
74 SunExpert Magazine ■ December 1997

Work

Y ou’re all familiar with the diff utili-
ty. It’s one of the more powerful tools
we have for keeping track of what’s

changed in a text file. Over this past summer
and fall, we have been working on a series of
documents in different stages of completion,
with different revisions, and we’ve realized
that there’s a misfeature in the operation of

diff : If we are trying to compare formatted
versions of a document rather than the docu-
ment source, diff gives us thousands of
lines of spurious differences.

To steal a short example from the Free
Software Foundation’s GNU diff docu-
mentation, consider two files, lao and tzu ,
with slightly different formatting:

Comparing Text, Part 1
Jeffrey Copeland

(copeland@alumni.
caltech.edu) is at
Softway Systems Inc. in
Boulder, CO, working on
UNIX internationalization.
He spends his spare time
rearing children, raising cats,
and being a thorn in the side
of his local school board.

Jeffrey S. Haemer
(jsh@usenix.org) works
at QMS Inc. in Boulder,
CO, building laser printer
firmware. Before he worked
for QMS, he operated his
own consulting firm, and
did a lot of other things, like
everyone else in the software
industry.

$ cat lao
The Way that can be told of is not the eternal Way;
The name that can be named is not the eternal name.
The Nameless is the origin of Heaven and Earth;
The Named is the mother of all things.
Therefore let there always be non-being,
so we may see their subtlety,
And let there always be being,
so we may see their outcome.
The two are the same,
But after they are produced,
they have different names.

$ cat tzu
The Nameless is the origin of Heaven and Earth;
The named is the mother of all things.

Therefore let there always be non-being, so we may see their subtlety,
And let there always be being, so we may see their outcome.
The two are the same,
But after they are produced, they have different names.
They both may be called deep and profound.
Deeper and more profound, The door of all subtleties!

Note: The software from
this column is available at
http://alumni.caltech.
edu/ ~copeland/work.html .

by Jeffreys Copeland and Haemer

SunExpert Magazine ■ December 1997 75

Work

Even though the text beginning with Therefore … is identi-
cal in both files, the remainder of the file is reported by diff

as different because the formatting is different. Not even the
useful -b or -w flags, which are used to ignore white space,
can help us. What’s worse, if we only have Microsoft Corp.
Word files, we normally extract the text with a line like:

strings foo.doc | fmt -75 >foo.txt

This gives us a reasonable ASCII file to peruse, so we don’t
have to rely on the Microsoft tool. Unfortunately, this is the
equivalent of a formatted document, so we’re back to square
one and unable to compare the old text with a new version.
(OK, we’ll concede that if we were willing to use one of the
what-you-see-is-what-you-get word processors, we could use
its “redlining’’ feature to mark the differences for us.)

We could delve into the source code of diff and add a new
flag, or we could retreat to the original papers on diff and
write something from scratch. (The papers are: “An O(ND)
Difference Algorithm and its Variations,” by Eugene W. Myers,
Algorithmica , Vol. 1 (1986), pp. 251-266; and “A File Compar-
ison Program,’’ by Webb Miller and Eugene W. Myers, Soft-
ware–Practice and Experience, Vol. 15 (1985), pp. 1025-1040.)
Alternatively, we could graft a filter onto the input or output
of diff to remove the spurious text differences.

We considered each of these approaches. Writing a new
program from scratch struck us as the most interesting,
though doing all the work inside the diff source code is
probably more practical because it wouldn’t necessitate rewrit-
ing the code for traversing the difference tree. However, in the
interest of getting something to work in the short term, we
opted for the third approach and built a shell script to achieve
our desired output.

Why do it this way? It’s a time-honored prototyping tech-
nique for UNIX tools. Remember that the original version of
spell was a half-dozen-line shell script. Exercise for the read-
er: Given the prototype we’re providing, either write a new
program or modify the GNU diff source to do the function
we are creating here.

A Shell Script
We need a way to compare the running text without having

the line breaks get in the way. We can do this by breaking each
line from each file into individual words, using a command
like fmt -l 2 foo.txt >foo.words , and then compar-
ing the two files of words against each other. Thus, our first cut
at a script called redline might be something like:

#! /bin/sh

fmt -l 2 $1 >/tmp/$$a

fmt -l 2 $2 >/tmp/$$b

diff -b /tmp/$$a /tmp/$$b

We’re deliberately not doing error checking or cleanup
yet–we’re just trying to prove the concept–we’ll get to a prop-
erly constructed shell script shortly. Also, you might have to
modify those command lines. If your system is based on Free

BSD, for example, the fmt command line would be fmt 2

$1 . This gives us output that begins:

2,24d1

< Way

< that

< can

< be

< told

< of

< is

< not

< the

< eternal

< Way;

< The

< name

< that

That output is not of much use: It presents us with a differ-
ence output consisting of one word per line, which, while
correct, is difficult to read. Further, we still don’t have context
for the differences because they appear in a vacuum.

We can improve the situation by generating a side-by-side
difference of the word lists, like this:

#! /bin/sh

fmt -l 2 $1 >/tmp/$$a

fmt -l 2 $2 >/tmp/$$b

diff -y -b /tmp/$$a /tmp/$$b

Which gives us a full context, beginning like so:

The The

Way <

that <

can <

be <

told <

of <

is <

not <

the <

eternal <

Way; <

The <

name <

that <

can <

be <

named <

is <

not <

Note: If you’re not using the GNU diff , then you may need
to use the sdiff command.

We have the full context again, but it’s still painful to read.

76 SunExpert Magazine ■ December 1997

Work

Unfortunately, we can’t do something as simple as pipe the text
back through fmt , because the difference markers will be fold-
ed into the formatted text, which will make it even harder to
read and make the differences even more difficult to spot. We
really want to be able to postprocess the output of diff in
some way to make the output easier to read.

Also, notice that we’ve had to use the -b flag to diff to pre-
vent spurious differences caused by the differing number of
blanks at the beginning of lines. We should probably remove all
the blanks at the beginning of lines to prevent this. However,
this means that we need to add a blank line between indented
paragraphs too. With that in mind, and postulating a postpro-
cessing filter named reddiff , our next cut at the shell script
looks something like this:

#! /bin/sh

begin by breaking files into a word per line;

ensure that paragraphs are handled nicely

whether they’re indented or preceded by

blank lines

expand $1 | sed -e ’s/^ */\

/’ | fmt -2 >/tmp/$$a

expand $2 | sed -e ’s/^ */\

/’ | fmt -2 >/tmp/$$b

now do an sdiff, and collect the differences

diff -y /tmp/$$a /tmp/$$b | reddiff

We’d normally have used a character class in the sed regular
expression that matched either space or tab, but instead we
used expand to convert tabs to spaces in this example because
it’s easier to see what the code is doing–feel free to fix this in
your version. In the best of all possible worlds, we’d be able to
use POSIX character classes in our sed expressions, and use a
line such as sed ’s/[:blank:] *//’ .

That leaves us with two tasks: First, we must add file
cleanup and error checking to the script; second, we must
write the reddiff program. Let’s do the easier task first.

We begin by providing a description of the program, and
an RCS identification string. We follow the commentary by
checking the file arguments and issuing a usage message if
one is needed. Next, we set the cleanup of temporary files
through the use of a shell trap command. For those of you
not familiar with it, trap executes the given code when any
of the named signals are received by the script–an older ver-
sion required you to provide the signal number, which made
it fairly nonportable. Then, we proceed with the code as out-
lined before:

#! /bin/sh

$Id: $

This does a diff on running text,

in the same style as a Word or

WordPerfect red line comparison.

set the cleanup

trap ’rm -f /tmp/$$*’ EXIT HUP QUIT INT TERM

check that file arguments are present

[-z "$1" -o -z "$2"] &&

echo usage: $0 file1 file2 &&

exit

begin by breaking files into a word per line

ensure that paragraphs are handled nicely

whether they’re indented or preceded by

blank lines

expand $1 | sed -e ’s/^ */\

/’ | fmt -2 >/tmp/$$a

expand $2 | sed -e ’s/^ */\

/’ | fmt -2 >/tmp/$$b

now do an sdiff, and collect the differences

diff -y /tmp/$$a /tmp/$$b | expand | reddiff

Because diff -y produces tabs as part of its white space on
output, we’re expanding those tabs to make parsing by the
reddiff filter easier.

The next task is a little more complicated.

The Postprocessing Filter
We can make our development task easier by capturing a

sample of the intended input to reddiff for testing purposes.
We simply substitute cat into the redline script in place of
reddiff . The logical first routine to provide for our reddiff

program is one to parse the output of diff -y , and return the
words. There are four possible forms to a line of output from
diff -y . We can have the input be identical:

The The

The input can be changed between the files:

Named | named

The line can appear in the first file only:

that <

The line can appear in the second file only:

> called

All of the example outputs have possible text, a tag character
and possible text. In this case, “possible text’’ represents a
single word:

/* parse the actual output of sdiff */

char

parse(char *line, char **wp1, char **wp2)

{

We provide the line of input itself, and pointers to locations

where the words should be returned.
The actual value returned by the func-
tion is the tag character. We keep the
words on the input line as local static

char pointers. Also, we need some local
variables:

static char *word1, *word2;

char *s, tag;

If we have a completely blank line, it
represents a paragraph break, so we
return an empty tag and new lines for
the words:

/* a completely blank line */

if(*line == '\n')

{

*line = 0;

word1 = word2 = line;

*wp1 = *wp2 = word1;

return ‘ ‘;

}

In the normal course of events,
though, the tag is at a fixed position
on the line–we’ve been compressing
the blanks in the example sdiff lines
we’ve been showing you; the default
line is much wider. We get pointers to
the two words:

tag = line[62];

word1 = &line[0];

word2 = &line[64];

We also need to put NULLs at the end
of the words, so they can be used as
strings:

Notice that we’re doing some defensive
programming for words that don’t have
a terminating blank.

Last, we stuff the pointers to the
words into the return locations and
return:

*wp1 = word1;

*wp2 = word2;

return tag;

}

That’s all we have time for now.
We’ll finish showing you the code for
the rest of the reddiff program next
month as our New Year’s gift.

Until then, happy holidays and
happy trails. ✒

SunExpert Magazine ■ December 1997 77

Work

if((s=strpbrk(word1, " ")) != NULL)

*s = 0;

else

line[21] = 0;

if((s=strpbrk(word2, "\n")) != NULL)

*s = 0;

else

line[84] = 0;

	Comparing Text, Part 1
	A Shell Script
	The Postprocessing Filter

