
Storage
by Henry Newman

RO
BE

RT
W

HI
TM

ER

Exploring File Systems
AA

s I mentioned last month we will
be moving on to volume man-
agement and file systems. This is

the next layer below the user application,
and just as with user applications, we
must understand the nuances of volume
managers and file systems. These nuances
are critical to scaling, and I/O scaling is
the bottleneck in today’s computing
environments.

The goal for the next two months is
to ensure you understand how to evalu-
ate which volume manager and/or file
system to use, and which options to use
based on how volume managers and file
systems work. This will allow you to
make good decisions based on the
information about application I/O
performance as discussed in April (see
http://swexpert.com/CB/SE.

C11.APR.01.pdf), since all file sys-
tems and volume managers don’t provide
the same performance.

Understanding the volume manager
and file system is an important part of
the architecture process for large storage

systems where large amounts of I/O are
done. This must be an important part
of the decision criteria on what server to
buy and/or what volume manager and/
or file system to buy.

File Systems Evolution
To start our journey let’s go back in

time to the creation of UNIX file sys-
tems. It is 1970 and K. Thompson,
Ritchie, M. D. McIlroy, and J. F. Ossan-
na are developing the UNIX operating
system–the PDP-7 UNIX file system to
be specific. Structurally, the file system
of PDP-7 UNIX was nearly identical to
today’s. It had an i-list: a linear array of
i-nodes each describing a file. An i-node
contained less than it does now, but the
essential information was the same: the
protection mode of the file, its type and
size, and the list of physical blocks hold-
ing the contents. It also had directories
or a special kind of file containing a
sequence of names and the associated
i-number. And it had special files des-
cribing devices. The device specification

was not contained explicitly in the
i-node, but was instead encoded in the
number: specific i-numbers correspond-
ed to specific files. (Note: Many of these
details are drawn from a paper first
presented at the Language Design and
Programming Methodology conference
in Sydney, Australia, September 1979.
The conference proceedings were pub-
lished as Lecture Notes in Computer
Science #79: Language Design and
Programming Methodology, Springer-
Verlag, 1980. My rendition is based on
a reprinted version appearing in AT&T
Bell Laboratories Technical Journal #63,
No. 6, Part 2, October 1984, pp. 1577-
93. Surprisingly some of these concepts
were based on a paper written as early
as 1965. That even predated UNIX
and was part of the Multics operating
system. If you want to see some of
the historical documents, take a look
at A General-Purpose File System For
Secondary Storage, by R. C. Daley,
Massachusetts Institute of Technology,
Cambridge, MA, and P. G. Neumann

30 SW Expert ■ May 2001

http://swexpert.com/CB/SE.C11.APR.01.pdf

Storage

Bell Telephone Laboratories Inc., Murray Hill, NJ.
Even more detailed discussions about file systems and allo-

cation methods can be found in Association for Computing
Machinery, Inc., The Bell System Technical Journal #57, No. 6,
Part 2 (July-August 1978), Copyright 1974. In turn, that was
a revised version of an article that appeared in Communications
of the ACM #17, No. 7 (July 1974), pp. 365-375. That article
was a revised version of a paper presented at the Fourth ACM
Symposium on Operating Systems Principles, IBM, Thomas
J. Watson Research Center, Yorktown Heights, NY, October
15-17, 1973.)

So you say to yourself after reviewing and digesting all this
history, “Henry, is UFS structurally really about 35 years old?”
My answer is “you betya!”

Over that time disk technology has changed as was dis-
cussed in my February column, but so have applications. I/O
requirements have changed as applications have grown to scale
with storage. A recent article in The Economist (Dec. 9, 2000)
stated that more data would be created in the next three years
than since the dawn of humanity.

What we need to do is determine how to analyze our needs
and figure out the volume manager and file system options we
have, and then use this information as part of an architecture
plan. Some volume managers and file systems on some servers
might be better at different I/O sizes or failover and reliability
while others may be better at performance for different stream
counts or asynchronous/threaded I/O.

Over the next two months, we’ll explore how to understand
and analyze volume managers and file systems by understanding
the application and the interface file system and volume
manager. We’ll try to use this understanding to formulate
questions for vendors.

Remember the goal is to figure out what works best (and
to incrementally improve what you have) given your hardware
and applications.

File Systems Today
Structurally local or direct attached file systems have not

evolved too far from 1965. (In a future column we will look at
SAN file systems.) Most file systems build on the work done
more than 35 years ago. Yes, people have added journaling for
both metadata and in some cases data, but the data layout is
quite similar, and some file systems now use a separate cache
rather than using memory mapped I/O. Since that time much
of what has been done is at best evolutionary and not very
revolutionary. Volume management is a relatively newer concept
compared with file systems, but still builds on the work from
the 1960’s. Basically we are still living in caves, but we have
found fire.

The two most important functions a file system and/or
volume manager needs to do is device management and
space management.

If you need more space than is available in a single disk or
RAID you will usually need to use a volume management tool.
Some file systems manage their own data volumes so volume
managers are not required and/or possibly not available. Among
them are Cray’s UNICOS, Sun’s QFS and SAM-FS, and Fujit-
su’s FPFS. Most file systems currently available, however, use a
volume manager if they need more than one device. These
include but are not limited to Veritas file system VxFS (Sun, HP,
Linux), IBM JFS, all flavors of Linux, Digital’s UNIX AdvFS,
NT NTFS, EMC (Crosstor) and SGI IRIX XFS.

Device Management
Standard volume management, either within the volume

manager or within the file system, is done in two ways: strip-
ing or round-robin.

Striping is the standard method for volume managers and
round-robin is the standard for file systems, which manage
their own volumes.

Most volume managers stripe the data across all of the
devices (either RAID or disks) based on a stripe
width. The goal is to achieve parallelism on the
devices. The stripe width is generally set to a
value based on the number of streams of I/O and
the I/O request size such that all of the devices
can be in use. The goal is to keep all of the disks
busy to achieve parallelism. This is very impor-
tant in a number of application environments
like databases. On large databases, performance
depends on making sure that as many disks as
possible are used so striping across all of the disks
statistically distributes the load to ensure the
best performance possible (see Figure 1).

For file systems that support round-robin
allocation, each new open and/or directory create
moves to the next device. With round-robin
allocation, the goal is to reduce the number of
head seeks and missed revolutions by having files
be allocated more sequentially.

If each disk is writing a single stream it will
likely allocate sequentially down the device and
be able to read sequentially. If RAID is used, the

32 SW Expert ■ May 2001

File 2

File 3

File 4

File 5

File 1

File 56

File 57

File 55

Fi
le

 S
ys

te
m Single

disk
or
RAID

Figure 1. Standard Striping

Multiple I/O streams–Each stream (file) is transferred partially to multiple
groups of striped drives in parallel, I/O based on allocation size.

SW Expert ■ May 2001 33

Storage

read-ahead cache will generally have a much higher hit rate
than in the striped example. This method does not work as well
in general for databases because the data accesses are so random
you need to use as many disks and channels as possible to get
the best possible I/O performance (see Figure 2).

Tuning for Larger Requests
On some operating systems I/O requests are limited by

values in the kernel and/or device drivers. On Solaris, for
example, by default, the largest physical request that can be
made is 128 KBs. This can be changed by a modification to
/etc/system to add:

set maxphys= "value in decimal, octal or

hexadecimal"

To set maxphys 8 MB

set maxphys=8388608

or

set maxphys=0x800000

In Solaris the sd, ssd and st (SCSI, Fibre Channel, and
tape) device drivers support an upper limit of 1 MB transfer size
even though maxphys is set to a value larger than 1 MB.

The sd driver is the SCSI device driver, which is a published
interface. If you buy an HBA from a vendor other than Sun,
this is the driver that is used. This device driver is also used for
Sun supported SCSI cards.

The ssd driver is the Fibre Channel device driver used by
Sun-only FC HBAs. Either the Sun PCI Fibre Channel card or
the SBus Fibre Channel card uses this. No other HBA vendor
uses this interface as it’s not a published interface.

The st driver is the Sun tape driver used by almost all tape

manufacturers. This is an important driver because
tape error recovery is non-trivial and because it also
supports almost all enterprise tapes from IBM and
StorageTek, to LTO, DLT, AIT and even 4MM and
8MM tapes. It is important to realize that only a few
tape drives can take advantage of requests larger
than 1 MB. Sony DTF-2 and Ampex drives are
two examples.

You must make changes to each driver by changing
the configuration files in /kernel/drv/xxx.conf.
Adding the following per target or at the bottom of
the file

"driver name"_max_xfer_size="value";

for example, changes the sd driver to a transfer size of
16,777,216 (16 MB):

sd_max_xfer_size=0x1000000;

In SGI IRIX, the equivalent value is maxdmasz.
This is the largest value that can be transferred from the user
space to/from the system.

By changing both maxphys in /etc/system and the dri-
ver, large requests can be made to the file system. This does not
guarantee that large requests will be passed to the device driver.
That depends on the volume manager and file system alloca-
tions, which is what we will discuss next month.

Understanding volume manager and file system allocations
and layout will allow you to match the available hardware to
the application, and if you are fortunate enough to be able to
buy new hardware and software, you will be able to determine
which server vendor, volume manager and file system can
meet your requirements today and in the future.

Next Month
This is Part 1 in a Part 2 series. Next month I will discuss

file system allocation and specific issues on how to evaluate
vendor offerings. ✒

Henry Newman is a 19 year veteran in high-performance
systems working mostly in I/O and system tuning. He is currently
employed by a consulting company. hnewman@cpg.com.

Multics Operating System
http://www.staff.city.ac.uk/~sh392/multics/fjcc1.html
http://www.staff.city.ac.uk/~sh392/multics/fjcc4.html

Early UNIX File System and Operating System
http://cm.bell-labs.com/cm/cs/who/dmr/hist.html
http://www.dei.isep.ipp.pt/docs/unix-Part_I.html
http://www.dei.isep.ipp.pt/docs/unix-Part_II.html
http://cm.bell-labs.com/cm/cs/who/dmr/cacm.html

Further Reading

Single
disk
or
RAIDFi

le
 S

ys
te

m

File File File

File File File

File File File

Figure 2. Round Robin

Multiple I/O streams–Each open (file) is transferred to a single
disk or RAID.

http://www.staff.city.ac.uk/~sh392/multics/fjcc1.html
http://www.staff.city.ac.uk/~sh392/multics/fjcc4.html
http://cm.bell-labs.com/cm/cs/who/dmr/hist.html
http://www.dei.isep.ipp.pt/docs/unix-Part_I.html
http://www.dei.isep.ipp.pt/docs/unix-Part_II.html
http://cm.bell-labs.com/cm/cs/who/dmr/cacm.html

	Exploring File Systems
	File Systems Evolution
	File Systems Today
	Device Management
	Figure 1. Standard Striping
	Figure 2. Round Robin

	Tuning for Larger Requests
	Next Month

