Reflection and Light Source Models
Illumination: Energy physics..

- Radiance: the flux of light energy in a given direction
- Geometry/Visibility: how light energy falls upon a surface
- BRDF: the interaction function of a surface point with light
- Energy Balance Equation: the local balance of energy in a scene

[^0]
Department of Computer Sciences
Light: An electromagnetic energy flux that has

- intensity (power per unit area)
- direction of propagation
Reflection: A local lighting model that relates
- the properties of a surface at a point
Reflection VS. Illumination
BRDF: bidirectional reflectance distribution function
- the function that embodies the surface properties

NILSAV LV SVXGL HO XLISyGAIN \cap HHL

- at some point x

Energy of Illumination

- per unit area perpendicular to the direction
- per unit solid angle
- for a specified wavelength λ
- denoted by $L(x, \theta, \phi, \lambda)$
Spectral Properties: Total energy flux comes fromen
- $L(x, \theta, \phi)=\int_{\lambda_{\text {min }}}^{\lambda_{\max }} L(x, \theta, \phi, \lambda) d \lambda$

The University of Texas at Austin

- energy radiated through differential solid angle $d \omega=\sin \theta d \theta d \phi$
- through/from differential area $d x$
- not perpendicular to direction (projected area is $d x \cos \theta$)
- during differential unit time $d t$
Power: Energy per unit time (as in the picture)
- $L(x, \theta, \phi) d x \cos \theta d \omega$

Picture: For the indicated situation $L(x, \theta, \phi) d x \cos \theta d \omega d t$ is

- $L^{o}\left(x, \theta_{x}^{o}, \phi_{x}^{o}, \lambda^{o}\right)$ is the radiance
- $L^{e}\left(x, \theta_{x}^{o}, \phi_{x}^{o}, \lambda^{o}\right)$ is the radiance emitted by the surface from the point
- $L^{i}\left(x, \theta_{x}^{i}, \phi_{x}^{i}, \lambda^{i}\right)$ is the incident radiance impinging on the point
- $\rho_{b d}\left(x, \theta_{x}^{i}, \phi_{x}^{i}, \lambda^{i}, \theta_{x}^{o}, \phi_{x}^{o}, \lambda^{o}\right)$ is the BRDF at the point

The University of Texas at Austin
Rough Approximations:

$$
\begin{aligned}
& \text { Approximate Intensity Equation: (single light source) } \\
& \qquad I_{\lambda}^{o}=I_{\lambda}^{e}+k_{\lambda}^{a} I_{\lambda}^{a}+k_{\lambda}^{d} I_{\lambda}^{l} \cos \left(\theta^{l}\right)+k_{\lambda}^{s} I_{\lambda}^{l} W\left(\theta^{l}\right) S\left(\alpha^{l}\right) \\
& \text { - } \lambda \text { stands for each of red, green, blue } \\
& \text { - } I_{\lambda}^{l} \text { is the intensity of the light source (modified for distance) } \\
& \text { - } \cos \left(\theta^{l}\right) \text { accounts for the projected cross-sectional area of the incoming light } \\
& \text { - the } k \text { are between } 0 \text { and } 1 \text { and represent absorption factors } \\
& \text { - } W\left(\theta^{l}\right) \text { accounts for any highlight effects that depend on the incoming direction } \\
& -\quad \text { use } \cos \left(\theta^{l}\right) \text { if there is nothing special } \\
& \text { - } \alpha^{l} \text { is the mirror reflection angle for the light } \\
& \text { - the angle between the view direction and the mirror reflection direction } \\
& \text { - } S\left(\alpha^{l}\right) \text { accounts for highlights in the mirror reflection direction } \\
& \text { - the superscripts } e, a, d, s \text { stand for emitted, ambient, diffuse, specular respectively } \\
& \text { - sum over each light } l \text { if there are more than one }
\end{aligned}
$$

Diffuse Geometry:

Department of Computer Sciences
Specular Geometry (Phong Model):
Phong Reflection Model

- \mathbf{i} is the unit vector in the direction of the illumination (light source)
- \mathbf{n} is the unit vector normal to the surface
- \mathbf{r} is the unit vector in the mirror reflection direction
- \mathbf{v} is the unit vector in the direction of the eyepoint

Point Light Sources
- Point light sources has a position P_{i} and an intensity I_{i}
- Light energy is radiated equally in all directions

Point Light Sources:
- Physically, need $1 / r^{2}$ attenuation since light energy spreads out spherically
- This is too harsh, point light sources are rare in the real world
- Use modified attenuation factor: $a(r)=\frac{1}{\alpha_{0}+\alpha_{1} r+\alpha_{2} r^{2}}$

[^1]Department of Computer Sciences
Ambient Lighting:
Ambient Lighting:

- True global illumination difficult and expensive to calculate
- Often use constant low level lighting everywhere to fake global illumination: I_{λ}^{a}
- Each surface may reflect "ambient" lighting differently: k_{λ}^{a}
- Usually, $k_{\lambda}^{a}=k_{\lambda}^{d}$

Lambertian Lighting:
Lambertian Lighting:
at point x with ℓ point light sources at points p_{i} is now:

Specular Lighting Similarly: For example,

$$
\mathbf{r}_{\mathbf{i}}=2 \mathbf{n}\left(\mathbf{n} \cdot \mathbf{i}_{\mathbf{i}}\right)-\mathbf{i}_{\mathbf{i}}
$$

$$
I_{\lambda}^{o}=k_{\lambda}^{a} I_{\lambda}^{a}+k_{\lambda}^{d} \sum_{i=1}^{l} a\left(d^{i}\right) I_{\lambda}^{i}\left|\mathbf{i}_{\mathbf{i}} \cdot \mathbf{n}\right|\left(k_{\lambda}^{d}+k_{\lambda}^{s}\left|\mathbf{r}_{\mathbf{i}} \cdot \mathbf{v}\right|^{n_{s}}\right)
$$

- Sometimes we see the Phong model stated with the half-vector \mathbf{h} :
The University of Texas at Austin

Department of Computer Sciences
Shading algorithms apply lighting models to polygons, through interpolation from the vertices.
Gouraud Shading: Lighting in only computed at the vertices, and the colors are interpolated
across the (convex) polygon
Phong Shading: A normal is specified at each vertex, and this normal is interpolated across
the polygon. At each pixel, a lighting model is calculated.
Department of Computer Sciences
Gouraud shading interpolates colors across a polygon from the vertices
Lighting calculations are only performed at the vertices
Highlights can be missed or blurred
Gouraud shading is well-defined only for triangles...
Equivalent to a barycentric combination
Barycentric combinations are also affine combinations...
Triangular Gouraud shading is invariant under affine transformations

$$
\begin{aligned}
& \mathrm{aA}=\mathrm{D} P \mathrm{~B} \mathrm{C/D} \mathrm{~A} \mathrm{~B} \mathrm{C} \\
& \mathrm{aB}=\mathrm{D} \mathrm{~A} \mathrm{P} \mathrm{C/D} \mathrm{~A} \mathrm{~B} \mathrm{C} \\
& \mathrm{aC}=\mathrm{D} A B P / D \text { A B C } \\
& \mathrm{aA}+\mathrm{aB}+\mathrm{aC}=1 \\
& \mathrm{P}=\mathrm{aA} \mathrm{~A}+\mathrm{aB} B+\mathrm{aC} \mathrm{C}
\end{aligned}
$$

For polygons with more than three vertices:- Sort the vertices by y coordinate

- Slice the polygon into trapezoids with parallel top and bottom
- Interpolate colors along each edge of the trapezoid...
- Interpolate colors along each scanline

$$
\begin{aligned}
& \text { - Slice the polygon into trapezoids with parallel top and bottom } \\
& \text { - Interpolate colors along each edge of the trapezoid... } \\
& \text { - Interpolate colors along each scanline }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{F}=\operatorname{lerp}(\mathrm{A}, \mathrm{~B}) \\
& \mathrm{H}=\operatorname{lerp}(\mathrm{D}, \mathrm{E}) \\
& \mathrm{I}=\operatorname{lerp}(\mathrm{H}, \mathrm{E}) \\
& \mathrm{J}=\operatorname{lerp}(\mathrm{B}, \mathrm{~F}) \\
& \mathrm{P}=\operatorname{lerp}(\mathrm{I}, \mathrm{~J})
\end{aligned}
$$

Department of Computer Sciences
n-sided
combination on triangles

[^0]: Approximation: Hacks for interaction at a point..
 Ambient: approximating the global energy
 Lambertian: approximating the diffuse interaction
 Phong: approximating the specular interaction

[^1]: This simulates the attenuation of an area light source

 - Only use attenuation from light source to surface, not from surface to pixel

