
UNIX Basics
by Peter Collinson, Hillside Systems

24 SunExpert Magazine ■ September 1997

Network File Systems
II keep smashing the stupid connec-

tor that 3Com Corp. supplies to
attach its very thin PCMCIA

Ethernet card that slides into my laptop
to the very thick BNC plug that con-
nects the card into my Ethernet. The
box in which the card came trumpets
that 3Com has a new design for the
connector; I presume people have com-
plained about the facility to easily per-
form connector crunching. Well, 3Com
in Ireland, the connector is still trivially
smashable, and it really shouldn’t be.

When I crunch the connector, I real-
ize how dependent I have become on my
LAN. Without the Ethernet connection,
my laptop is useless. I cannot get any sig-
nificant data into or out of it without the
huge pain of using floppies. My son is
pleased; it means that he can get on with
the massively more important task of
designing his new add-on level for the
Dark Forces computer game to which
he is addicted.

The main use of my LAN is file shar-
ing. I use the network to carry the infor-
mation that allows various systems to

manage files stored on the disks of other
computers. Of course, we think of the
systems delivering the files as “servers”
and those that access the files over the
network as “clients.” However, the dis-
tinction between the machines that are
servers and those that are clients is
blurred somewhat on my site, and I sus-
pect the same is true at many sites.

I must confess I still have great feel-
ings of delight when I access files on a
remote system as if the files were sitting
on a disk connected to the local machine.
I like the whole notion. I enjoy the ease
of use that mechanism permits. As time
has gone on, I find that people to whom
I explain the geography of my system are
less surprised by the idea. Network file
systems have become a fact of daily life
for many people.

I’m using two different types of
network protocols to provide remote
file access on my network. My UNIX
machines use NFS, the Network File
System from Sun. My Windows NT
and 95 systems want to talk LAN
Manager protocols, and I use the excel-

lent freeware Samba system from Andrew
Tridgell and his team to support file
access on the UNIX machines from my
PC-based systems.

The NFS Protocol
If you use a UNIX workstation on a

LAN with other UNIX workstations, it’s
a fair bet you will be using NFS to con-
nect file systems together. The Solaris 2.5
system that I am running supports two
versions of the NFS protocol. NFS
Version 2 was implemented in 1984 and
was first released with SunOS 2.0. It
formed the basis of RFC 1094, dated
March 1989. Version 3 was created in
1992, when a group of people from sever-
al companies got together to firm up the
draft. After some pondering and discus-
sion, the results were published for the
world in June 1994 at the USENIX
Conference in Boston. If you are wonder-
ing about Version 1 of NFS, well, that
was internal to Sun and didn’t escape.

Version 3, then, is the upstart new-
comer, and is used between consenting
machines. The choice of version is trans-

M
IC

HE
LL

E
FR

IE
SE

NH
AH

N
W

IL
BY

parent to the user of the system; if a
machine cannot connect using Version 3,
it will default back to Version 2.

The basic idea of NFS is simple.
When you add a disk to the system on
UNIX, you join it to the existing file sys-
tem tree by the mount system call. The
new disk forms a new branch of the tree
structure. You can move into it using the
cd command and access its files. With
NFS, you do the same thing. You, as the
client, issue a mount command that is
sent to a remote server, and part of the file
system tree on the server is joined to your
local file store. The server will have a list
of machines that are permitted to access
its file store and will validate your request
before passing back a “file handle.”

On SunOS, the list is stored in a file
called /etc/exports . On Solaris, the
list is controlled by a call to the share
command, and you’ll find a set of these
commands in /etc/dfs/dfstab . The
file handle returned by the mount call
is used in all further requests from the
client to the server. Now, when a process
on the client accesses a remote file with a
read system call, for example, that system
call is turned into a network request using
the NFS protocol. The server checks
the validity of the request, performs the
desired operation and returns the result.

Once you have mounted the remote
file system at some point in your file tree,
whenever you attempt to open a file that
is below the mount point, the system call
that you emit will be translated into an
NFS request and sent over the network
to the server. The server will execute the
request and will return a result to your
kernel. In turn, your kernel will pass a sys-
tem call result into your process as if the
request was serviced by a local disk.

The NFS protocol assumes that the
server does not retain any state about
the client. For example, a normal UNIX
read system call remembers how far a
particular process has got in reading or
writing a file. A sequence of read calls
can be used to scan a file from beginning
to end; there is no need to reposition file
pointers before every read. NFS will
store the “where we are now” state in the
client, and when scanning a file, it’s the
job of the client to send appropriate read
primitives, each containing position and
size information.

So the server is not clever. It knows
nothing about what the client is doing.
Clients do tend to be clever, for efficiency

reasons. They remember file positioning
information so that they may present
UNIX file semantics to the user process.
They will also cache information so that it
doesn’t have to travel the network again.

It was an early aim of the NFS design
that the remote file system should not be
tied to UNIX, and that it would not be
constrained to offer full UNIX file sys-
tem semantics. So, for example, you
cannot access a special device file on a
remote system and expect that it will
access the I/O device to which the spe-
cial device interfaces. The NFS model
was an “ideal” file system, with some
UNIX overtones that I’ll come to later.
The aim of generating a system that
would support different types of file sys-
tem access paid off, I think. Sun must
have sold a considerable number of PC-
NFS licenses allowing PC systems to
access shared file stores on UNIX servers.

An icon for the design was the notion
of “statelessness” in the server. As we’ve
seen, UNIX expects the kernel to retain
state about the file that is open, the
“where we are now” state. It was a great
heresy to suggest that the server should
maintain the state. At the time of the
NFS design and early implementation, its
competitor was the Remote File System
(RFS) from AT&T, which aimed to pro-
vide a complete remote UNIX semantics,
and did this by maintaining server state.
Many loud debates, approaching the level
of religious argument, ensued in public
forums about the validity of the two
approaches. For UNIX, RFS was proba-
bly the better approach, however, NFS
won the contest by being an open stan-
dard and also because the world is not
full of UNIX systems.

The NFS server is stateless. It’s sim-
ply sent a transaction request and per-
forms the operation. Each request is
an independent event and, theoretically,
file updates can occur in any order.
Statelessness was really an original
design criterion in NFS to avoid the
need for crash recovery. When a server
crashes, a client can just wait for it to
come back and continue with opera-
tions as if nothing had happened. There
is no state to be recovered and reloaded
into the server. Cynics would say that
it was a criterion because the early
Sun systems were not exactly resilient:
Because they tended to crash often, it
was better to design something that
avoided the recovery problem.

Stateless operation has a downside.
File locking implies that state is retained
on a file. This state needs to be kept
close to the file–on the server–because
several clients may be accessing the same
file and need to see the locks. Getting
file-locking operational on NFS took
some time to implement. There is a sep-
arate lock manager to handle it.

UNIX Overtones
The NFS client/server has UNIX

overtones because it adopted the UNIX
file system tree model, an inevitable con-
clusion of its development. As a result, it
doesn’t easily supply file system features
that UNIX doesn’t support. For example,
it doesn’t provide support for file version-
ing, which might be needed to provide
full remote support for a VMS file sys-
tem. In general, people get by with this
restriction. So far, no one has generated a
widely used operating system whose file
system differs wildly from the UNIX
hierarchical structure.

POSIX and ANSI C have helped to
sanctify the various values that a program-
mer might be expected to know about a
file. These two standards rely heavily on
UNIX, and so NFS has been able to
interwork with several operating system
clients that comply with the standards.

The details that are stored for each file
in NFS map onto the traditional UNIX
set of values. Each file has a set of file per-
missions that happen to be the same as
the UNIX file permissions. NFS Version
2 doesn’t support access control lists pro-
vided by other operating systems. The file
permissions are applied to a user ID,
group ID pair (UID, GID) that are also
stored with the file. This pair of numbers
needs to be the same for each user on
your network. There’s no translation
mechanism to map local users on one
machine to local users on another.

The need for (UID, GID) harmoniza-
tion is one of the NFS features that I like
the least. It is possible to provide a map-
ping scheme for the (UID, GID) pair,
and non-UNIX servers sometimes do so.
I well remember the nastiness of the
renumbering operation that I had to per-
form on several machines to generate a
single (UID, GID) space when the
prospect of NFS loomed into view. The
need to maintain a single local database of
(UID, GID) pairs has given rise to sys-
tems that distribute databases around a
site, known these days as NIS or NIS+.

26 SunExpert Magazine ■ September 1997

UNIX Basics

28 SunExpert Magazine ■ September 1997

These systems are really Band-Aids that
don’t solve the underlying problem. For
one thing, the systems don’t easily scale
out from your local network to the wider
real world. NFS really needs to provide
for users to be local to a machine, but
have shared access to files on other
machines, and that access should be in-
dependent from the actual (UID, GID)
values used on any particular machine.

You’ll perhaps realize that something
has to be done about superuser permis-
sions, and this is one area where UID
mapping does take place. Someone is
superuser because the UID in the process
that they are running is zero, which is
what happens when they log in as root.
When their process accesses a remote
machine, it will tell the server that it is
running with UID zero, which should
allow them to have superuser privilege.
However, the zero UID value is usually
changed to the UID of the nobody user
on the remote machine, meaning that
they probably have less right to the files
than a normal user.

Controls exist to map the UID to any
value that seems sensible, and so it can be
mapped back to the zero value. The con-
version is controlled locally on the server,
so the administration on a particular
machine can decide which superusers on
which external machines are permitted to
have root access to their files.

NFS Version 3
So what does Version 3 give us?

The Sun Answerbook doesn’t help a lot.
What follows is derived from the Boston
USENIX paper (see below for details on
the paper).

One of the big problems in Version 2
is the need for an NFS server to perform
synchronous writes. When a client issues
a write request, it sends an RPC call say-
ing “write this data at such and such a
position in the file.” The server cannot
reply to this RPC request saying “done”
until the data is safely stored on magnetic
media. If it says “OK” when it has it in
memory but crashes before it manages to
write it to disk, then the file will be in an
inconsistent state because the client
thinks that it has written some data that
is not actually present on the disk. The
server must do a “synchronous” write
and not return any result until the data is
safely stored on disk. The client has to
wait until the write operation has com-
pleted, so runs in step with the speed of

the network and the remote disk.
This has proved a huge bottleneck for

NFS implementations. Some systems
have provided an “unsafe” write mode
where the data is retained in the memory
of the server and the users hope that
crashes are infrequent. To date, the most
common solution for NFS servers to pro-
vide asynchronous writes has been the
Prestoserve system, originally from Legato
Systems Inc. Prestoserve is a kernel driver
that uses an NVRAM disk cache sitting
between the kernel and the disk. When
the kernel initiates a write, the data is
loaded into the cache and the kernel is
told that the disk write has succeeded.
The kernel tells the NFS server, and the
server tells the client.

In time, the data finds its way onto
the disk. If the system crashes, Presto-
serve will write any unwritten data onto
the disk before allowing the system to
bootstrap, so the file system is consis-
tent. The Prestoserve system also helps
with normal local file system operations
that require synchronous writes, for
example, creating files.

Version 3 improves the write perfor-
mance by allowing a client to choose to
use asynchronous write transactions and
later send a command that says “commit
and write the data that you have to the
disk.” The operation is coupled with a
“write verifier” value, an 8-bit number
that is changed every time a server crash-
es. The idea is that the client can now
determine whether a server has died and
lost data that has been sent aimed at
being written asynchronously.

Version 3 now allows NFS to oper-
ate using a TCP/IP connection to a
remote machine rather than the previ-
ous UDP-based datagram system. The
use of UDP goes back to the early
obsession with transaction speed. The
thinking was that TCP/IP imposed too
much protocol overhead, and this
would slow down NFS operation. The
NFS designers then found that there
was a need to supply many of the fea-
tures of TCP/IP, such as reliability,
error recovery, congestion control,
timeouts and so on. The UDP code
became a reimplementation of certain
TCP/IP aspects, so why not just use
TCP/IP in the first place? To be fair,
the vast increase in processor speed
since the original NFS design had made
the TCP protocol overhead much less
of a cycle stealer.

UNIX Basics

SunExpert Magazine ■ September 1997 31

Version 3 provides some performance
improvements by reducing the protocol
overhead when returning directory
information. There’s a new primitive
operation that returns a directory and
the attributes of all the files it contains.
The aim is to support the very common
situation where a client will open a
directory and then cycle through all the
files that it contains looking for a file
with a specific attribute. In NFS Version
2, this common operation sequence
results in a flurry of network activity as
the information for each individual file
is retrieved one file at a time.

Version 3 provides some help for
clients to maintain caches of information
that is stored on the server. It’s obviously
a win if a file can be retained locally and
supplied to the user processes without
recourse to the network. Every reply for
an operation that modifies data contains
two sets of file attributes: a version taken
before the operation was done and one
taken after the operation. If the modifica-
tion time in the preoperation attributes
matches the client’s copy, then the client
knows that the local cache is consistent.
Only the client has modified the file.
The clients replace their local copy of the
attributes with ones that existed after the
operation and continue merrily along. If
the preoperation times are different, then
the client knows that its cached data is
incorrect and can take steps to flush and
reload it. This is a great improvement on
the situation in Version 2 where a client
was unsure who had altered a file with
which it was dealing.

Finally, Version 3 supports 64-bit file
pointers reflecting the change in our gen-
eral expectation of the size of a large file.
I can’t say that I have a file on any of my
systems that is bigger than 4,294,967,296
bytes, but undoubtedly some people are
creating them.

As I said at the beginning, your Solaris
2.5+ system will use NFS Version 3 when
it can, so most of these changes are invisi-
ble to users. Of course, the ability to
interwork with older implementations
was a design aim for Version 3.

Finally
This is another article where I intend-

ed writing about one thing and ended up
talking about some subset of the topic.
Never mind, another time. If you are
interested in the NFS Version 3 paper,
then you can find it in the Proceedings of

the USENIX Summer 1994 Technical
Conference, Boston, MA, ISBN 1-880446-
62-6. I had hoped to say that you would
find the paper online at the USENIX
Web site (http://www.usenix.org)
accessible only to members of the assoc-
iation, but sadly it’s not there.

You’ll find Samba at http://
samba.canberra.edu.au/pub/
samba. Another thing you will find on
the Web are my son’s Dark Forces Web

pages: http://www.hillside.co.
uk/glyn/dark/dark.html . ✒

Peter Collinson runs his own
UNIX consultancy, dedicated to
earning enough money to allow him
to pursue his own interests: doing
whatever, whenever, wherever… He
writes, teaches, consults and pro-
grams using Solaris running on a
SPARCstation 2. Email: pc@cpg.com.

UNIX Basics

	Network File Systems
	The NFS Protocol
	UNIX Overtones
	NFS Version 3
	Finally

