
UNIX Basics
by Peter Collinson, Hillside Systems

SunExpert Magazine ■ May 1997 27

Who’s Doing What, When, Where?
UU

NIX was designed to be used in
a cooperative environment, so
it’s natural that it supplies pro-

grams that help you to know things
about the other users on the machine,
if only to identify that idiot who is gob-
bling up resources. UNIX has always
been a system where everyone can see
what is happening on the machine and
has several tools aimed at providing sys-
tem and user information. Many of the
system tools were originally designed to
provide debugging information about
resources, but can now be used to inves-
tigate the state of the machine, telling
you what that idiot is doing.

Perhaps the earliest tool aimed at sup-
plying information about users was the
who command. The who command tells
you who is logged onto the machine,
which terminal they are using and the
time they logged on. These days, logins
are mostly done over the network, and
the who command also prints the name
of the machine from which the network
connection was made.

The who command simply prints
data from a file. Traditionally, the file is
/etc/utmp , but I notice on Solaris 2.5
that things have become more compli-
cated. I’ll get to that later. I’ll talk about
SunOS first. It’s a simpler system and
closer to the original.

Basics of who
When you log into a machine, the

login program writes a record in
/etc/utmp . The record holds your
login name, the name of the terminal
line you used to log in, the name of the
host that you logged in from and the
time that all this happened. The record is
fixed length and is written into a known
position in the /etc/utmp file deter-
mined by the terminal name.

On SunOS, terminal access is con-
trolled by the /etc/ttytab file. The file
acts as a control file for the init pro-
gram, which is responsible for starting up
the program (getty) that sits on termi-
nal lines waiting for users to log in. When
the user logs out, their shell will die. The

init process is notified and wakes up to
start a new invocation of getty , listening
on the line for a new user.

The /etc/ttytab file contains one
line for every terminal attached to the
system. The line position of a particular
terminal in this file is its “slot,” and this
index is used to provide a unique posi-
tion in the /etc/utmp file.

Incidentally, you’ll find that you have
to include all the pseudoterminals that
you want to use on the system in this
file. Their names are not needed for the
benefit of init because they are mostly
used by programs started from the net-
work. However, when a pseudoterminal
is used by the login program, it will
expect to find a slot in /etc/utmp –the
slot is provided by an entry in the /etc/

ttytab file.
You need to be circumspect when

editing the /etc/ttytab file on a live
system. It’s OK to change details of a
line, perhaps turning a terminal line on
or off, and it’s also OK to add new ter-
minal lines at the end of the file. But

M
IC

HE
LL

E
FR

IE
SE

NH
AH

N
W

IL
BY

make sure that you don’t change the
slot numbers of existing lines. Radical
line changes to the file need to be done
on a single-user system and followed
by a system reboot to resynchronize
terminal names to slots.

The entry in /etc/utmp that is writ-
ten by the login program will need to be
cleared when you log out. The login pro-
gram cannot do the clearing because it’s

long gone. The login program used the
exec system call to become your shell to
allow you to work. One of the jobs of the
init program is to notice that you have
logged out and restart the program that
listens for terminal connections on that
port, so it’s the init program that is
responsible for clearing the entry for the
slot in /etc/utmp .

Incidentally, the incorrect setting of

the access permissions of the /etc/

utmp file can supply an interesting secu-
rity hole. It’s sometimes set so that every-
one can write to it. Setting global write
permission is often done because there
are some programs that legitimately wish
to write to /etc/utmp , but you don’t
want to give those programs superuser
status. Making the /etc/utmp file
writable by all provides an unwelcome
intruder with the ability to use a simple
Romulan cloaking device. The intruder
can create a tiny program that clears their
entry in /etc/utmp . They are now
cloaked and invisible to the who pro-
gram, and this can be confusing.

Of course, the cloaking is imperfect;
you can still see their processes using the
ps command. I notice that the BSD/
OS system places /etc/utmp in a spe-
cial group (utmp), with the intention of
using setgid to enable any program
that wants to write to the file. Actually,
I can find no program that is set to be
setgid to the utmp group, so it’s pos-
sible that access permissions on /etc/

utmp can be established so that only
root can write to it.

Solaris who
I said that Solaris is different.

Actually, the differences are not
fundamental: A record is still being
written when you log in and cleared
when you leave. The system on Solaris
is an evolution of the original one. I
suppose I should have said the systems
on Solaris. There are two parallel utmp

files on my Solaris 2.5 system: /var

/adm/utmp and /var/adm/utmpx .
The /etc/utmp file has become a sym-
bolic link that points at /var/adm

/utmp .
Some of the changes in the system

are undoubtedly due to the changes in
the init program that were made for
System V. The init process is now a
much more general process-spawning
program, and its actions are logged into
the utmp file. I suspect there are System
V compatibility reasons that compel the
need for two parallel files. This is the
penalty for having defined binary file
mapping onto a C structure that is
pulled “raw” into a C program rather
than having a well-defined program
interface to read the data. I think that

28 SunExpert Magazine ■ May 1997

UNIX Basics

UNIX Basics
having two files is fraught with danger.

The utmpx file format is different from utmp . The utmp

file only contains the user name, the line that was used to log
in and the login time. The utmpx file contains much more
space for user names (32 characters rather than eight), and
also holds a 256-character array to store the host name. It
seems that the files are no longer managed using the terminal
slot. They are variable-length files, and (I’m guessing) when
the login program wants to store a new record it simply finds
an empty slot in the file to write the data. The record con-
tains a keyword that is used to relate the actual terminal with
the data using a serial search through the file.

Incidentally, when I was looking at the who command, I
noticed that it reads both the utmp and utmpx files. The
program doesn’t need to read both files because all the infor-
mation in utmp is also present in utmpx . This bug was
reported to Sun (in 1993, actually). The alternative version
of who, found in /usr/xpg4/bin/who , just reads its infor-
mation from the utmpx file. Thus, if you are worried about
CPU or disk cycles (and you probably are not), then you can
find a more efficient version of the who command.

Both utmp and utmpx have extra fields that store new
information. I suspect that some of the new information is
there to allow the who command to behave like the w com-
mand that originated on the Berkeley systems. The w com-
mand is useful because it not only tells you who is logged in
but also indicates how long their terminal has been idle, the
CPU seconds that the terminal has consumed and the cur-
rent command being executed on the terminal. All this infor-
mation can help you work out whether the person is actually
sitting at their terminal and using the machine, or whether
they left the terminal a while ago.

You can see all the new information stored in utmp and
utmpx by using some options to the who command:

$ who -a

This gives you a complete dump. The output will include
records that show the start-up of your system, and also empty
slots in the file that give you information on past activity. A

plus sign next to the terminal name shows active login records.
The records that are written on the file are typed using a tag
value, allowing various types of activity to be stored. For exam-
ple, you can get the time that the machine was last booted
using the -b flag:

$ who -b

system boot Jan 31 00:00

Giving who an illegal option like

$ who -x

will print a list of valid options and what they mean.

Login History
The who command only tells you the state of the machine

at the moment that you run the command. To provide a his-
tory of activity on the machine, the login program appends the
same record that it placed in the utmp file to the /var/adm/

wtmp file. On Solaris, it also places the utmpx record at the
end of the /var/adm/wtmpx file. The wtmpx file is supposed
to track the wtmp file, but the file seemed to be garbled on at
least two systems I looked at for this article.

You can dump the contents of these history files using the
who command. On SunOS,

$ who wtmp

will just dump the file, giving you a listing of all the activity.
On Solaris, the who command only prints login records, but
you can use the -a flag to see most of the data. Actually, the
best Solaris command to print all the data in the file is part of
the accounting suite, fwtmp . Use the command

$ /usr/lib/acct/fwtmp < wtmp

You will have to look up some values in /usr/include/

utmp.h to decode some of the tag values that are used to
differentiate the records.

On SunOS, user data in the file will mostly come in pairs.
You will see a login record containing a user name, a terminal
line name and a time; and a logout record, where the user
name is empty, the terminal line is present and, of course, the
time is when the user logged out.

Records for users on Solaris come in threes: there’s a “sys-
tem” start-up record, written by the terminal monitor program
or perhaps by telnetd , rlogind or another program that
handles logins; a user start-up record that indicates that the
user name of the person who has logged on; and a “dead
process” record, written when the user logs off.

Both systems will have other records written into the file.
If you change the clock using the date command, then
there’s a discontinuity in the time sequence on the machine,
and the accounting programs need to know that the clock
was reset. A pair of special time change records are written
into the file by the date command. The first will give the

30 SunExpert Magazine ■ May 1997

On Solaris,
the who
command
only prints
login
records,
but you
can use
the -a flag
to see
most of
the data.

time before the change, and the second
will give the time after the change. The
difference between the two can be used
to adjust the login times for people
who were logged in when the time was
reset. Actually, it’s a good idea to avoid
setting the date and time using the
date command when the system is
running in multiuser mode.

Also, on both systems, records will
be written when the system is rebooted.
The times associated with these admin-
istrative records can be used to give
some idea of the availability of the sys-
tem. If a clean shutdown is made, then
a shutdown record is written. When the
system reboots, a reboot record is writ-
ten. So it’s possible to deduce whether
the system crashed by noting the
absence of the shutdown record.

Actually, deriving system availability
figures from the log can be a little hit
and miss. The accounting information
can give an incorrect picture. If the sys-
tem crashes in the middle of the night
when there has been no user activity,
then the accounting programs will only
see a reboot record written some time
after the last active record on the file.
The programs can have no real idea how
long the system has been down. If some-
one is logged in when the system crashes,
then they cannot attribute a correct con-
nect time for that user, because it’s not
possible to know for certain when the
system died.

On a clean shutdown, all the users
will be logged out before the shutdown
record is written. The reboot record will
follow the shutdown record and its time-
stamp can be compared with that on the
shutdown record to deduce how long the
system was unavailable. However, the
reboot record just tells us when the boot-
strap happened, it doesn’t tell us how
much initialization time was used by the
system. On Solaris, a record is written
when the machine changes from one run
state to another, so we can see when the
system entered multiuser mode and was
offering service to customers.

You’ll find that many systems write
records into the wtmp file (or files).
Obviously, user-driven programs like
rlogin or telnet do. Less obvious-
ly, you’ll find records written by FTP
or UUCP.

Process Accounting
The wtmp file can act as the basis for

accounting for the connect time used by
particular users on the machine. This
perhaps had more relevance in the days
before workstations when the user
logged in once from their character-
based terminal, and that single login
was the sole source of their work. Now,
users can log in several times to the

same system, and connect time
accounting is perhaps less relevant.

Both Solaris and SunOS support the
logging of every process that has been
run on the machine. The kernel has a
module that is supplied with a file name
and will write a record to the nominated
file whenever a process terminates. By
default on Sun systems, this file is
/usr/adm/pacct . It’s often called

SunExpert Magazine ■ May 1997 31

UNIX Basics

UNIX Basics
acct on other systems. You should be aware that the file can
grow to mighty proportions on a busy system and you must
take the steps that the system provides to control the file size.
By default, process accounting is turned off and needs to be
enabled. Consult Sun’s systems administration documentation.

The record that is stored for each process contains the
information on the user who executed the command (the
user and group ID); the controlling terminal for the com-
mand; the start time of the process; the
user, system and elapsed time mea-
sured in clock ticks; the average
memory usage and the bytes of
I/O that the process performed;
and a flag that indicates whether
the process used superuser privi-
lege or has forked a new process.
Finally, the command name is
stored as an eight-character
string.

Mortals can look at the file
with the lastcomm command, so
you can find out the commands
that someone else is executing.
Commands are printed in reverse
order of termination, so you can
see the recent commands and use
^C to escape when you have seen
enough. You cannot see the parameters to the commands.
The lastcomm command may be useful when tracking bad
guys on the machine, but the command name that is stored
is simply the name of the file, and not its path. When the
addictive rogue game first came out, we found that many
people had private copies named for programs that they were
supposed to be using, like vi . This meant that they could sit
and play rogue , with the ps command telling the casual
watcher that they were using vi to do “real work.” It also
meant that the accounting information did not track the
usage of the program correctly. The moral is, you cannot
assume that the name of the command reflects its function.

The pacct file format has remained largely unchanged
since the early days of UNIX. The times that are CPU ticks
could be immense but are passed over in a 16-bit word as a
floating-point number, with a 3-bit octal exponent and 13 bits
of fractional information.

There are two sets of programs available on your systems to
process the pacct and wtmp data. The older program suite
consisted of two programs: ac , which generated connect time
accounts from the wtmp file; and sa , which analyzed the
pacct file giving per-user and per-command statistics. These
two commands were a little rudimentary if you wanted to
maintain historical data. I certainly remember us having to
write our own package because of these deficiencies, so we
could prove who was using the machine.

The alternative to sa and ac is the standard System V
accounting package, available on both Solaris and SunOS.
Only SunOS supports the older commands. The System V
package was written quite early on, perhaps in the early ’80s.

I think that it was up and running in System III. It’s actually
quite an impressive bit of work that consists of several pro-
grams and shell scripts that are intended to run unattended,
recovering from errors without human intervention.

You can find all the programs and scripts on /usr/lib/

acct . The central part of the package is the runacct script
that performs daily processing, compressing data into (mostly
text) summary files that are stored on /usr/adm/acct . Each
month, the monacct script is run, and this takes the daily

reports and further compresses them to create a set of
monthly reports that contain summaries of termi-

nal usage, command usage, disk usage and the
time of last login. The format of the

reports is self-explanatory.
If you are a student of

shell scripts, the runacct

command is interesting
because it knows that it has
several distinct sequential

one-way tasks to perform and
recognizes that it is possible

for the machine to die
while one of these states
is being executed. It
wants to be restartable,
but restartable in the cur-

rent state. To allow this re-
entrancy, it creates a state file holding a string that names the
state and uses this to trigger the appropriate processing that is
required.

The whole accounting package is an interesting example of
how to construct complex tailorable systems from scripts and
small programs. I am dubious that the package deals with the
/usr/adm/wtmpx and /usr/adm/utmpx files correctly.
I’ve had no time to pursue this.

Further Information
Thanks to Mike Barrow who mailed me from Spain with

some suggestions for article topics. I’m not sure this was exact-
ly what you had in mind, Mike.

The accounting system is well documented in Sun’s System
Administration Answerbook CDs. If you want a printed re-
source, then I suggest you read Unix System Administration
Handbook by Nemeth, Snyder, Seebass and Hein (now in its sec-
ond edition), published by Prentice Hall, ISBN 0-13-151051-7.

Another good book is Essential System Administration by
Æleen Frisch, published by O’Reilly and Associates Inc., ISBN
1-56592-127-5. This book has a good diagram of the System
V accounting system, showing how all the parts fit together
and how they are used. ✒

Peter Collinson runs his own UNIX consultancy, dedi-
cated to earning enough money to allow him to pursue
his own interests: doing whatever, whenever, wherever…
He writes, teaches, consults and programs using Solaris
running on a SPARCstation 2. Email: pc@cpg.com.

32 SunExpert Magazine ■ May 1997

	Who's Doing What, When, Where?
	Basics of who
	Solaris who
	Login History
	Process Accounting
	Further Information

