
62 SunExpert Magazine ■ December 1997

Q&AIX
by Jim Fox

Q:Your October article, “Virtual
Windows” Page 75, mentioned

two ways to customize the rc file used by
the fvwm2 window manager when it starts.
One was cpp and the other was M4. I
thought cpp might be easier because I know
how to program C, but I haven’t been able
to figure it out. Whenever I try to use the
cpp preprocessor option, I get all sorts of
errors. What am I doing wrong? Would I
be better off going right to M4?

Beverly Rhodes
City University

A:Preprocessing is a common way to
add flexibility to a program’s config-

uration data. It also lets you set up a common
look and feel to your configuration files–even
for disparate programs. Often, a program will
invoke a preprocessor for you; fvwm2 , the C
compiler and xrdb do this. Other times, you
might have to run the preprocessor as a com-
pletely separate step.

Learning to use a preprocessor will be
well worth the effort. We’ll consider cpp

this month and M4 next month. First,
you’ve got to get into the right frame of
mind for cpp –you’re programming a dif-
ferent language now. Those old fvwm2

comments just won’t do anymore.
Remember, cpp is expecting C code.

Enclose your comments in /* and */ , just
as you would in a C program. Then, use the
normal # style directives that you would also
use in a C program. The most common and
useful are the following:

• #include filename

Includes the named file, interpreting any
commands it finds in the file. This allows
you to break up a large .fvwm2rc file into
smaller, more manageable pieces, and allows
you to easily share parts of your file with
other users.

• #define name value

Defines a new macro, name, giving it the
value indicated.

• #if expression
true code

#elif expression
else true code

#else

false code
#endif

The
Preprocessing
Payoff

Jim Fox works as a
systems programmer for the
University of Washington.
He writes and maintains
distributed applications
that run on a variety of
UNIX systems–and some
non-UNIX ones. He is
also the deputy manager
for the Interoperability
Project for SHARE’s
Open Systems Group.
Email: fox@cac.
washington.edu.

wizard’s apprentice

super user

wizard

RS/Magazine Supplement RS/Magazine Supplement RS/Magazine Supplement RS/Magazine Supplement RS/Magazine
Supplement RS/Magazine Supplement RS/Magazine Supplement RS/Magazine Supplement RS/Magazine Supplement
RS/Magazine Supplement RS/Magazine Supplement RS/Magazine Supplement RS/Magazine Supplement RS/Magazine
Supplement RS/Magazine Supplement RS/Magazine Supplement RS/Magazine Supplement RS/Magazine Supplement

RS/Magazine SupplementRS/Magazine Supplement

The if clause is self-explanatory. If the expression is true, the
true code is copied to output; otherwise, the else if code
or false code are copied. Expression can be any normal
C-style expression, mixing numbers and defined symbols. In
addition, you can use the phrase defined(name) , which is true
if the name is defined. There can be zero or many #elif claus-
es and zero or one #else clause.

• #ifdef name

Same as #if defined(name) .

• #ifndef name

Same as #if !defined(name) .

For more information, consult almost any C programming
reference. My personal favorite is The C Programming Language,
2nd Edition, Brian Kernighan and Dennis Ritchie, Prentice
Hall, ISBN 0-13-110362-8. Make sure you get the second
edition: There were many additions to the C language, and
the cpp preprocessor, after the first edition was published.

Using cpp with fvwm
Now we’re ready to write a custom, cpp -style fvwm2rc file.

Remember that comments in the original file, .fvwm2rc , are
enclosed with /* and */ instead of being prefaced with #.
The comments won’t be passed on to fvwm2 , but that’s OK.

When fvwm2 runs the cpp preprocessor, it defines several
names which you can use in your file. The most useful of these
are shown in Figure 1. See the
FvwmCppman page for the rest.

Here is a common use for
the cpp preprocessor. Suppose
you work at various locations
where there are different-
size X terminals; maybe a
large-screen terminal at
your office and a smaller
one at home. You might
want to use different fonts,
depending on the screen

Q&AIX

64 SunExpert Magazine ■ December 1997

Figure 1. Useful Definitions Passed from
fvwm2 to the cpp Preprocessor

WIDTH Width of the screen in pixels
HEIGHT Height of the screen in pixels
BITS_PER_RGB Measures the number of colors available
COLOR “Yes” or “No”
USER Username

SunExpert Magazine ■ December 1997 65

Q&AIX

size. You could make some definitions related to screen size at
the start of your rc file. Notice that these examples follow the
usual convention that all capitals represent defined names:

/* Define screen sizes */

#define BIG_SCREEN WIDTH>=1500

#define MID_SCREEN WIDTH>=1100

#define SML_SCREEN WIDTH<=1100

Later in the file you can make use of those definitions:

/* Choose larger window manager fonts

for larger screens. */

#if BIG_SCREEN /* large screen */

WindowFont 7x13

IconFont 7x13

#else if MID_SCREEN /* medium screen */

WindowFont 6x10

IconFont 6x10

#else /* small screen */

WindowFont 5x8

IconFont 5x8

#endif

Then, start fvwm2 with the cpp option:

fvwm2 -cmd "FvwmCpp rc_file "

Some documentation tells you to use the -f option for this
command, but that won’t work–you have to use -cmd , enclose
the argument in quotes and specify the rc file.

The cpp preprocessor is a surprisingly useful tool. You
might find other uses. It’ll work on any text file; just pipe the
file through it like this:

cat source | cpp > output

Despite the obvious utility, don’t go converting all your files to
cpp code just yet. Next month, we’ll look at the other fvwm2

preprocessor, M4, a more powerful macro processor that just
might make you decide never to use cpp again.

Q:One of the most convenient features of fvwm is
the window list module. It’s similar to twm’s icon

manager and allows for a lot of “icons” in a small area of

the screen. The problem is, it’s
unsorted. The window names
just appear in random order. I
have 20 to 30 windows in that
list. I need to have them sorted.

Jim Fox
University of Washington

A:Well, I don’t expect
software authors to

think of everything, and it’s
especially awkward to complain
about programs I get for free.
Still, it’s hard to forgive actual
regression from one generation
to the next. twm sorts that icon
list; fvwm ought to also–it’s
easy enough.

Let’s take the attitude that
if we want something done
right we have to do it ourselves.
And we can do it ourselves
because fvwm2 is free software

for which we get source code, and how hard can it be to sort
a little list anyway? Actually, no sorting will be necessary.
Because windows are added to the window list one at at time,
all we need to do is insert them at the proper point–instead
of at the end. Look at the patches (see the Web address at the
end of the column) to see how this was done.

And, as long as we’re hacking away, let’s fix something
else. In the window list, iconified windows show up in
parentheses. They also show up in a different color. Let’s
make the parentheses optional, so we can just use color
and have a nice tidy list. We’ll define a new .fvwm2rc file
command to specify no parentheses. It might look like this
(suppose we’re using that cpp preprocessor from the last
question):

#if defined(COLOR)

*FvwmWinListNoIconParens

#endif

Our resulting list is shown in Figure 2. It looks good enough.
And just in time to make a holiday present. Get your copy
from http://weber.u.washington.edu/ ~fox/

fvwm2/ . There, you’ll find patches to the source, along with
precompiled binaries for AIX and Linux. Happy holidays. ✒

Figure 2. The
Sorted fvwm
Icon List

	The Preprocessing Payoff
	Using cpp with fvwm
	Figure 1. Useful Definitions Passed from fvwm2 to the cpp Preprocessor
	Figure 2. The Sorted fvwm Icon List

