
76 SunExpert Magazine ■ August 1997

Work
by Jeffreys Copeland and Haemer

L ast month, we sketched an over-
view of Revision Control System,
or RCS, for you. In the process,

we stumbled over, and pointed out, RCS’
single-file myopia. In closing, we promised
you a discussion of Concurrent Versions
System, or CVS, a widely used, freely avail-
able extension to RCS, built to handle the
file hierarchies that we all use to build
products. Here it comes.

Getting Started
The nice thing about RCS is that it’s easy

to use. For the most part, all you need are
two commands, ci and co , which are used
to check files in and check files out, respec-
tively. As you’d expect, dealing with trees
requires, unavoidably, more work. Still,
CVS tries to mirror RCS’ simplicity and
doesn’t do so bad. We’ll illustrate this by
beginning the same way we did last month:

We want to draw your attention to two
noteworthy things about our example: First,
the command we used, cvs ci , is similar to
the command we would have used for RCS
(there is also a cvs co). While these and
other features of CVS use easy-to-remember
analogs to RCS, ci is an argument to the
command cvs , not a command on its own.

(We could tell you that for RCS you
need to learn two commands, but for CVS,
you only need to learn one. However, if we
could say something like this with a straight
face, we’d be working in marketing, making
a lot more money.)

Second, the above example didn’t work.
We did something that seemed like it made
sense, but it didn’t. Normally, we’d shrug and
say, “First time for everything,” try the exact
same thing a couple more times–we’re not in
marketing, we’re in software–and then, when
all else failed, read the manual.

In this case, CVS told us
what to do. This is an impor-
tant principle of software
design: Don’t just say what’s
wrong, say how to fix it ! Con-
trast the SunOS usage message

sed: Unknown flag: X

Practical CVS,
Part 1

Jeffrey Copeland
(copeland@alumni.
caltech.edu) is a mem-
ber of the technical staff at
QMS’ R&D group in
Boulder, CO. He’s been a
software consultant to the
Hugo award administrators
for several years. He spends
his spare time raising chil-
dren and cats.

Jeffrey S. Haemer
(jsh@canary.com) now
works for QMS, too, and is
having a great time. Before
he worked for QMS, he
operated his own consulting
firm, and did a lot of other
things, like everyone else in
the software industry.

$ echo "Use the right tool for the job." > jeff

$ cvs ci jeff

cvs commit: No CVSROOT specified!

Please use the '-d' option

cvs [commit aborted]:

or set the CVSROOT environment variable.

Work

78 SunExpert Magazine ■ August 1997

with the Linux usage message

Usage: sed [-nV] [--quiet] [--silent]

[--version] [-e script]

[-f script-file] [--expression=script]

[--file=script-file] [file...]

This principle has a long history in UNIX and has been clearly
set out on many occasions. Although we try to use standards-
conforming library functions, we steer clear of the POSIX
getopt() interface because it doesn’t force a usage message.

In contrast, our Perl programs routinely have lines like this:

getopt('LSMFT') or die $usage;

The module Getopt::Std doesn’t automatically emit “Hey!
Don’t do that’’ messages, so we feel better about using it.

So let’s try taking the advice CVS offers.

$ CVSROOT=/cvs; export CVSROOT

$ cvs ci jeff

cvs commit: cannot open CVS/Entries for reading:

No such file or directory

cvs commit: nothing known about 'jeff'

cvs [commit aborted]:

correct above errors first!

Progress. Now we’re making new mistakes.
We enjoy learning by making mistakes for several reasons.

First, we make a lot of mistakes, so it’s important to know
from the outset what software will let us shoot ourselves in
the foot before we do it. By this assay, CVS turns out to be
relatively safe. Second, we like to see and decode as many
error messages as possible. We know from experience that
we’ll see them again; if we don’t generate them ourselves by
accident, someone else will invariably appear at our door
demanding to know what they mean. (We’re tempted to call
all this “Learning by not doing.” However, if we yielded easily
to temptation, we’d be in politics, making a lot more money.)

So what’s really going on here? CVS is designed to let
you work with collections of files. To do so, you need
to keep those collections in a repository. The environment
variable $CVSROOTpoints at the root of this reposito-
ry. You can have more than one repository, but each
repository can hold many unrelated collections.

The first time we ran cvs , we hadn’t designated a
repository. Now, we’ve designated a repository, but the
commands cvs ci and cvs co only work on source
code collections that have already been put into the
repository. To put a collection of files into the reposi-
tory, you need to use the command cvs import .

We could try importing the file jeff , but that
wouldn’t show off CVS’ ability to deal with file collec-
tions, so let’s put in something bigger. First, we’ll grab
a copy of the entire /etc directory:

$ cp -r /etc/ .

Next, we’ll import it:

$ cvs import etc

cvs [import aborted]: /cvs/CVSROOT:

No such file or directory

Again, a new error message. This one’s telling us that CVS
uses a suite of administrative files, all of which it expects to
find in the directory $CVSROOT/CVSROOT. (We think the
choice of names is genuinely horrible. We didn’t write CVS;
we just use it. If we could think up good names for things,
we’d be in advertising and making lots more money.)

We could show you how to create these administrative
files by hand, but the command cvs init does the job for
you (see Figure 1). We’ll postpone explaining what each of
the files shown in Figure 1 are, but note for now that almost
all of them are under RCS control. In this case, “under RCS
control” also means “under CVS control.” With a nice self-
referential twist, CVS allows you to work with its adminis-
trative files as a legitimate CVS collection.

What do we mean by “almost all” ? CVSROOT/history ,
for example, has no associated RCS file because it’s a file con-
taining the entire history of everything done to any repository
under $CVSROOT. It starts out empty.

-rw-rw-r-- 1 jsh rd 0 Jun 2 12:17 cvs/CVSROOT/history

We’ll look at this file again after we import etc . Speaking of
which, let’s try again:

$ cvs import etc

Usage: cvs import [-d] [-k subst]

[-I ign] [-m msg] [-b branch] [-W spec]

repository vendor-tag release-tags...

-d Use the file’s modification time

as the time of import.

-k sub Set default RCS keyword

substitution mode.

-I ign More files to ignore (! to reset).

-b bra Vendor branch id.

-m msg Log message.

-W spec Wrappers specification line.

$ cvs init

$ ls -RFC $CVSROOT

CVSROOT/

/cvs/CVSROOT:

checkoutlist cvswrappers,v loginfo,v rcsinfo

checkoutlist,v editinfo modules rcsinfo,v

commitinfo editinfo,v modules,v taginfo

commitinfo,v history notify taginfo,v

cvswrappers oginfo notify,v verifymsg

verifymsg,v

Figure 1. Creating Administrative Files with cvs init

80 SunExpert Magazine ■ August 1997

Work
We’re getting close now. The usage message from cvs import

tells us that we’re just calling it with the wrong arguments.
What are the arguments? repository is where to put it

under $CVSROOT. But where to put what ? CVS is built to
understand trees. By default, operations are performed on
whatever directory you’re in and all its subdirectories. If we
say cvs import , for example, we’ll actually import every-
thing under our current working directory. This means we
have to make sure we do a

$ cd etc

The arguments vendor-tag and release-tag are there
to let us keep track of large releases of software from other
people. Most of the time, we’re focused on keeping track of
large collections of software that we’re developing ourselves
and want to release. Sometimes, however, we begin with a
code base from somewhere else–a vendor that we’ve paid to
develop something, or even a different branch of our own
company. vendor-tag lets us identify the source.

What about release-tag ? In some situations, we need
to be able to handle massive updates from the original vendor.
If we begin with a source release from Acme Software, for
example, work on a customized development of the package
for six months, and then get an upgrade from Acme, we want
a place to store the upgrade, exactly as supplied by the vendor,
before we begin merging the changes into our customized ver-
sion. With these tags, we can do that.

In our case, we’ll call the “vendor” Jeff and the release
“initial,” like this:

cvs import etc Jeff initial

Aha! Suddenly, we’re editing a file containing the following lines:

This is what CVS does to ask you for a log message. It’s the
same idea as the RCS prompt

enter log message, terminated with single '.' or end of file:

>>

with three twists:
1. CVS automatically puts you into whatever editor is

specified by the variables $CVSEDITORor $EDITOR.
2. By default, CVS uses one comment for all imported files.

This is a theme that we’ll see again in cvs ci , and flows
from the idea that CVS operations deal with collections,
not just individual files.

3. CVS gives you starting text for the comment. Any line
that starts with CVS: never goes into the RCS file, so
none of the lines labeled CVS: get saved in any file.
However, anything you type, above or below it, will

become a log comment for every file you’re importing.
The lines in the above example are hard-wired into CVS,

but they’re just the defaults. In general, the default comment
files that the editor brings up come from one of the adminis-
trative files. Here’s how it works:

The file $CVSROOT/CVSROOT/

rcsinfo , for example, contains a
two-column list of regular expressions
and template files. If the name of the
directory your file is in matches the
regular expression, CVS uses the corre-
sponding template to initialize your
comment–a catch-all expression,
DEFAULT, matches any directory that
isn’t otherwise matched. If we want
to provide forms for fill-in-the-blank-
style comments, we can put those forms
into template files.

After the comments go in, and we
exit the editor, CVS fills the screen with
a series of lines like this:

N etc/passwd

I etc/passwd ~

N etc/rmt

I etc/rmt.old

The files marked N are new files in the repository and the
files marked I are being ignored. CVS has customizable rules
about which files it ignores, but the defaults are so reasonable
that we have never had to modify them. After all this is done,
we have a repository with an RCS file that corresponds to
each file we imported:

$ ls $CVSROOT

CVSROOT

etc

$ ls $CVSROOT/etc/pass*

/cvs/etc/passwd,v

Working with Files in the Repository
The Source Code Motel: Your files check in, but they never

check out. – Anonymous

Seems like it took forever, doesn’t it? Well, we could have
tried reading the manual first, but that wouldn’t have been as
much fun. Let’s review what we did to get started:

1. We created a place to store the repositories, then set
$CVSROOTto point at it.

2. We initialized the $CVSROOTdirectory using cvs admin .
3. We went to the tree of sources we wanted to check in.
4. We said the magic words: cvs admin etc Jeff initial .
5. We put in a comment and exited the editor.
Is working with them as much of a hassle as getting them

in, or is there a way to get something back out?
Try this:

CVS: ---

CVS: Enter Log. Lines beginning with 'CVS:' are removed automatically.

CVS:

CVS: ---

CVS is built
to understand
trees. By
default,
operations
are performed
on whatever
directory
you’re in
and all its
subdirectories.

$ cd ..

$ rm -rf etc # That’s 1705 files -- GONE!!!

A power tool is not user-friendly

$ cvs co etc # Whew. They’re back.

cvs checkout: Updating etc

U etc/aliases

U etc/aliases.db

...

cvs checkout: Updating etc/X11

...

cvs checkout: Updating etc/rc.d

U etc/rc.0

...

cvs checkout: Updating etc/rc.d/init.d

U etc/rc/init.d/httpd

One command lets us check out the entire repository as
many times as we want:

$ cd /tmp

$ cvs co etc

cvs checkout: Updating etc

U etc/X11

...

Is it really all there? Sure.

$ ls -F etc

CVS/

X11/

aliases

aliases.db

...

Wait. What is that directory CVS/? A little inves-
tigation reveals that every directory in a checked-
out hierarchy has one, and that they all contain
the same files:

$ ls CVS

Entries

Repository

Root

$ ls X11/CVS

Entries

Repository

Root

$ ls rc/init.d/CVS

Entries

Repository

Root

These files are not in the repository itself, but are
administrative files used by CVS to keep track of
where the files came from and what versions have been
checked out. Here’s an example, using the control files
in $CVSROOT/CVSROOT:

$ cvs co CVSROOT

...

$ cat CVSROOT/CVS/Repository

/woodcock/jsh/RS/work/cvs/cvs/CVSROOT

$ cat CVSROOT/CVS/Entries

/checkoutlist/1.1/Mon Jun 2 18:17:04 1997//

/commitinfo/1.1/Mon Jun 2 18:17:04 1997//

/cvswrappers/1.1/Mon Jun 2 18:17:04 1997//

/editinfo/1.1/Mon Jun 2 18:17:04 1997//

/loginfo/1.1/Mon Jun 2 18:17:04 1997//

/modules/1.1/Mon Jun 2 18:17:04 1997//

/notify/1.1/Mon Jun 2 18:17:04 1997//

/rcsinfo/1.1/Mon Jun 2 18:17:04 1997//

/taginfo/1.1/Mon Jun 2 18:17:04 1997//

/verifymsg/1.1/Mon Jun 2 18:17:04 1997//

D

The Repository and Root files are obvious safeguards. If,
while you’re working, you change your $CVSROOTto point
somewhere else–deliberately or by accident–the information
in these directories ensures that any modifications you’ve
made will be put back in the correct repository. Do this:

$ unset $CVSROOT

$ echo >> editinfo; echo >> loginfo

$ cvs ci

and you find yourself in the editor facing a screen that looks
like this:

At this point, you insert a comment, explaining why
you’ve placed a blank line at the end of these files, and
exit the editor. When you do, you’ll see something like
the following:

Thus, the Repository and Root files let CVS remem-
ber where to check these in to, even though CVSROOTgot

Work

CVS: --

CVS: Enter Log. Lines beginning with 'CVS:' are removed automatically.

CVS:

CVS: Committing in

CVS:

CVS: Modified Files:

CVS: editinfo loginfo

CVS: --

Checking in editinfo;

/woodcock/jsh/RS/work/cvs/cvs/CVSROOT/editinfo,v <-- editinfo

new revision: 1.7; previous revision: 1.6

done

Checking in loginfo;

/woodcock/jsh/RS/work/cvs/cvs/CVSROOT/loginfo,v <-- loginfo

new revision: 1.3; previous revision: 1.2

done

cvs commit: Rebuilding administrative file database

SunExpert Magazine ■ August 1997 81

unset after you checked them out.
Understanding the goal of the Entries file requires think-

ing about bigger projects. Imagine, for a moment, a project
so large that it has more than one file and more than one
person working on it. Call those two people “Jeff ” and “Jeff.”
Hmm. Call those two people “Zoe” and “Gillian.” Consider
the following scenario:

• Each developer checks out a copy of the repository file for
project “fezmo.”

• Zoe fixes a bug in her copy of the file fezmo/charlie/

dotsero and checks it in using cvs ci fezmo (or just cvs

ci , if she’s in any directory that contains dotsero in one of
its subdirectories. CVS will find it, realize that it’s changed and
check it in).

• Gillian fixes a bug in her copy of fezmo/charlie/

dotsero and … what? If there were no source code control
at all, Gillian’s update could overwrite Zoe’s update, wiping
out Zoe’s work.

If you’re used to RCS, you may already be saying, “Only
one of them could have checked the file out for editing.
That must have been Zoe, so Gillian now has to re-check-out
the file for editing.” But that wouldn’t be practical either,
because that means one person would be grabbing and releas-
ing locks on perhaps thousands of files, and Zoe and Gillian,
and every other developer, would have to keep track of exact-
ly who had locks on which files at all times.

Under CVS, Gillian, like Zoe, says cvs ci , CVS sees
that dotsero has changed, then, before checking it in, looks
in the Entries file to see if the version Gillian checked out
matches the version at the top of the tree. Because it doesn’t,
Gillian gets a message that says there’s a problem, and CVS
points her toward another command, cvs update . This
command will help Gillian update her version of all files in
the collection, and will help her find and resolve conflicts
between her changes and any other changes that have been
done since she checked out her base version.

Administrative Files
CVS is easy enough to use that if it only extended RCS

to let us handle collections of files and track their revisions,
we’d be happy. It turns out, however, that there’s a lot more
to it. Some of the things CVS provides are commands and
options. To show you how to take a look at what commands
and options are available, we’ll revert back to learning by
not doing.

Try typing this:

$ cvs -:

Note that “: ” is not a legal option for any UNIX command
we know of, including ls , so we often use it to get commands
to give us a usage message.

(Which reminds us of a joke that reappeared on the Net
the other day: A brave knight approached an evil magician
at the bridge–you’ve seen this Monty Python movie, so you
at least know the form of what’s coming next: The knight
has to answer three questions to cross the bridge, or he will
be cast into the abyss. The magician asks, “What is your
name?” The knight answers, “Sir Brian of Bell.” The magi-
cian asks, “What is your quest?’’ In a clear, firm voice, the
knight answers, “I seek the Holy Grail.” The magician,
demonstrating just how evil he is, asks, “What four lower-
case alphabetic characters are not legal flag arguments to
the Berkeley UNIX implementation of ls ?” Sir Brian, of
course, hasn’t the foggiest idea, which is the end of that
particular knight.)

Try this, just the way the usage message tells you to:

$ cvs --help-commands

If you want to learn more about any of these commands,
you can experiment with them. Or you can always do this:

$ man cvs

What else? We have mentioned some of the files in
$CVSROOT/CVSROOT, such as history and rcsinfo ,
but there’s more. Actually, there’s a lot more, so rather than
try to tackle it right now, let’s wait and talk about it next
time. If you want to play around with it in the meantime,
you can get the CVS software from http://www.loria.

fr/ ~molli/cvs-index.html .
Until then, happy trails. ✒

82 SunExpert Magazine ■ August 1997

Work

	Practical CVS, Part 1
	Getting Started
	Figure 1. Creating Administrative Files with cvs init

	Working with Files in the Repository
	Administrative Files

