UNIX Basics

2. T &P ¥R
‘A_:t 40 f" I'.r'-'-:L ' _ A}
A T W ; o b
‘I'IJ':‘::. .--:l}-,!f"‘"?""?;i'ﬁ e ép 4 :
iy ‘{:.;?_\F o . -!:JE ol Y '1_5
o 3 @
X g (HO P
Nad® ok ;
— - el s 1
i 1 i _\‘___I;i
; -:i-: o F | ..I
i
| S - 1
=t Il |
Familil e o e L -""'—-"-"l
: / e L S) S S e e
L R e e

Analyzing Syntax

I have written in my life have con-

tained an element of text processing.
Some programs take input from users in
the form of interactive dialogue; others
read data from files. It has always been a
sensible approach on UNIX systems to
store primary data as text so people can
use general-purpose editors to access and
maintain the files and utilize the rich
UNIX tool set to search or otherwise
manipulate the data.

Programmers who plan to take text
input from a file or from the user’s key-
board face similar sets of problems when
designing what that text should be. The
fundamental problem is that the program
is performing what amounts to pattern
recognition. In general, the program will
see the text come in one character at a
time, and it needs to understand the for-
mat, allowing it to pick out meaningful
information from the data stream. We,
as humans, can experience the problem
when listening to others talking in an
unfamiliar language. If the language is

I think that nearly all the programs

30

completely unknown to us, then we will
hear a meaningless jumble of sounds.
However, we only need a very small
understanding of the language to break
those sounds down into words that we
might learn to understand.

The task, then, of any program that
wants to read text is to take the charac-
ters it sees and change that text stream
into something comprehensible.

Much of our understanding about
how text recognition should be done is
taken from the work of the pioneers in
program language design. Compilers
and interpreters for languages like
FORTRAN or BASIC tended to recog-
nize text using a character-by-character
approach. For early BASIC, each line
started with a number that was the line
number, statements looked like this:

10 INPUT A
20B=A+1
30 PRINT B
So for each line, the interpreter starts

SunExpert Magazine m October 1997

by reading numeric characters until it
finds a character that is not a number.
It will turn the sequence of characters
into a decimal number that is the line
number. Scanning on, the next non-
space character will be the first charac-
ter of a command or the start of an
arithmetic statement. Characters are
read until it’s clear what the statement
is. Then, the arguments to the state-
ment are processed. This is an example
of “bottom-up” parsing. We take the
characters that make up the input and
attempt to collect them together, mak-
ing a higher-level object.

Early computer scientists realized the
character-by-character approach does
not scale. It doesn't allow you to share
code. Each statement in the language is
understood by an individual part of the
program that is coded separately to deal
with each type of statement. The process
is error-prone. No formal rules are being
applied to the text, so each statement
has to be examined to see if it fits in
with the rules of the language.

UNIX Basics

It was realized that the fundamental pattern recognition
problem was actually one of language recognition, that pro-
gramming a computer was a form of language use. Computer
designers began to look at the work of linguists. Natural lan-
guages all have grammar, a set of rules that are used to create
the phrases or sentences. If a grammar was imposed on a lan-
guage intended for computer input, then it would be possible
to use the rules of the grammar to verify that input from the
user was syntactically correct. In fact, parts of the early lan-
guages used formal grammar; they used the familiar infix
algebraic notation to express mathematical statements. It was
a matter of generalizing the approach to a whole language.

These grammars tend to be “top-down.” We start the trans-
lation process looking for a “program” that comprises several
varieties of “statement.” For primitive BASIC, each statement
is a “line-number” followed by a “command.” One command
is a “keyword” (INPUT in the example above) followed by a
“variable list,” and a variable list is a single “variable name” or a
variable name followed by a comma and another variable list.

The specification of the Algol language was the first time a
complete programming language was described using a formal
grammar. The grammar was specified with the reference lan-
guage called Backus-Naur Form (or BNF) that was used by the
international group of people who developed Algol. I suspect
that Algol is always thought of as a European language by
many folks in North America. It shouldn't be forgotten that
John Backus was the U.S. representative on the committee
that established the language, and that the language was from
the beginning intended to be an international language.

Later, BNF became the basis for automatic language speci-
fication systems, such as the yacc language, which is used to
provide syntax analysis for the C language.

Algol and the notion of using formal grammars to specify
languages taught us that the business of recognition should be
done in several phases: First, you should attempt to make sense
of the characters by analyzing the text into identifiable chunks
known as tokens. Then, having built a representation of the
structure of the text, that structure can be examined using a
top-down approach to check its syntax. Finally, having validat-
ed the input, the statement can be interpreted, compiled or
stored, depending on the application.

Tokens and Shells

Well, this article started from the thought that | take the
notion of a token for granted. When | am looking at C, a
shell script, an awk script or Perl program, | mentally parse
the line into tokens in the same way that you are reading this
text. You know that each word is delimited by spaces and
your braingetsveryconfusedwhentheyareomitted. Well, it’s not
quite true to say that words in English text are only delimited
by spaces. Some words are terminated by punctuation charac-
ters. Punctuation is also used to give you information about
the intended phrasing of the text. Also, some words are termi-
nated by the end of a line.

Many UNIX programs use the approach of breaking the
input line into tokens. Some programs will then use a formal
grammar to process the tokenized data, often making use of

32 SunExpert Magazine

yacc to generate the necessary tables. Many programs will stop

at the tokenization phase. Shells are a good example of programs
that split the input line into tokens and then use those tokens in
a bottom-up fashion to execute a command for the user.

On the whole, throughout UNIX, there’s a consistent view
about what a token in a shell might be. Tokens on a shell
input line are separated by spaces or tabs (which | tend lump
together as “white space,” although of course the color of the
space depends on the settings on your screen). Shells will read
their input and split the line into separate tokens, discarding
any white space. As | said, having obtained a set of tokens,
most shells don't possess a grammar that is formally expressible
and will tend to analyze their input, doing what is needed
depending on what they find.

All shells take the first token on the line to be a command
name and will look for a file of that name in various well-
known places defined by the PATHenvironment variable (or
the path variable in csh). Other tokens on the line become
arguments that are passed into the program as separate argu-
ments. It’s the job of the program to decode these arguments
and take the action that the user has started.

The early UNIX shells did very little more than take input
from the user and call commands. The shell did recognize that
a token containing an asterisk or a question mark meant that
the token should be expanded into a list of file names before
the command is called, each of the matching file names becom-
ing a separate argument to the program that is being invoked.

Later, variables were introduced into shells. When a token
starts with a dollar character, it is assumed to be a variable that
contains a value. When the command is being created, any
contents of shell variables are inserted into the command at
the appropriate position. So, for the Bourne shell,

$ src=fromfile
$ dst=tofile
$ cp $src $dst

The first statements set the variables src and dst . When the
cp command is read, the $src and $dst tokens are replaced
by the contents of the variables before the command is called.

Because the first object on a line is also a token, there is no
reason why it cannot also be a shell variable, if we follow on
from the example above and use mvas the command name
rather than cp:

$ CPCMD=mv
$ SCPCMD $src $dst

Once you introduce characters that have a special meaning
like dollar, asterisk or question mark, then you need a way of
telling the shell not to use that special meaning, that you want
the special character to be passed intact into the program that
is being called. Actually, we also need a way of passing space or
tab characters into the program. We need a method of telling
the shell that the space should not act as a token delimiter but
should be considered part of the token. We need a way to
quote character sequences.

Quoting in shells is somewhat of a minefield. Each shell
does things slightly differently. I will concentrate on the Bourne

m October 1997

UNIX Basics

shell (sh) and its offspring the Korn shell (ksh). Beware that
the rules may be different if you are using publicly available
clones of these shells. Also, quoting in csh is much more
restricted than in the Bourne shell, making the Bourne shell the
first choice for writing scripts.

In the Bourne shell, you can stop the special meaning of
any single character by preceding it with a backslash. So,

$ echo hello world
hello world

will call the echo command with two arguments: hello and
world , while

$ echo hello\ world
hello world

will call the command with a single argument hello world
However, using the backslash isn't particularly user-friendly; it
looks kind of ugly. We usually use a pair of quote characters to
create the single token:

$ echo 'hello world'
hello world

The shell sees the opening single quote and takes all the input
that follows as part of the token until the closing quote is
found. The quotes are discarded when the command is called.

The Bourne shell also allows new lines to be enclosed in single
quotes so single arguments that span several lines can be
specified simply:

$ echo 'hello
world'

hello

world

The single quoted token is “super-quoted”; that is, it ignores all
special characters, including the backslash. The only character
that you cannot put inside a single-quoted token is another sin-
gle quote. All other characters are carried through unchanged to
the command that you are executing. Actually, missing an end
quote in a complex shell script is a great way to introduce hard-
to-find errors, so great care needs to be taken to match opening
and closing quotes when laying out the text.

There are many occasions where you want to use the shell to
create a single argument but also have part of the token created
from shell variables. A double-quoted token achieves the effect:

$ src="hello world'
$ echo "$src and thanks"
hello world and thanks

Here, we set a variable to a value containing a space, then
type an echo command. The $src s replaced in the token by

34 SunExpert Magazine m October 1997

UNIX Basics

helloworld , but because the string is quoted it will be passed
as a single argument into the echo command. Note that we can
do string formatting by adding text inside the quoted string.

A good and little-used feature of the token recognition sys-
tem is that when we place two quoted sections together, they
are treated as a single token. In shell scripts, | often use this
feature to hop in and out of the different quoting forms:

$ echo 'It"""'s a small world after all'
It's a small world after all

adding a single quote into token that is passed into the echo
command. | agree that the example above is overkill. It’s hard to
think of a real one that doesn’t need 17 pages of explanation.

It's important to understand the Bourne shell, its quoting
rules and variable expansion, because many other programs
follow its lead. A good grasp of how things work in the shell
helps considerably with programs like awk or Perl. The shell is
somewhat odd because it’s very much a complex string process-
ing language sitting behind a language that implements a set
of imperative commands that act on named files and have a
set number of fixed parameters.

Tokens in Email

The use of formal grammars and tokens spring up in what
you might think are odd areas. For example, we have implicit
token recognition and syntax analysis when we send or receive

email. Several fields in the mail header, including the sender
address (the From: line) and the destination address (the To:
line), are constrained to a certain grammatical form by RFC
822, which defines the way we all deal with mail on the Inter-
net. RFC 822 also specifies the syntax of the Date: field,
ensuring that the line is comprehensible to automatic systems
that may wish to use it, perhaps for sorting the contents of
your mailbox into chronological order.

Mail addresses are something that we use every day, and it’s
often poorly understood that there is a set of rules that govern
their construction. Incidentally, what follows is a little abbrevi-
ated. You are encouraged to read RFC 822 to obtain the full
gory unexpurgated details.

The simplest form of an address field is something like this:

To: aperson@someplace.domain

As you know, you can place comma-separated lists of addresses
on the line. Also the header line can be folded, by inserting a
new line and at least one white space character at the start of
the next line:

To: aperson@someplace.domain,
another@somewhere.else

Notice that the line is separated into tokens using white space
as the separator. This means that someone’s mailbox address

SunExpert Magazine m October 1997 35

UNIX Basics

cannot contain a space. Well, strictly it can, if you are pre-
pared to always quote the name using double quotes:

To: "A Person"@someplace.domain
Actually,
From: A Person@someplace.domain

is syntactically incorrect. The use of double quotes to quote
parts of the mail address is poorly understood, so you are creat-
ing grief for yourself if you create a mailbox address with a
space. Incidentally, you can also use the backslash to quote a
single character in addresses, but the standard explicitly says that

From: A\ Person@someplace.domain

is incorrect.
Most people like to put a human-readable name into the
address, and the most common way is to use angle brackets:

From: Agnes Person <aperson@someplace.domain>

There are rules about what may be placed in the part of the
address before the angle-bracketed section. You are not sup-
posed to put one of the special characters used in the mail

address here. So, for example, a period is not allowed unless

you quote it, so
From: "A. Person" <aperson@someplace.domain>

is legal because it’s a quoted string. Most mail systems don't
enforce these particular rules, so there’s considerable laxity in
general practice.

The other common way of inserting your name into the
address is to use the comment facility of the syntax. Any char-
acter can be placed inside round brackets and will be treated
as a comment, ignored by the mail system:

From: aperson@someplace.domain (A. Person)

or

From: (A. Person) aperson@someplace.domain

Notice that the angle brackets have been removed. Strictly,
From: (A. Person) <aperson@someplace.domain>

is not legal. The commented section in round brackets acts
like a single space, and so the line becomes

To: <aperson@someplace.domain>

which is not actually allowed in the syntax. Again, most mailers
don't complain and will get on with the job of sending the mail.
As | said, there’s a bunch more stuff in the syntax that isn't
in common use. At the time the standard was written, it was
considered important for users to be able to route their own
mail, hopping it from machine to machine. The widespread
takeup of the Internet where domain addresses for mail are
distributed using the DNS has superseded the requirement.
Because of the widespread use of spam mail, many sites are no
longer prepared to relay mail for random third parties either.

Finally

If you look around your system for programs that are
intended to understand the text that you type, then you'll find
tokenization and parsing rules. You'll often find that the syntax
contains ways to ensure that the program can unambiguously
decode what the user has typed. The design of the input is often
a trade-off between what is easy for the system to comprehend
and what “feels natural” for the human.

I recommend you take a look at RFC 822. RFC’s are widely
distributed, I got my copy from ftp://ftp.uu.net//.vol/
2/inet/rfc/rfc822.Z , Which mirrors ftp:/nic.ddn.
milfc . O

Peter Collinson runs his own UNIX consultancy, dedi-
cated to earning enough money to allow him to pursue
his own interests: doing whatever, whenever, wherever...
He writes, teaches, consults and programs using Solaris
running on a SPARCstation 2. Email: pc@cpg.com.

36 SunExpert Magazine m October 1997

	Analyzing Syntax
	Tokens and Shells
	Tokens in Email
	Finally

