housekeeping” (and
thus insignificant). No more (or no less!) insignificant than
ordinary “housekeeping.” A properly administered system
runs efficiently and cleanly, and presents an image of order.
A poorly administered system causes inefficiency and frustra-
tion for all of its users.

• Anyone can do it. No. A system manager must be a
competent UNIX user and must have a reasonable set of
attitudes (more on this later) about the task. There is also
some basic knowledge of systems administration that is
needed, but much of this can be picked up along the way.

• Only gurus can do it. No. Some parts of systems
administration are very tricky, to be sure, but most systems
administrators are not gurus. It is helpful to have a guru on
call, however.

• Somebody else will do it. Not if you’re the only user or
the owner of the system. This makes you the systems admin-
istrator. Aside from occasional “help” from passing system
crackers, you’re on your own. Nor can you count on the ven-
dor to automate everything or even to set things up right in
the first place.

• Security isn’t important here. OK, you run a nice,
loose shop, and everyone is completely honest. Or perhaps
this is your own private system, sitting in your den. Well,
there are nasty people out there with modems and Internet

connections, for starters. Failing that, some of your employ-
ees or friends may not be as honest as you’d like.

The best reason for security, however, has to do with
human error and damage control. A secure system will
keep your users from shooting off each others’ feet when
they make mistakes.

Professional Attitude
An important component of effective systems administra-

tion, attitude is particularly crucial if the system is going to
have more than one user. Some users, on receiving the root
password, decide that they are now the local deity. Maybe so,
but there are limits:

• Omniscience. Read the manual; don’t just assume you
know everything. Besides, vendors occasionally change
things around. It is also useful to ask users about their needs
and preferences. They have a totally different perspective
from yours, so you may be surprised (and enlightened) by
what you hear.

32 SUNEXPERT Magazine January 1997

JA
CQ

UE
S

CO
UR

NO
YE

R

UNIX Administration Notes, Part 1

II /Opener/Opener by RICHARD MORIN, Technical Editor

• Infallibility. Don’t stay logged in as root all the time, and
be very careful when you take on root authority. Fingers have
been known to slip, and UNIX assumes that anyone who is
logged in as root knows what s/he is doing.

• Omnipotence. As the systems administrator, you are
pretty much in charge of things. You can take the system
down whenever you like, throw away anybody’s files, and
generally do whatever you like. In a word, don’t. Users have
a right to expect courteous behavior on your part, and it is
only proper to provide it.

Scheduled downtime, for instance, should be announced
well in advance. It should also take place during times (e.g.,
weekends) when the system would normally have few users
on-line and when you have time to fix anything you break.

• Immortality. You won’t be around forever, so leave some
notes around for your successor(s). Be sure to write the really
critical stuff into a bound notebook. Remember, when the
system is down, so is your on-line documentation.

Raison D’être
So much for political indoctrination. Now let’s look at

some specific reasons for performing systems administration:
• To protect the integrity of programs and data. You

don’t want things to get lost, stolen or sabotaged. Neither do
your users. As the systems administrator, your task is to
make sure that bad things either don’t happen or can be
resolved with minimal losses.

• To help the system run smoothly. UNIX isn’t Windows,
let alone MS-DOS or Mac OS. It is a big, hairy, complex
operating system that requires both proper setup and contin-
uing support to work properly.

• To integrate new devices and users into the system. As
new devices and users are added to the system, the systems
administrator must modify and/or create assorted files to
reflect this. If this is done in a sloppy manner, the result will
be security holes, inefficiency and possible loss of data.

• To add desired features to the system. The UNIX dis-
tribution can’t possibly include every package you might
want. Consequently, there are many freely redistributable
utilities and proprietary packages you may want to add.

Levels of Systems Administration
There are several levels of systems administration:
• Elementary. These tasks constitute most of an adminis-

trator’s duties. They involve adding and removing users,
backing up files, moving files around and so forth.

• Intermediate. Now we get into trickier stuff, such as
restoring files, installing new devices and versions of UNIX,
setting up UUCP links and network connections, etc.

• Advanced. These activities should really be done by
gurus, but ordinary systems administrators sometimes get
pulled into them. They include hacking sendmail, modify-
ing device drivers and repairing clobbered file systems.

• Specialized. Each site has certain subsystems it cherish-
es, and these involve a certain amount of administration.
The skills may range from elementary to advanced, and the
system manager simply gets to cope as best s/he can.

This column introduces most of the elementary tasks,

touches on a couple of intermediate tasks, and leaves the rest
alone. If you are running a small stand-alone system, making
few changes to the configuration, this column may meet most
of your needs. Regardless, I suggest that you peruse a good
UNIX systems administration text, such as Evi Nemeth’s
UNIX System Administration Handbook, second edition
(Prentice Hall, 1995, ISBN 0-13-151051-7).

Bringing It Up, Shutting It Down
• System start-up. UNIX can usually handle start-up by

itself, unless something has gotten severely damaged. Let the
normal start-up procedure take care of things, noting any
peculiarities. If it has real trouble, it will let you know.

• Normal shutdown. The system will need to be shut
down occasionally for preventive maintenance, adding devices
and so on. Use /etc/shutdown , giving an explanation and
a reasonable amount of warning, for example,

shutdown -h 5 "Need to add a disk drive."

When the machine has successfully shut itself down, you may
power it off.

• Rapid shutdown. Occasionally, something untoward
will happen, making it is necessary to shut the system
down at once. If possible, follow the above instructions,
using a suitably short amount of time. Otherwise, use the
following command:

shutdown -h now "Disk drive is screeching."

• Panic shutdown. Smoke has just started to pour out of a
critical piece of system hardware. Pull the plug! (You can clean
up the mess later.) You may lose some files, but you should
have backups for most of them. In any case, the hardware is
a bit more critical at this point.

• Accidental shutdown. A large truck has just eaten
your utility pole, and the power will be off until the utility
company gets things put back together. Unplug the system
and leave it that way until the power seems to have stabil-
ized. Power companies have a tendency to switch things
on and off a bit when they are getting the power back in
service. Your computer system is very vulnerable when it
is starting up; being interrupted could cause it to lose or
damage files.

34 SUNEXPERT Magazine January 1997

I/OPENER

Leave some notes around for
your successor(s). Be sure to write

the really critical stuff into a
bound notebook. Remember, when

the system is down, so is your
on-line documentation.

Security Basics
Security issues have to do with protection of resources

from loss or harm. Computer equipment is expensive and
should be protected. Data can be far more valuable (often
irreplaceable) and deserves even more protection. I don’t
want to breed paranoia, but I do suggest that you treat secu-
rity issues with respect. A modicum of caution now could
prevent a great deal of anguish down the road.

Before I get into a discussion of software-related security
issues, give some thought to the physical security of your
installation. What would prevent someone from simply
walking off with components or even entire systems? Is
there anything to prevent a cracker from sniffing packets
from your LAN? Do you have a regular system in place for
performing system backups? Are your backups cataloged
and well protected? Do you cycle through your media,
retiring it at some point? Do you keep some of your back-
ups off-site, in case of disaster?

UNIX systems assume that there will be a multitude of
users, both local and networked. The system accepts responsi-
bility, by and large, for keeping these users out of each others’
way. It does have an administrative account (root) with com-
plete authority, but access to the root account is, or at least
should be, guarded with extreme care.

UNIX security is implemented via access permissions for
all processes, directories and files on the system. Access per-
missions tell UNIX which users have what kinds of access;
UNIX then enforces these restrictions.

As shipped, most UNIX systems have reasonably secure
permissions. Let your vendor know if you find a problem. As
the systems administrator, you are responsible for maintaining
this security. If you open up the permissions on a directory or
a file, make sure you haven’t allowed any undesirable access to
take place.

User and Group IDs
UNIX tracks a user ID (UID) and a group ID (GID) for

each file and process. The UID identifies the owner of the
item in question. In most cases, the owner is the only user
who will have anything to do with the item.

In cases where more than one user (but not everyone on
the system) needs to have access to an item, the GID comes
into play. The GID identifies a specific group of users (listed
in the /etc/group file) as having a special (usually
increased) amount of access to the item. For instance, a file
might be totally accessible by its owner, readable by members
of its group, and not accessible at all by anyone else.

Here is a brief summary of key points about user and
group IDs:

• Files get their UIDs from their creator.
• Files generally get their GIDs from the enclosing
directory.
• Users get their (shell’s) UID and GID from
/etc/passwd at log-in time. They are:

– Passed to all subprocesses
– Overridden by setuid and setgid routines

36 SUNEXPERT Magazine January 1997

I/OPENER

– Checked against every file at “open” time
– User and group names are translated to/from

IDs via /etc/passwd and /etc/group .

File Permissions
Access to files and directories is controlled by their permis-

sions and by the permissions on the directories above. Note:
To access a file, you must satisfy the restrictions not only on
the file, but for each directory on the path to it.

UNIX supports three sets of permissions: user, group and
other. These are checked, in order, with the first matching test
controlling access. That is, if you are the file’s owner, only the
first set of bits will be checked for you.

Each set contains three mode bits: read (r), write (w) and
execute (x). The interpretation of these bits varies somewhat,
depending on the nature of the item. For files, the bits are
interpreted as follows:

• Read permission allows data to be read from a file.
• Write permission allows data to be written into an
existing file.
• Execute permission allows a file to be run as a command.
In the case of shell scripts, read permission is also need-

ed. For directories, the interpretations are analogous but a
bit subtler:

• Read permission allows a directory to be read, by ls or
shell wild-carding–use of pattern-matching metacharacters.
• Write permission allows a directory to be written, as in
creating or removing files.

• Execute permission allows a directory to be used in a
path name (passed through on the way to a file).

Note: It is a relatively common practice to remove read per-
mission from a directory while retaining execute permission.
This keeps stray users from snooping around and allows the
owner to say “Pick up ~rdm/A123fW ” to a friend without
much fear of any unauthorized party gaining access.

Next month, Part 2 will consider which files reside in
the file system and how to deal with
permissions. Note: The author
would like to acknowledge Jim
Joyce and Doug Merritt, whose
material played a part in writing
this column. ✒

Richard Morin operates
Prime Time Freeware (ptf@

cfcl.com), which publishes
mixed-media (book/CD-ROM)
freeware collections. He also
consults and writes on UNIX-
related topics. He may be
reached at Canta Forda
Computer Laboratory, P.O.
Box 1488, Pacifica, CA
94044 or by email at
rdm@cfcl.com .

SUNEXPERT Magazine January 1997 37

I/OPENER

	UNIX Administration Notes, Part 1
	Systems Administration Mythology
	Professional Attitude
	Raison D'être
	Levels of Systems Administration
	Bringing It Up, Shutting It Down
	Security Basics
	User and Group IDs
	File Permissions

