
MM y first articles on the topic of HTML and the Web
were published in SunExpert in 1994 (“The World
Wide Web,” September, Page 22; “HTML,”

October, Page 28). At that time, the only way to create Web
pages was to use a standard text editor, typing your page
markup into the machine. Since then, we’ve seen the emer-
gence of a great number of differently flavored visual HTML
editors, including add-ons to the mainstream browsers.

Undoubtedly, the new
editors have opened the
Web publishing door to
many people for whom cre-
ating page markup using
raw text seems an alien and
difficult task. Like many
children, my son Glyn has
grown up in an age of visual
computing, with the
Windows environment
forming part of his basic
toolkit for life. He finds the
notion of programming the
look of the page using text
gets in the way of the ideas
he wants to put across.
However, he’s been
happily using a mix-
ture of Quarterdeck’s
add-on for Word for
Windows and Netscape
Gold to create visually
exciting pages about his
favorite computer game.

Sadly, his ability to generate pages using completely visual
means often has to be augmented by my HTML knowledge.
We jointly make minor changes to the HTML text that are
needed to generate some effect that we both know can be
achieved. I still haven’t come across a visual HTML page
editor that works 100% of the time. The editors either can-
not generate “modern” HTML because the goal posts keep
moving at a phenomenal rate, or they simply don’t render

the HTML accurately. Even Netscape Gold doesn’t seem to
be able to accurately position aligned graphics when you are
using its editor. It’s worse to have an editor that is supposed-
ly WYSIWYG but displays the output incorrectly.

Of course, the effect of visual page editors is to remove
the need for their users to have any knowledge of the under-
lying HTML. It becomes easy to create complex HTML
markup without comprehending the meaning of the text that

is produced. I don’t object
to this. After all, I drive
my car with no great
understanding about how
it works or how to fix it
when it breaks down.
When the car breaks,

which is rare, I call in
the experts and get
them to repair it.

However, when I was
my son’s age, I think car

drivers were expected to
know much more about
the internal workings of
their vehicles than we
need to know today. User
pressure for reliability, for
cars that don’t break
down, has forced the
manufacturers to build
vehicles that are “more
user friendly.” The same
user-driven process of
making it easier for

the user to know less is happening with HTML editors.
However, these visual editors suffer from the same prob-

lem that I described last month. They don’t scale. When I
set out with my text editor to create my Web-based tour of
the City of Canterbury in 1995, I was commencing the gen-
eration of a huge number of pages. At the end of the sum-
mer of 1995, the Tour was 100 pages. By the end of the
summer of 1996, it had grown to 350 pages. The pages all

26 SUNEXPERT Magazine February 1997

M
IC

HE
LL

E
FR

IE
SE

NH
AH

N
W

IL
BY

Automatic Web Page Creation

UU NIX BasicsNIX Basics by PETER COLLINSON, Hillside Systems

have a consistent set of elements, by which I mean that the
pages display the same set of objects in roughly the same
positions. They each have a title, a photograph, text, some
navigation buttons and some standard links to other pages.

Some of these objects are the same on every page. For
example, each page has the same set of links to other facili-
ties on my server, like a clickable map or the search engine.
Although most of the objects vary in content from page to
page, most of the HTML that is used to place the object on
the page remains the same. So, for example, the HTML that
inserts the photograph onto the screen is nearly the same on
every page. Only the file name and the size information
changes, specifying the image that pertains to that page.

So back in 1995 when I started the project, I had typed
three pages before realizing that what I was doing was a
waste of time. There was a consistent pattern to the pages,
and I could use UNIX tools to help me to minimize my
input. I could easily create a system where I supplied only
the content and generated the HTML automatically. The
system would remove the possibility of making random
human errors when entering the HTML for any one page.
The HTML would always be correct, because it would be
generated automatically.

Another payoff came at the start of 1996, when I decided
to restyle all the pages in the light of experience. I worked
on the new style to ensure it was correct, and then simply
regenerated all the pages using the new page layout. I’ve made
global changes like these several times now. You simply can-
not contemplate making sweeping changes if your main
input tool is a visual editor and you have to make edits to
each page individually.

m4 Is Key
The key to the page generation system is the m4macro

processor. A macro processor is a text replacement engine that
looks through a text file for known strings. Once the processor
has found a string, it will replace that string with other text.
The replacement operation is often known as an expansion
because early macro processors were used by assembly lang-
uage programmers. Macro processing allowed the program-
mer to grow some simple syntax consisting of a few words
into a complex set of machine instructions.

Macro processors evolved from their roots in assembly
language programming to become general-purpose pro-
grams. For example, ML/1 was a general-purpose macro
processor that could replace arbitrary strings in the source
with other arbitrary strings from a set of definitions. ML/1
was written by Professor Peter Brown from the University
of Kent in the UK.

However, the general-purpose programs are often difficult
to use. The problem is one of syntax. It’s necessary for the
program to recognize some of its input text as instructions
for the processor itself. Minimally, you need to be able to
define macro names and the string that will replace those
names in the source text. To introduce the definition, you’ll
need to put something in the text that the processor can
understand as the start of a macro definition. This “some-
thing” is conventionally a keyword. Herein lies the problem:

How is that keyword recognized? What happens if the key-
word occurs naturally in the text? Various solutions of vary-
ing complexity emerged to solve these problems.

The m4macro processor is not a general-purpose macro
processor. It grew from the C language preprocessor, which
itself was a macro processor designed originally to permit
programmers to insert constants in their code using a name
rather than just baldly writing a number. The intention of
the C preprocessor was to make the C code more readable.

The m4processor “knows” that it is running on some text
that looks like a C program. It can pick out individual words
or numbers from the text as long as those words look like
identifiers in the C language. The names must start with a
letter and consist only of alphanumeric characters (and
underscore). Commands to m4 look like a function or rou-
tine call in C. To define a macro that replaces “Jack” with
“Jill,” you will say:

define(Jack, Jill)

Then when the processor finds the word “Jack” in its input
text, it will replace it with “Jill.” The define here is a
reserved word, so the source text cannot contain the word
define unless it introduces a macro definition. There are
several predefined macro names in m4that cannot appear in
the input text. Inspect your manual page to find a list.
However, if these names do appear “naturally” in the source
text and you are not using the identically named m4func-
tion, then you can remove the special meaning of the key-
word by using the undefine macro.

Like all m4keywords, the define keyword is a macro and
can be found anywhere in the input stream being processed.
However, any new line that follows the define statement
will be added to the output, so it’s usual to add the magic
token dnl to the end of the definition. This means “delete
from here up to and including the new line.” The dnl key-
word is often used as a comment statement, causing m4to
delete the whole line.

A fundamental feature of macro processing is the idea of
rescanning. When the processor replaces some text, it looks
again at the new text to attempt to apply its definitions to
change the text again. So an m4 input file of

define(Jack, Jill)dnl

define(Jill, Hill)dnl

Jack and Jill

would result in the single line being output:

Hill and Hill

The Jack in the output is replaced by Jill and then by
Hill , while Jill is simply replaced by Hill .

There’s one further complication. When m4reads the
define statement, it will scan it looking for possible replace-
ment text. It will replace any tokens that it finds in arguments
to the statement. Sometimes, the replacement is convenient.
Mostly, it is not. It’s possible to avoid any text replacement by

28 SUNEXPERT Magazine February 1997

UNIX BASICS

quoting the arguments. I tend to always quote both the first
and second arguments to define just so that I know exactly
what is going on.

By default, the quote characters are different, and m4uses
open (`) and close (’) single quotes. However, open and
close single quote characters often appear in HTML. So I
always start my m4definition sequences by using

changequote({,})dnl

This sets the quoting characters to open and close braces,
which rarely appear in HTML.

HTML Using m4
Well, by now I hope that you are beginning to get the

idea. The plan is to create a file that is a template of the
HTML pages I want to generate. The template file will con-
tain m4tokens at any point where there is variable text. So for
a simple set of pages, I might have a template file like this:

<html><head>

<title>TITLE</title>

</head>

<body>

<h1>PAGETITLE</h1>

<p>

<img src=IMAGE SIZE align=left

hspace=8 vspace=4>

TEXT

<br clear="left">

<hr>

Last changed on: DATE

</body></html>

Here, I’ve capitalized all the keywords that I expect m4to
replace. Also, using lowercase in the HTML tags allows me
to use m4macro definitions like TITLE , while making sure
that the HTML <title> is not touched.

To expand this template, I’ll create an m4file like this:

changequote({,})dnl

undefine({index})dnl

define({TITLE},{Sample})dnl

define({PAGETITLE},{Sample page})dnl

define({IMAGE},{"sample.gif"})dnl

define({SIZE},{width=50 height=100})dnl

define({DATE},{7 December 1996})dnl

define({TEXT},{<p>

This is a sample automatically generated

page.})dnl

Incidentally, I’ll always remove the m4built-in definition
for index . I have many links on my pages that point to
index.html , and these links are changed to -1.html

unless I explicitly remove the internal meaning of index .
Also, the real template file for my Canterbury Tour is con-
siderably more complex.

I can create many of these description files and pass them

into m4along with the template file to generate pages that
are displayed to the user. For each page, all I do is say

m4 samp.desc template.m4 > out.html

Preprocessing
Well, I can hear you saying, “that definition file is not a

great advance on readability.” It’s stuffed with curly and
round brackets. It’s hard to see the wood for the trees. Well,
I agree with you. I actually want to be able to input the
description file in a much simpler way. I like files that have
keywords and values, so I would start by creating a descrip-
tion file like the following:

TITLE: Sample

PAGETITLE: Sample page

IMAGE: sample

SIZE: width=50 height=100

TEXT:

<p> This is a sample

automatically generated page.

With this type of file, it’s easy to see the data and the keyword
fields that will supply values on the final HTML page. Also,
when you make a new file, it’s simple to have an empty stub
file lying around that you pick up into your editor and fill in.

However, this keyword file does have to be turned into a
set of m4definitions. I’ll use sed to do this. The entire pro-
cessing sequence will have two stages. First, the keyword
description file is passed through sed to create the m4defi-
nition file. Second, the definition file and the template are
given to m4, allowing it to create the final HTML file. Of
course, all the code is placed into a small(ish) shell script
that will do the job.

I am making a couple of assumptions about the description
file. First, I assume that all the text in the file from the TEXT

keyword to the end of the file will replace the TEXTkeyword in
the template page. Second, the description file doesn’t contain
any dates. I plan to generate the “Last changed” date field on
the HTML page automatically in the processing script by call-
ing the UNIX date program with appropriate arguments.

With these assumptions in mind, I can start writing the
script. Once I’ve set up the quote characters that I intend to

30 SUNEXPERT Magazine February 1997

UNIX BASICS

use, and removed the built-in index macro, I’ll call sed :

#!/bin/sh

echo 'changequote({,})dnl

undefine({index})dnl' > m4defs

sed -e '

The sed program follows the -e option to the command.
The sed program is quoted using single quotes meaning
that the shell will not look in the string to find shell variables
that it can replace. Using single quotes allows me to use an
unquoted dollar sign in the sed program.

Here’s the next line of my shell script, which is also the
first line of the sed program:

/^TITLE: /s/^TITLE: \(.*\)$/

define({TITLE},{\1})dnl/

The text should actually be input on a single line, but I have
wrapped it for printing. The sed command has two parts, a
line selector and a substitute command. The selector is a reg-
ular expression that matches lines starting with the word
TITLE followed by a colon and a single space character. It
will only match the first line of the description file.

Once sed has found the line, it will execute the substitute
command to create an m4definition. It needs to extract the
part of the input line that is the active data, and makes its
selection using the regular expression on the left-hand side of
the substitute command. This expression first matches the
start of the line (^), the string TITLE : and a space. Then there
is a section of the expression marked by quoted brackets. The
source text that matches the expression inside the quoted
brackets will be stored. Inside the brackets, the expression
dot-star (.*) matches any character (the dot) repeated zero or
more times (the star). Matching will stop when the end of the
line is reached ($) that is outside the quoted brackets.

The effect of this substitute command is to replace the
whole source line with new contents specified by the right-
hand text string. However, the \1 on the right-hand side is
first replaced by source text that was matched inside the
bracketed expression on the left-hand side.

We can construct similar sed lines for the page title,
image and size definitions:

/^PAGETITLE: /s/^PAGETITLE: \(.*\)$/

define({PAGETITLE},{\1})dnl/

/^IMAGE: /s/^IMAGE: \(.*\)$/

define({IMAGE},{\1.gif})dnl/

/^SIZE: /s/^SIZE: \(.*\)$/

define({SIZE},{\1})/

Again, I am wrapping the lines for printing. Notice how I
supply the file name suffix .gif for the image. Actually, in
the Canterbury Tour, all the images are photos that are a
constant size. However, some of the photos are in landscape
format and some in portrait. So, rather than having to speci-
fy the size of the image repetitively, I have defined two key-
words PORTRAITand LANDSCAPEthat are processed by

/^PORTRAIT: /s/^PORTRAIT: \(.*\)$/

define({IMAGE},{\1.gif})dnl\

define({SIZE},{width=256 height=384})dnl/

/^LANDSCAPE: /s/^LANDSCAPE: \(.*\)$/

define({IMAGE},{\1.gif})dnl\

define({SIZE},{width=384 height=256})dnl/

There’s an assumption that I either use IMAGEand supply a
SIZE , or use LANDSCAPEor PORTRAITto specify the pic-
ture to go onto the page.

I can now deal with the TEXTcommand. I completely
replace the TEXT line in the source file by the start of the m4

macro definition and fix up the end of the definition after
sed has run.

/^TEXT:/s/^ *$/define({TEXT}, {/' $1 >> m4defs

The single quote marks the end of the sed program. The
program is used by sed to process a file whose name is taken
from the first argument to the shell script. Dollar signs intro-
duce shell variables, and $1 is a positional variable that is
replaced by the first argument to the script. We expect this
argument to be the description file. The sed program is run
changing the description file into a bunch of m4define state-
ments. All the characters that occur after the TEXTmarker in
the file will be copied to the m4defs file. It is passed through
m4and so may be subject to text replacements. I can now fin-
ish the script remembering that the last text in the file needs
some ending characters to complete the define statement. I
also add the date specification to the file.

echo '})dnl' >> m4defs

date=`date '+%e %B %Y'`

echo "define({DATE},{$date})dnl" >> m4defs

m4 m4defs template.m4

The TEXTdefine is closed with the first echo command.
The next line in the script sets up the date shell variable to
the string that is the current date, using the back-quote oper-
ator to run a command, and captures its output.

The last echo line adds the m4definition for the date to
all the previously stored lines. Finally, I call m4to generate
the HTML on the standard output of the script.

Some Conclusions
Well, I hope that gives you a flavor of the automatic

approach. I guess that you may still have some questions.
First, why am I describing a two-stage system where step one
makes sed generate m4definitions and step two uses m4to
process the template file? Why not use a single-stage process
that employs sed to directly edit the template file to gener-
ate the HTML?

One part of the rationale for using two stages is demon-
strated by the ease with which I used the PORTRAITand
LANDSCAPEkeywords to generate alternative settings for
some objects in the template file. To be fair, some of the
functionality has not been demonstrated by this article. I
have used the rescanning replacement ability of m4to gener-

32 SUNEXPERT Magazine February 1997

UNIX BASICS

ate the correct code for the navigation arrows on the
Canterbury Tour. The navigational arrows change from visi-
ble bitmaps to blank spaces depending on the links that are
available on that page. The names of the appropriate image
files are generated automatically. Finally, splitting the decod-
ing of description files into two separate stages seems to be
good engineering.

Another question that arises is, why do I generate static
pages in the first place? Why don’t I place the page generation
code into a CGI script and send the page image to the user
dynamically? Well, yes, this could be done, but I’ve resisted
the idea. I am conscious that each page on the Canterbury
Tour is perhaps 30 KB of data. I want to get that data to the
user as fast as I can, before they get bored and surf off. If I use
CGI scripts then I am not shipping data as fast as I can; I am
computing that data and causing some finite extra delay.
Also, dynamic pages cannot take advantage of the page
caches that store my pages closer to my reader, giving them
faster access to the images.

Finally, isn’t the Canterbury Tour a special application? It’s
perhaps unusual to have lots of repeated pages. Can the
approach be used for whole sites? The answer is a firm yes, at
moment anyway. If you look about the Web, you’ll find that
Web designers usually generate a complete look that pervades
all the pages on that site. The look of the pages is part of the
site’s identity. Until style sheets become more available (and
perhaps even after that) using a template approach can give a
site the flexibility to generate the site look independent of the

contents of each page. I’ve successfully used this approach
with the Canterbury Web Services site, where every page is
created from a description file using a common template.

Getting More Information
You’ll find the Canterbury Tour located at http://www.

hillside.co.uk/tour . Glyn’s pages are found at http://

www.hillside.co.uk/glyn , and the Canterbury Web Ser-
vices site is at http://www.cantweb.co.uk . These sites are
on the same machine and share the Apache server.

At the Hillside site, you’ll also find a page that lists all the
articles I have written for SunExpert. I place relevant links on
this page for all the articles I write, so it’s worth a visit if I
mention URLs; it will save you typing them in. On the entry
for the article you are reading now are some links to the sam-
ple page generated by the script above. There are also links to
the full text of the script, with the template and description
files. The URL for my SunExpert page is http://www.

hillside.co.uk/articles/sunexpert.html . You
don’t have to type all this in because there’s an obvious route
to this page from the welcome page on my server. ✒

Peter Collinson runs his own UNIX consultancy, dedicat-
ed to earning enough money to allow him to pursue his own
interests: doing whatever, whenever, wherever… He writes,
teaches, consults and programs using Solaris running on a
SPARCstation 2. Email: pc@cpg.com.

SUNEXPERT Magazine February 1997 33

UNIX BASICS

	Automatic Web Page Creation
	m4 Is Key
	HTML Using m4
	Preprocessing
	Some Conclusions
	Getting More Information

