
Recipes from the Python Community

Edited by Alex Martelli & David Ascher

Python
Cookbook

Python Cookbook

Edited by Alex Martelli and David Ascher

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Chapter 1 CHAPTER 1

Python Shortcuts
1.0 Introduction
Credit: David Ascher, ActiveState, co-author of Learning Python (O’Reilly)

Programming languages are like natural languages. Each has a set of qualities that
polyglots generally agree on as characteristics of the language. Russian and French
are often admired for their lyricism, while English is more often cited for its preci-
sion and dynamism: unlike the Académie-defined French language, the English lan-
guage routinely grows words to suit its speakers’ needs, such as “carjacking,”
“earwitness,” “snail mail,” “email,” “googlewhacking,” and “blogging.” In the world
of computer languages, Perl is well known for its many degrees of freedom:
TMTOWTDI (There’s More Than One Way To Do It) is one of the mantras of the
Perl programmer. Conciseness is also seen as a strong virtue in the Perl and APL
communities. In contrast, as you’ll see in many of the discussions of recipes through-
out this volume, Python programmers often express their belief in the value of clar-
ity and elegance. As a well-known Perl hacker once said, Python’s prettier, but Perl is
more fun. I agree with him that Python does have a strong (as in well-defined) aes-
thetic, while Perl has more of a sense of humor. I still have more fun coding in
Python, though.

The reason I bring up these seemingly irrelevant bits at the beginning of this book is
that the recipes you see in this first chapter are directly related to Python’s aesthetic
and social dynamics. In most of the recipes in this chapter, the author presents a sin-
gle elegant language feature, but one that he feels is underappreciated. Much like I, a
proud resident of Vancouver, will go out of my way to show tourists the really neat
things about the city, from the parks to the beaches to the mountains, a Python user
will seek out friends and colleagues and say, “You gotta see this!” Programming in
Python, in my mind, is a shared social pleasure, not all that competitive. There’s
great pleasure in learning a new feature and appreciating its design, elegance, and
judicious use, and there’s a twin pleasure in teaching another or another thousand
about that feature.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

1

When we identified the recipe categories for this collection, our driving notion was
that there would be recipes of various kinds, each aiming to achieve something spe-
cific—a souffle recipe, a tart recipe, an osso buco recipe. Those would naturally
bunch into fairly typical categories, such as desserts, appetizers, and meat dishes, or
their perhaps less appetizing, nonmetaphorical equivalents, such as files, algorithms,
and so on. So we picked a list of categories, added the categories to the Zope site
used to collect recipes, and opened the floodgates.

Pretty soon, it became clear that some submissions were really hard to fit into the
predetermined categories. These recipes are the Pythonic equivalent of making a
roux (melted butter or fat combined with flour, used in sauce-making, for those of
you without an Italian sauce background), kneading dough, flouring, flipping a pan’s
contents, blanching, and the myriad other tricks that any accomplished cook knows,
but that you won’t find in any “straight” recipe book. Many of these tricks and tech-
niques are used in preparing various kinds of meals, but it’s hard to pigeonhole them
as relevant for a given type of dish. And if you’re a novice cook looking up a fancy
recipe, you’re likely to get frustrated quickly, as these techniques are typically found
only in books like Cooking for Divorced Middle-Aged Men. We didn’t want to
exclude this precious category from this book, so a new category was born. That
explains why this chapter exists.

This chapter is pretty flimsy, though, in that while the title refers to shortcuts, there
is nothing here like what one could have expected had the language in question been
Python’s venerable cousin, Perl. If this had been a community-authored Perl cook-
book, entries in this category would probably have outnumbered those in most other
chapters. That is because Perl’s syntax provides, proudly, many ways to do pretty
much anything. Furthermore, each way is “tricky” in a good way: the writer gets a
little thrill out of exploiting an odd corner of the language. That chapter would be
impressive, and competitive, and fun. Python programmers just don’t get to have
that kind of fun on that kind of scale (by which I mean the scale of syntactic short-
cuts and semantic-edge cases). No one gives multi-hour talks about tricks of the
Python grand masters... Python grand masters simply don’t have that many fre-
quently used tricks up their sleeves!

I believe that the recipes in this chapter are among the most time-sensitive of the reci-
pes in this volume. That’s because the aspects of the language that people consider
shortcuts or noteworthy techniques seem to be relatively straightforward, idiomatic
applications of recent language features. List comprehensions, zip, and dictionary
methods such as setdefault are all relatively recent additions to the language, dating
from Python 2.0 or later. In fact, many of these newish language features were added
to Python to eliminate the need for what used to be fancy recipes.

My favorite recent language features are list comprehensions and the new applicabil-
ity of the * and ** tokens to function calls as well as to function definitions. List com-
prehensions have clearly become wildly successful, if the authors of this volume are
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

2 | Chapter 1: Python Shortcuts

representative of the Python community at large, and have largely demoted the map
and filter built-in functions. Less powerful, but equally elegant, are * and **. Since
Python 2.0, the oft-quoted recipe:

def method(self, argument, *args, **kw):
 # Do something with argument
 apply(callable, args, kw)

can now be done much more elegantly as:

def method(self, argument, *args, **kw):
 # Do something with argument
 callable(*args, **kw)

The apply built-in function is still somewhat useful, at least occasionally, but these new
syntactic forms are elegant and provably Pythonic. This leads me to my closing com-
ment on language shortcuts: the best source of shortcuts and language tricks is proba-
bly the list of language changes that comes with each Python release. Special thanks
should be extended to Andrew Kuchling for publishing a list of “What’s new with
Python 2.x,” available at http://amk.ca/python/, for each major release since 2.0. It’s the
place I head for when I want a clear and concise view of Python’s recent evolution.

1.1 Swapping Values Without
Using a Temporary Variable
Credit: Hamish Lawson

Problem
You want to swap the values of some variables, but you don’t want to use a tempo-
rary variable.

Solution
Python’s automatic tuple packing and unpacking make this a snap:

a, b, c = b, c, a

Discussion
Most programming languages make you use temporary intermediate variables to
swap variable values:

temp = a
a = b
b = c
c = temp

But Python lets you use tuple packing and unpacking to do a direct assignment:

a, b, c = b, c, a
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Swapping Values Without Using a Temporary Variable | 3

In an assignment, Python requires an expression on the righthand side of the =. What
we wrote there—b, c, a—is indeed an expression. Specifically, it is a tuple, which is
an immutable sequence of three values. Tuples are often surrounded with parenthe-
ses, as in (b, c, a), but the parentheses are not necessary, except where the com-
mas would otherwise have some other meaning (e.g., in a function call). The
commas are what create a tuple, by packing the values that are the tuple’s items.

On the lefthand side of the = in an assignment statement, you normally use a single tar-
get. The target can be a simple identifier (also known as a variable), an indexing (such as
alist[i] or adict['freep']), an attribute reference (such as anobject.someattribute),
and so on. However, Python also lets you use several targets (variables, indexings, etc.),
separated by commas, on an assignment’s lefthand side. Such a multiple assignment is
also called an unpacking assignment. When there are two or more comma-separated
targets on the lefthand side of an assignment, the value of the righthand side must be a
sequence of as many items as there are comma-separated targets on the lefthand side.
Each item of the sequence is assigned to the corresponding target, in order, from left to
right.

In this recipe, we have three comma-separated targets on the lefthand side, so we
need a three-item sequence on the righthand side, the three-item tuple that the pack-
ing built. The first target (variable a) gets the value of the first item (which used to be
the value of variable b), the second target (b) gets the value of the second item (which
used to be the value of c), and the third and last target (c) gets the value of the third
and last item (which used to be the value of a). The net result is a swapping of values
between the variables (equivalently, you could visualize this particular example as a
rotation).

Tuple packing, done using commas, and sequence unpacking, done by placing sev-
eral comma-separated targets on the lefthand side of a statement, are both useful,
simple, general mechanisms. By combining them, you can simply, elegantly, and nat-
urally express any permutation of values among a set of variables.

See Also
The Reference Manual section on assignment statements.

1.2 Constructing a Dictionary
Without Excessive Quoting
Credit: Brent Burley

Problem
You’d like to construct a dictionary without having to quote the keys.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

4 | Chapter 1: Python Shortcuts

Solution
Once you get into the swing of Python, you may find yourself constructing a lot of
dictionaries. However, the standard way, also known as a dictionary display, is just a
smidgeon more cluttered than you might like, due to the need to quote the keys. For
example:

data = { 'red' : 1, 'green' : 2, 'blue' : 3 }

When the keys are identifiers, there’s a cleaner way:

def makedict(**kwargs):
 return kwargs
data = makedict(red=1, green=2, blue=3)

You might also choose to forego some simplicity to gain more power. For example:

def dodict(*args, **kwds):
 d = {}
 for k, v in args: d[k] = v
 d.update(kwds)
 return d
tada = dodict(*data.items(), yellow=2, green=4)

Discussion
The syntax for constructing a dictionary can be slightly tedious, due to the amount
of quoting required. This recipe presents a technique that avoids having to quote the
keys, when they are identifiers that you already know at the time you write the code.

I’ve often found myself missing Perl’s => operator, which is well suited to building
hashes (Perl-speak for dictionaries) from a literal list:

%data = (red => 1, green => 2, blue => 3);

The => operator in Perl is equivalent to Perl’s own ,, except that it implicitly quotes
the word to its left.

Perl’s syntax is very similar to Python’s function-calling syntax for passing keyword
arguments. And the fact that Python collects the keyword arguments into a dictio-
nary turned on a light bulb in my head.

When you declare a function in Python, you may optionally conclude the list of for-
mal arguments with *args or **kwds (if you want to use both, the one with ** must
be last). If you have *args, your function can be called with any number of extra
actual arguments of the positional, or plain, kind. Python collects all the extra posi-
tional arguments into a tuple and binds that tuple to the identifier args. Similarly, if
you have **kwds, your function can be called with any number of extra actual argu-
ments of the named, or keyword, kind. Python collects all the extra named argu-
ments into a dictionary (with the names as the keys and the values as the values) and
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Constructing a Dictionary Without Excessive Quoting | 5

binds that dictionary to the identifier kwds. This recipe exploits the way that Python
knows how to perform the latter task.

The makedict function should be very efficient, since the compiler is doing work
equivalent to that done with a dictionary literal. It is admittedly idiomatic, but it can
make large dictionary literals a lot cleaner and a lot less painful to type. When you
need to construct dictionaries from a list of key/item pairs, possibly with explicit
override of, or addition to, some specifically named key, the dodict function
(although less crystal-clear and speedy) can be just as handy. In Python 2.2, the first
two lines of dodict can be replaced with the more concise and faster equivalent:

d = dict(args)

See Also
The Library Reference section on mapping types.

1.3 Getting a Value from a Dictionary
Credit: Andy McKay

Problem
You need to obtain a value from a dictionary, without having to handle an exception
if the key you seek is not in the dictionary.

Solution
That’s what the get method of dictionaries is for. Say you have a dictionary:

d = {'key':'value'}

You can write a test to pull out the value of 'key' from d in an exception-safe way:

if d.has_key('key'): # or, in Python 2.2 or later: if 'key' in d:
 print d['key']
else:
 print 'not found'

However, there is a much simpler syntax:

print d.get('key', 'not found')

Discussion
Want to get a value from a dictionary but first make sure that the value exists in the
dictionary? Use the simple and useful get method.

If you try to get a value with a syntax such as d[x], and the value of x is not a key in
dictionary d, your attempt raises a KeyError exception. This is often okay. If you
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

6 | Chapter 1: Python Shortcuts

expected the value of x to be a key in d, an exception is just the right way to inform
you that you’re wrong (i.e., that you need to debug your program).

However, you often need to be more tentative about it: as far as you know, the value of
x may or may not be a key in d. In this case, don’t start messing with the has_key
method or with try/except statements. Instead, use the get method. If you call d.get(x),
no exception is thrown: you get d[x] if x is a key in d, and if it’s not, you get None (which
you can check for or propagate). If None is not what you want to get when x is not a key
of d, call d.get(x, somethingelse) instead. In this case, if x is not a key, you will get the
value of somethingelse.

get is a simple, useful mechanism that is well explained in the Python documenta-
tion, but a surprising number of people don’t know about it. This idiom is also quite
common in Zope, for example, when pulling variables out of the REQUEST dictionary.

See Also
The Library Reference section on mapping types.

1.4 Adding an Entry to a Dictionary
Credit: Alex Martelli

Problem
Working with a dictionary D, you need to use the entry D[k] if it’s already present, or
add a new D[k] if k isn’t yet a key in D.

Solution
This is what the setdefault method of dictionary objects is for. Say we’re building a
word-to-page numbers index. A key piece of code might be:

theIndex = {}
def addword(word, pagenumber):
 if theIndex.has_key(word):
 theIndex[word].append(pagenumber)
 else:
 theIndex[word] = [pagenumber]

Good Pythonic instincts suggest substituting this “look before you leap” pattern with
an “easier to get permission” pattern (see Recipe 5.3 for a detailed discussion of these
phrases):

def addword(word, pagenumber):
 try: theIndex[word].append(pagenumber)
 except AttributeError: theIndex[word] = [pagenumber]
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Adding an Entry to a Dictionary | 7

This is just a minor simplification, but it satisfies the pattern of “use the entry if it is
already present; otherwise, add a new entry.” Here’s how using setdefault simpli-
fies this further:

def addword(word, pagenumber):
 theIndex.setdefault(word, []).append(pagenumber)

Discussion
The setdefault method of a dictionary is a handy shortcut for this task that is especially
useful when the new entry you want to add is mutable. Basically, dict.setdefault(k, v)
is much like dict.get(k, v), except that if k is not a key in the dictionary, the
setdefault method assigns dict[k]=v as a side effect, in addition to returning v. (get
would just return v, without affecting dict in any way.) Therefore, setdefault is appro-
priate any time you have get-like needs but also want to produce this specific side effect
on the dictionary.

setdefault is particularly useful in a dictionary with values that are lists, as detailed
in Recipe 1.5. The single most typical usage form for setdefault is:

somedict.setdefault(somekey, []).append(somevalue)

Note that setdefault is normally not very useful if the values are immutable. If you
just want to count words, for example, something like the following is no use:

theIndex.setdefault(word, 1)

In this case, you want:

theIndex[word] = 1 + theIndex.get(word, 0)

since you will be rebinding the dictionary entry at theIndex[word] anyway (because
numbers are immutable).

See Also
Recipe 5.3; the Library Reference section on mapping types.

1.5 Associating Multiple Values
with Each Key in a Dictionary
Credit: Michael Chermside

Problem
You need a dictionary that maps each key to multiple values.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

8 | Chapter 1: Python Shortcuts

Solution
By nature, a dictionary is a one-to-one mapping, but it’s not hard to make it one-to-
many—in other words, to make one key map to multiple values. There are two pos-
sible approaches, depending on how you want to treat duplications in the set of val-
ues for a key. The following approach allows such duplications:

d1 = {}
d1.setdefault(key, []).append(value)

while this approach automatically eliminates duplications:

d2 = {}
d2.setdefault(key, {})[value] = 1

Discussion
A normal dictionary performs a simple mapping of a key to a value. This recipe
shows two easy, efficient ways to achieve a mapping of each key to multiple values.
The semantics of the two approaches differ slightly but importantly in how they deal
with duplication. Each approach relies on the setdefault method of a dictionary to
initialize the entry for a key in the dictionary, if needed, and in any case to return
said entry.

Of course, you need to be able to do more than just add values for a key. With the
first approach, which allows duplications, here’s how to retrieve the list of values for
a key:

list_of_values = d1[key]

Here’s how to remove one value for a key, if you don’t mind leaving empty lists as
items of d1 when the last value for a key is removed:

d1[key].remove(value)

Despite the empty lists, it’s still easy to test for the existence of a key with at least one
value:

def has_key_with_some_values(d, key):
 return d.has_key(key) and d[key]

This returns either 0 or a list, which may be empty. In most cases, it is easier to use a
function that always returns a list (maybe an empty one), such as:

def get_values_if_any(d, key):
 return d.get(key, [])

You can use either of these functions in a statement. For example:

if get_values_if_any(d1, somekey):
if has_key_with_some_values(d1, somekey):
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Associating Multiple Values with Each Key in a Dictionary | 9

However, get_values_if_any is generally handier. For example, you can use it to
check if 'freep' is among the values for somekey:

if 'freep' in get_values_if_any(d1, somekey):

This extra handiness comes from get_values_if_any always returning a list, rather
than sometimes a list and sometimes 0.

The first approach allows each value to be present multiple times for each given key.
For example:

example = {}
example.setdefault('a', []).append('apple')
example.setdefault('b', []).append('boots')
example.setdefault('c', []).append('cat')
example.setdefault('a', []).append('ant')
example.setdefault('a', []).append('apple')

Now example['a'] is ['apple', 'ant', 'apple']. If we now execute:

example['a'].remove('apple')

the following test is still satisfied:

if 'apple' in example['a']

'apple' was present twice, and we removed it only once. (Testing for 'apple' with
get_values_if_any(example, 'a') would be more general, although equivalent in this
case.)

The second approach, which eliminates duplications, requires rather similar idioms.
Here’s how to retrieve the list of the values for a key:

list_of_values = d2[key].keys()

Here’s how to remove a key/value pair, leaving empty dictionaries as items of d2
when the last value for a key is removed:

del d2[key][value]

The has_key_with_some_values function shown earlier also works for the second
approach, and you also have analogous alternatives, such as:

def get_values_if_any(d, key):
 return d.get(key, {}).keys()

The second approach doesn’t allow duplication. For example:

example = {}
example.setdefault('a', {})['apple']=1
example.setdefault('b', {})['boots']=1
example.setdefault('c', {})['cat']=1
example.setdefault('a', {})['ant']=1
example.setdefault('a', {})['apple']=1
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

10 | Chapter 1: Python Shortcuts

Now example['a'] is {'apple':1, 'ant':1}. Now, if we execute:

del example['a']['apple']

the following test is not satisfied:

if 'apple' in example['a']

'apple' was present, but we just removed it.

This recipe focuses on how to code the raw functionality, but if you want to use this
functionality in a systematic way, you’ll want to wrap it up in a class. For that pur-
pose, you need to make some of the design decisions that the recipe highlights. Do
you want a value to be in the entry for a key multiple times? (Is the entry a bag rather
than a set, in mathematical terms?) If so, should remove just reduce the number of
occurrences by 1, or should it wipe out all of them? This is just the beginning of the
choices you have to make, and the right choices depend on the specifics of your
application.

See Also
The Library Reference section on mapping types.

1.6 Dispatching Using a Dictionary
Credit: Dick Wall

Problem
You need to execute appropriate pieces of code in correspondence with the value of
some control variable—the kind of problem that in some other languages you might
approach with a case, switch, or select statement.

Solution
Object-oriented programming, thanks to its elegant concept of dispatching, does
away with many (but not all) such needs. But dictionaries, and the fact that in
Python functions are first-class values (in particular, they can be values in a dictio-
nary), conspire to make the problem quite easy to solve:

animals = []
number_of_felines = 0

def deal_with_a_cat():
 global number_of_felines
 print "meow"
 animals.append('feline')
 number_of_felines += 1
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Dispatching Using a Dictionary | 11

def deal_with_a_dog():
 print "bark"
 animals.append('canine')

def deal_with_a_bear():
 print "watch out for the *HUG*!"
 animals.append('ursine')

tokenDict = {
 "cat": deal_with_a_cat,
 "dog": deal_with_a_dog,
 "bear": deal_with_a_bear,
 }

Simulate, say, some words read from a file
words = ["cat", "bear", "cat", "dog"]

for word in words:
 # Look up the function to call for each word, then call it
 functionToCall = tokenDict[word]
 functionToCall()
 # You could also do it in one step, tokenDict[word]()

Discussion
The basic idea behind this recipe is to construct a dictionary with string (or other)
keys and with bound methods, functions, or other callables as values. During execu-
tion, at each step, use the string keys to select which method or function to execute.
This can be used, for example, for simple parsing of tokens from a file through a
kind of generalized case statement.

It’s embarrassingly simple, but I use this technique often. Instead of functions, you
can also use bound methods (such as self.method1) or other callables. If you use
unbound methods (such as class.method), you need to pass an appropriate object as
the first actual argument when you do call them. More generally, you can also store
tuples, including both callables and arguments, as the dictionary’s values, with
diverse possibilities.

I primarily use this in places where in other languages I might want a case, switch, or
select statement. I also use it to provide a poor man’s way to parse command files
(e.g., an X10 macro control file).

See Also
The Library Reference section on mapping types; the Reference Manual section on
bound and unbound methods.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

12 | Chapter 1: Python Shortcuts

1.7 Collecting a Bunch of Named Items
Credit: Alex Martelli

Problem
You want to collect a bunch of items together, naming each item of the bunch, and
you find dictionary syntax a bit heavyweight for the purpose.

Solution
Any (classic) class inherently wraps a dictionary, and we take advantage of this:

class Bunch:
 def __init__(self, **kwds):
 self.__dict__.update(kwds)

Now, to group a few variables, create a Bunch instance:

point = Bunch(datum=y, squared=y*y, coord=x)

You can access and rebind the named attributes just created, add others, remove
some, and so on. For example:

if point.squared > threshold:
 point.isok = 1

Discussion
Often, we just want to collect a bunch of stuff together, naming each item of the
bunch; a dictionary’s okay for that, but a small do-nothing class is even handier and
is prettier to use.

A dictionary is fine for collecting a few items in which each item has a name (the
item’s key in the dictionary can be thought of as the item’s name, in this context).
However, when all names are identifiers, to be used just like variables, the dictio-
nary-access syntax is not maximally clear:

if point['squared'] > threshold

It takes minimal effort to build a little class, as in this recipe, to ease the initialization
task and provide elegant attribute-access syntax:

if bunch.squared > threshold

An equally attractive alternative implementation to the one used in the solution is:

class EvenSimplerBunch:
 def __init__(self, **kwds): self.__dict__ = kwds

The alternative presented in the Bunch class has the advantage of not rebinding
self.__dict__ (it uses the dictionary’s update method to modify it instead), so it
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Collecting a Bunch of Named Items | 13

will keep working even if, in some hypothetical far-future dialect of Python, this
specific dictionary became nonrebindable (as long, of course, as it remains muta-
ble). But this EvenSimplerBunch is indeed even simpler, and marginally speedier, as it
just rebinds the dictionary.

It is not difficult to add special methods to allow attributes to be accessed as
bunch['squared'] and so on. In Python 2.1 or earlier, for example, the simplest way is:

import operator

class MurkierBunch:
 def __init__(self, **kwds):
 self.__dict__ = kwds
 def __getitem__(self, key):
 return operator.getitem(self.__dict__, key)
 def __setitem__(self, key, value):
 return operator.setitem(self.__dict__, key, value)
 def __delitem__(self, key):
 return operator.delitem(self.__dict__, key)

In Python 2.2, we can get the same effect by inheriting from the dict built-in type
and delegating the other way around:

class MurkierBunch22(dict):
 def __init__(self, **kwds): dict.__init__(self, kwds)
 __getattr__ = dict.__getitem__
 __setattr__ = dict.__setitem__
 __delattr__ = dict.__delitem__

Neither approach makes these Bunch variants into fully fledged dictionaries. There
are problems with each—for example, what is someBunch.keys supposed to mean?
Does it refer to the method returning the list of keys, or is it just the same thing as
someBunch['keys']? It’s definitely better to avoid such confusion: Python distin-
guishes between attributes and items for clarity and simplicity. However, many new-
comers to Python do believe they desire such confusion, generally because of
previous experience with JavaScript, in which attributes and items are regularly con-
fused. Such idioms, however, seem to have little usefulness in Python. For occa-
sional access to an attribute whose name is held in a variable (or otherwise runtime-
computed), the built-in functions getattr, setattr, and delattr are quite adequate,
and they are definitely preferable to complicating the delightfully simple little Bunch
class with the semantically murky approaches shown in the previous paragraph.

See Also
The Tutorial section on classes.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

14 | Chapter 1: Python Shortcuts

1.8 Finding the Intersection
of Two Dictionaries
Credit: Andy McKay, Chris Perkins, Sami Hangaslammi

Problem
Given two dictionaries, you need to find the set of keys that are in both dictionaries.

Solution
Dictionaries are a good concrete representation for sets in Python, so operations such
as intersections are common. Say you have two dictionaries (but pretend that they
each contain thousands of items):

some_dict = { 'zope':'zzz', 'python':'rocks' }
another_dict = { 'python':'rocks', 'perl':'$' }

Here’s a bad way to find their intersection that is very slow:

intersect = []
for item in some_dict.keys():
 if item in another_dict.keys():
 intersect.append(item)
print "Intersects:", intersect

And here’s a good way that is simple and fast:

intersect = []
for item in some_dict.keys():
 if another_dict.has_key(item):
 intersect.append(item)
print "Intersects:", intersect

In Python 2.2, the following is elegant and even faster:

print "Intersects:", [k for k in some_dict if k in another_dict]

And here’s an alternate approach that wins hands down in speed, for Python 1.5.2
and later:

print "Intersects:", filter(another_dict.has_key, some_dict.keys())

Discussion
The keys method produces a list of all the keys of a dictionary. It can be pretty tempt-
ing to fall into the trap of just using in, with this list as the righthand side, to test for
membership. However, in the first example, you’re looping through all of some_dict,
then each time looping through all of another_dict. If some_dict has N1 items, and
another_dict has N2 items, your intersection operation will have a compute time pro-
portional to the product of N1 × N2. (O(N1 × N2) is the common computer-science
notation to indicate this.)
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Finding the Intersection of Two Dictionaries | 15

By using the has_key method, you are not looping on another_dict any more, but
rather checking the key in the dictionary’s hash table. The processing time for has_key
is basically independent of dictionary size, so the second approach is O(N1). The dif-
ference is quite substantial for large dictionaries! If the two dictionaries are very dif-
ferent in size, it becomes important to use the smaller one in the role of some_dict,
while the larger one takes on the role of another_dict (i.e., loop on the keys of the
smaller dictionary, thus picking the smaller N1).

Python 2.2 lets you iterate on a dictionary’s keys directly, with the statement:

for key in dict

You can test membership with the equally elegant:

if key in dict

rather than the equivalent but syntactically less nice dict.has_key(key). Combining
these two small but nice innovations of Python 2.2 with the list-comprehension nota-
tion introduced in Python 2.0, we end up with a very elegant approach, which is at
the same time concise, clear, and quite speedy.

However, the fastest approach is the one that uses filter with the bound method
another_dict.has_key on the list some_dict.keys. A typical intersection of two 500-
item dictionaries with 50% overlap, on a typical cheap machine of today (AMD Ath-
lon 1.4GHz, DDR2100 RAM, Mandrake Linux 8.1), took 710 microseconds using
has_key, 450 microseconds using the Python 2.2 technique, and 280 microseconds
using the filter-based way. While these speed differences are almost substantial, they
pale in comparison with the timing of the bad way, for which a typical intersection
took 22,600 microseconds—30 times longer than the simple way and 80 times longer
than the filter-based way! Here’s the timing code, which shows a typical example of
how one goes about measuring relative speeds of equivalent Python constructs:

import time

def timeo(fun, n=1000):
 def void(): pass
 start = time.clock()
 for i in range(n): void()
 stend = time.clock()
 overhead = stend - start
 start = time.clock()
 for i in range(n): fun()
 stend = time.clock()
 thetime = stend-start
 return fun.__name__, thetime-overhead

to500 = {}
for i in range(500): to500[i] = 1
evens = {}
for i in range(0, 1000, 2): evens[i] = 1
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

16 | Chapter 1: Python Shortcuts

def simpleway():
 result = []
 for k in to500.keys():
 if evens.has_key(k):
 result.append(k)
 return result

def pyth22way():
 return [k for k in to500 if k in evens]

def filterway():
 return filter(evens.has_key, to500.keys())

def badsloway():
 result = []
 for k in to500.keys():
 if k in evens.keys():
 result.append(k)
 return result

for f in simpleway, pyth22way, filterway, badsloway:
 print "%s: %.2f"%timeo(f)

You can save this code into a .py file and run it (a few times, on an otherwise quies-
cent machine, of course) with python -O to check how the timings of the various con-
structs compare on any specific machine in which you’re interested. (Note that this
script requires Python 2.2 or later.) Timing different code snippets to find out how
their relative speeds compare is an important Python technique, since intuition is a
notoriously unreliable guide to such relative-speed comparisons. For detailed and
general instruction on how to time things, see the introduction to Chapter 17.

When applicable without having to use a lambda form or a specially written func-
tion, filter, map, and reduce often offer the fastest solution to any given problem. Of
course, a clever Pythonista cares about speed only for those very, very few opera-
tions where speed really matters more than clarity, simplicity, and elegance! But
these built-ins are pretty elegant in their own way, too.

We don’t have a separate recipe for the union of the keys of two dictionaries, but
that’s because the task is even easier, thanks to a dictionary’s update method:

def union_keys(some_dict, another_dict):
 temp_dict = some_dict.copy()
 temp_dict.update(another_dict)
 return temp_dict.keys()

See Also
The Library Reference section on mapping types.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Finding the Intersection of Two Dictionaries | 17

1.9 Assigning and Testing with One Statement
Credit: Alex Martelli

Problem
You are transliterating C or Perl code to Python, and, to keep close to the original’s
structure, you need an expression’s result to be both assigned and tested (as in
if((x=foo()) or while((x=foo()) in such other languages).

Solution
In Python, you can’t code:

if x=foo():

Assignment is a statement, so it cannot fit into an expression, which is necessary for
conditions of if and while statements. Normally this isn’t a problem, as you can just
structure your code around it. For example, this is quite Pythonic:

while 1:
 line = file.readline()
 if not line: break
 process(line)

In modern Python, this is far better, but it’s even farther from C-like idioms:

for line in file.xreadlines():
 process(line)

In Python 2.2, you can be even simpler and more elegant:

for line in file:
 process(line)

But sometimes you’re transliterating C, Perl, or some other language, and you’d like
your transliteration to be structurally close to the original.

One simple utility class makes this easy:

class DataHolder:
 def __init__(self, value=None):
 self.value = value
 def set(self, value):
 self.value = value
 return value
 def get(self):
 return self.value
optional and strongly discouraged, but handy at times:
import __builtin__
__builtin__.DataHolder = DataHolder
__builtin__.data = DataHolder()
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

18 | Chapter 1: Python Shortcuts

With the help of the DataHolder class and its data instance, you can keep your C-like
code structure intact in transliteration:

while data.set(file.readline()):
 process(data.get())

Discussion
In Python, assignment is not an expression. Thus, you cannot assign the result that
you are testing in, for example, an if, elif, or while statement. This is usually okay:
you just structure your code to avoid the need to assign while testing (in fact, your
code will often become clearer as a result). However, sometimes you may be writing
Python code that is the transliteration of code originally written in C, Perl, or another
language that supports assignment-as-expression. For example, such transliteration
often occurs in the first Python version of an algorithm for which a reference imple-
mentation is supplied, an algorithm taken from a book, and so on. In such cases,
having the structure of your initial transliteration be close to that of the code you’re
transcribing is often preferable. Fortunately, Python offers enough power to make it
pretty trivial to satisfy this requirement.

We can’t redefine assignment, but we can have a method (or function) that saves its
argument somewhere and returns that argument so it can be tested. That “some-
where” is most naturally an attribute of an object, so a method is a more natural
choice than a function. Of course, we could just retrieve the attribute directly (i.e.,
the get method is redundant), but it looks nicer to have symmetry between data.set
and data.get.

Special-purpose solutions, such as the xreadlines method of file objects, the similar
decorator function in the xreadlines module, and (not so special-purpose) Python 2.2
iterators, are obviously preferable for the purposes for which they’ve been designed.
However, such constructs can imply even wider deviation from the structure of the
algorithm being transliterated. Thus, while they’re great in themselves, they don’t
really address the problem presented here.

data.set(whatever) can be seen as little more than syntactic sugar for data.
value=whatever, with the added value of being acceptable as an expression. There-
fore, it’s the one obviously right way to satisfy the requirement for a reasonably faith-
ful transliteration. The only difference is the syntactic sugar variation needed, and
that’s a minor issue.

Importing __builtin__ and assigning to its attributes is a trick that basically defines a
new built-in object at runtime. All other modules will automatically be able to access
these new built-ins without having to do an import. It’s not good practice, though,
since readers of those modules should not need to know about the strange side
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Assigning and Testing with One Statement | 19

effects of other modules in the application. Nevertheless, it’s a trick worth knowing
about in case you encounter it.

Not recommended, in any case, is the following abuse of list format as comprehen-
sion syntax:

while [line for line in (file.readline(),) if line]:
 process(line)

It works, but it is unreadable and error-prone.

See Also
The Tutorial section on classes; the documentation for the builtin module in the
Library Reference.

1.10 Using List Comprehensions
Instead of map and filter
Credit: Luther Blissett

Problem
You want to perform an operation on all the elements of a list, but you’d like to
avoid using map and filter because they can be hard to read and understand, partic-
ularly when they need lambda.

Solution
Say you want to create a new list by adding 23 to each item of some other list. In
Python 1.5.2, the solution is:

thenewlist = map(lambda x: x + 23, theoldlist)

This is hardly the clearest code. Fortunately, since Python 2.0, we can use a list com-
prehension instead:

thenewlist = [x + 23 for x in theoldlist]

This is much clearer and more elegant.

Similarly, say you want the new list to comprise all items in the other list that are
larger than 5. In Python 1.5.2, the solution is:

thenewlist = filter(lambda x: x > 5, theoldlist)

But in modern Python, we can use the following list comprehension:

thenewlist = [x for x in theoldlist if x > 5]
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

20 | Chapter 1: Python Shortcuts

Now say you want to combine both list operations. In Python 1.5.2, the solution is
quite complex:

thenewlist = map(lambda x: x+23, filter(lambda x: x>5, theoldlist))

A list comprehension affords far greater clarity, as we can both perform selection
with the if clause and use some expression, such as adding 23, on the selected items:

thenewlist = [x + 23 for x in theoldlist if x > 5]

Discussion
Elegance and clarity, within a generally pragmatic attitude, are Python’s core values.
List comprehensions, added in Python 2.0, delightfully display how pragmatism can
enhance both clarity and elegance. The built-in map and filter functions still have
their uses, since they’re arguably of equal elegance and clarity as list comprehensions
when the lambda construct is not necessary. In fact, when their first argument is
another built-in function (i.e., when lambda is not involved and there is no need to
write a function just for the purpose of using it within a map or filter), they can be
even faster than list comprehensions.

All in all, Python programs optimally written for 2.0 or later use far fewer map and filter
calls than similar programs written for 1.5.2. Most of the map and filter calls (and quite
a few explicit loops) are replaced with list comprehensions (which Python borrowed,
after some prettying of the syntax, from Haskell, described at http://www.haskell.org).
It’s not an issue of wanting to play with a shiny new toy (although that desire, too, has
its place in a programmer’s heart)—the point is that the toy, when used well, is a won-
derfully useful instrument, further enhancing your Python programs’ clarity, simplicity,
and elegance.

See Also
The Reference Manual section on list displays (the other name for list comprehensions).

1.11 Unzipping Simple List-Like Objects
Credit: gyro funch

Problem
You have a sequence and need to pull it apart into a number of pieces.

Solution
There’s no built-in unzip counterpart to zip, but it’s not hard to code our own:

def unzip(p, n):
 """ Split a sequence p into a list of n tuples, repeatedly taking the
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Unzipping Simple List-Like Objects | 21

 next unused element of p and adding it to the next tuple. Each of the
 resulting tuples is of the same length; if p%n != 0, the shorter tuples
 are padded with None (closer to the behavior of map than to that of zip).
 Example:
 >>> unzip(['a','b','c','d','e'], 3)
 [('a', 'd'), ('b', 'e'), ('c', None)]
 """
 # First, find the length for the longest sublist
 mlen, lft = divmod(len(p), n)
 if lft != 0: mlen += 1

 # Then, initialize a list of lists with suitable lengths
 lst = [[None]*mlen for i in range(n)]

 # Loop over all items of the input sequence (index-wise), and
 # Copy a reference to each into the appropriate place
 for i in range(len(p)):
 j, k = divmod(i, n) # Find sublist-index and index-within-sublist
 lst[k][j] = p[i] # Copy a reference appropriately

 # Finally, turn each sublist into a tuple, since the unzip function
 # is specified to return a list of tuples, not a list of lists
 return map(tuple, lst)

Discussion
The function in this recipe takes a list and pulls it apart into a user-defined number
of pieces. It acts like a sort of reverse zip function (although it deals with only the
very simplest cases). This recipe was useful to me recently when I had to take a
Python list and break it down into a number of different pieces, putting each consec-
utive item of the list into a separate sublist.

Preallocating the result as a list of lists of None is generally more efficient than build-
ing up each sublist by repeated calls to append. Also, in this case, it already ensures
the padding with None that we would need anyway (unless length(p) just happens to
be a multiple of n).

The algorithm that unzip uses is quite simple: a reference to each item of the input
sequence is placed into the appropriate item of the appropriate sublist. The built-in
function divmod computes the quotient and remainder of a division, which just hap-
pen to be the indexes we need for the appropriate sublist and item in it.

Although we specified that unzip must return a list of tuples, we actually build a list
of sublists, and we turn each sublist into a tuple as late in the process as possible by
applying the built-in function tuple over each sublist with a single call to map. It is
much simpler to build sublists first. Lists are mutable, so we can bind specific items
separately; tuples are immutable, so we would have a harder time working with them
in our unzip function’s main loop.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

22 | Chapter 1: Python Shortcuts

See Also
Documentation for the zip and divmod built-ins in the Library Reference.

1.12 Flattening a Nested Sequence
Credit: Luther Blissett

Problem
You have a sequence, such as a list, some of whose items may in turn be lists, and so
on. You need to flatten it out into a sequence of its scalar items (the leaves, if you
think of the nested sequence as a tree).

Solution
Of course, we need to be able to tell which of the elements we’re handling are to be
deemed scalar. For generality, say we’re passed as an argument a predicate that
defines what is scalar—a function that we can call on any element and that returns 1
if the element is scalar or 0 otherwise. Given this, one approach is:

def flatten(sequence, scalarp, result=None):
 if result is None: result = []
 for item in sequence:
 if scalarp(item): result.append(item)
 else: flatten(item, scalarp, result)
 return result

In Python 2.2, a simple generator is an interesting alternative, and, if all the caller
needs to do is loop over the flattened sequence, may save the memory needed for the
result list:

from __future__ import generators
def flatten22(sequence, scalarp):
 for item in sequence:
 if scalarp(item):
 yield item
 else:
 for subitem in flatten22(item, scalarp):
 yield subitem

Discussion
The only problem with this recipe is that determining what is a scalar is not as obvi-
ous as it might seem, which is why I delegated that decision to a callable predicate
argument that the caller is supposed to pass to flatten. Of course, we must be able
to loop over the items of any non-scalar with a for statement, or flatten will raise an
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Flattening a Nested Sequence | 23

exception (since it does, via a recursive call, attempt a for statement over any non-
scalar item). In Python 2.2, that’s easy to check:

def canLoopOver(maybeIterable):
 try: iter(maybeIterable)
 except: return 0
 else: return 1

The built-in function iter, new in Python 2.2, returns an iterator, if possible. for x
in s implicitly calls the iter function, so the canLoopOver function can easily check if
for is applicable by calling iter explicitly and seeing if that raises an exception.

In Python 2.1 and earlier, there is no iter function, so we have to try more directly:

def canLoopOver(maybeIterable):
 try:
 for x in maybeIterable:
 return 1
 else:
 return 1
 except:
 return 0

Here we have to rely on the for statement itself raising an exception if maybeIterable
is not iterable after all. Note that this approach is not fully suitable for Python 2.2: if
maybeIterable is an iterator object, the for in this approach consumes its first item.

Neither of these implementations of canLoopOver is entirely satisfactory, by itself, as
our scalar-testing predicate. The problem is with strings, Unicode strings, and other
string-like objects. These objects are perfectly good sequences, and we could loop on
them with a for statement, but we typically want to treat them as scalars. And even if
we didn’t, we would at least have to treat any string-like objects with a length of 1 as
scalars. Otherwise, since such strings are iterable and yield themselves as their only
items, our flatten function would not cease recursion until it exhausted the call
stack and raised a RuntimeError due to “maximum recursion depth exceeded.”

Fortunately, we can easily distinguish string-like objects by attempting a typical
string operation on them:

def isStringLike(obj):
 try: obj+''
 except TypeError: return 0
 else: return 1

Now, we finally have a good implementation for the scalar-checking predicate:

def isScalar(obj):
 return isStringLike(obj) or not canLoopOver(obj)

By simply placing this isScalar function and the appropriate implementation of
canLoopOver in our module, before the recipe’s functions, we can change the signa-
tures of these functions to make them easier to call in most cases. For example:

def flatten22(sequence, scalarp=isScalar):
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

24 | Chapter 1: Python Shortcuts

Now the caller needs to pass the scalarp argument only in those (hopefully rare)
cases where our definition of what is scalar does not quite meet the caller’s applica-
tion-specific needs.

See Also
The Library Reference section on sequence types.

1.13 Looping in Parallel over
Index and Sequence Items
Credit: Alex Martelli

Problem
You need to loop on a sequence, but at each step you also need to know what index
into the sequence you have reached.

Solution
Together, the built-in functions xrange and zip make this easy. You need only this
one instance of xrange, as it is fully reusable:

indices = xrange(sys.maxint)

Here’s how you use the indices instance:

for item, index in zip(sequence, indices):
 something(item, index)

This gives the same semantics as:

for index in range(len(sequence)):
 something(sequence[index], index)

but the change of emphasis allows greater clarity in many usage contexts.

Another alternative is to use class wrappers:

class Indexed:
 def __init__(self, seq):
 self.seq = seq
 def __getitem__(self, i):
 return self.seq[i], i

For example:

for item, index in Indexed(sequence):
 something(item, index)

In Python 2.2, with from __future__ import generators, you can also use:

def Indexed(sequence):
 iterator = iter(sequence)
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Looping in Parallel over Index and Sequence Items | 25

 for index in indices:
 yield iterator.next(), index
 # Note that we exit by propagating StopIteration when .next raises it!

However, the simplest roughly equivalent way remains the good old:

def Indexed(sequence):
 return zip(sequence, indices)

Discussion
We often want to loop on a sequence but also need the current index in the loop
body. The canonical Pydiom for this is:

for i in range(len(sequence)):

using sequence[i] as the item reference in the loop’s body. However, in many con-
texts, it is clearer to emphasize the loop on the sequence items rather than on the
indexes. zip provides an easy alternative, looping on indexes and items in parallel,
since it truncates at the shortest of its arguments. Thus, it’s okay for some argu-
ments to be unbounded sequences, as long as not all the arguments are unbounded.
An unbounded sequence of indexes is trivial to write (xrange is handy for this), and a
reusable instance of that sequence can be passed to zip, in parallel to the sequence
being indexed.

The same zip usage also affords a client code–transparent alternative to the use of a
wrapper class Indexed, as demonstrated by the Indexed class, generator, and function
shown in the solution. Of these, when applicable, zip is simplest.

The performance of each of these solutions is roughly equivalent. They’re all O(N) (i.e.,
they execute in time proportional to the number of elements in the sequence), they all
take O(1) extra memory, and none is anything close to twice as fast or as slow as
another.

Note that zip is not lazy (i.e., it cannot accept all argument sequences being
unbounded). Therefore, in certain cases in which zip cannot be used (albeit not the
typical one in which range(len(sequence)) is the alternative), other kinds of loop
might be usable. See Recipe 17.12 for lazy, iterator-based alternatives, including an
xzip function (Python 2.2 only).

See Also
Recipe 17.12; the Library Reference section on sequence types.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

26 | Chapter 1: Python Shortcuts

1.14 Looping Through Multiple Lists
Credit: Andy McKay

Problem
You need to loop through every item of multiple lists.

Solution
There are basically three approaches. Say you have:

a = ['a1', 'a2', 'a3']
b = ['b1', 'b2']

Using the built-in function map, with a first argument of None, you can iterate on both
lists in parallel:

print "Map:"
for x, y in map(None, a, b):
 print x, y

The loop runs three times. On the last iteration, y will be None.

Using the built-in function zip also lets you iterate in parallel:

print "Zip:"
for x, y in zip(a, b):
 print x, y

The loop runs two times; the third iteration simply is not done.

A list comprehension affords a very different iteration:

print "List comprehension:"
for x, y in [(x,y) for x in a for y in b]:
 print x, y

The loop runs six times, over each item of b for each item of a.

Discussion
Using map with None as the first argument is a subtle variation of the standard map call,
which typically takes a function as the first argument. As the documentation indi-
cates, if the first argument is None, the identity function is used as the function
through which the arguments are mapped. If there are multiple list arguments, map
returns a list consisting of tuples that contain the corresponding items from all lists
(in other words, it’s a kind of transpose operation). The list arguments may be any
kind of sequence, and the result is always a list.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Looping Through Multiple Lists | 27

Note that the first technique returns None for sequences in which there are no more
elements. Therefore, the output of the first loop is:

Map:
a1 b1
a2 b2
a3 None

zip lets you iterate over the lists in a similar way, but only up to the number of ele-
ments of the smallest list. Therefore, the output of the second technique is:

Zip:
a1 b1
a2 b2

Python 2.0 introduced list comprehensions, with a syntax that some found a bit
strange:

[(x,y) for x in a for y in b]

This iterates over list b for every element in a. These elements are put into a tuple (x, y).
We then iterate through the resulting list of tuples in the outermost for loop. The out-
put of the third technique, therefore, is quite different:

List comprehension:
a1 b1
a1 b2
a2 b1
a2 b2
a3 b1
a3 b2

See Also
The Library Reference section on sequence types; documentation for the zip and map
built-ins in the Library Reference.

1.15 Spanning a Range Defined by Floats
Credit: Dinu C. Gherman, Paul M. Winkler

Problem
You need an arithmetic progression, just like the built-in function range, but with
float values (range works only on integers).

Solution
Although this functionality is not available as a built-in, it’s not hard to code it with a
loop:

def frange(start, end=None, inc=1.0):
 "A range-like function that does accept float increments..."
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

28 | Chapter 1: Python Shortcuts

 if end == None:
 end = start + 0.0 # Ensure a float value for 'end'
 start = 0.0
 assert inc # sanity check

 L = []
 while 1:
 next = start + len(L) * inc
 if inc > 0 and next >= end:
 break
 elif inc < 0 and next <= end:
 break
 L.append(next)

 return L

Discussion
Sadly missing in the Python standard library, the function in this recipe lets you use
ranges, just as with the built-in function range, but with float arguments.

Many theoretical restrictions apply, but this function is more useful in practice than
in theory. People who work with floating-point numbers all the time have many war
stories about billion-dollar projects that failed because someone did not take into
consideration the strange things that modern hardware does when comparing float-
ing-point numbers. But for pedestrian cases, simple approaches like this recipe gen-
erally work.

You can get a substantial speed boost by preallocating the list instead of calling
append repeatedly. This also allows you to get rid of the conditionals in the inner
loop. For one element, this version is barely faster, but with more than 10 elements
it’s consistently about 5 times faster—the kind of performance ratio that is worth
caring about. I get identical output for every test case I can think of:

def frange2(start, end=None, inc=1.0):
 "A faster range-like function that does accept float increments..."
 if end == None:
 end = start + 0.0
 start = 0.0
 else: start += 0.0 # force it to be a float

 count = int((end - start) / inc)
 if start + count * inc != end:
 # Need to adjust the count. AFAICT, it always comes up one short.
 count += 1

 L = [start] * count
 for i in xrange(1, count):
 L[i] = start + i * inc

 return L
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Spanning a Range Defined by Floats | 29

Both versions rely on a single multiplication and one addition to compute each item,
to avoid accumulating error by repeated additions. This is why, for example, the
body of the for loop in frange2 is not:

L[i] = L[i-1] + inc

In Python 2.2, if all you need to do is loop on the result of frange, you can save some
memory by turning this function into a simple generator, yielding an iterator when
you call it:

from __future__ import generators

def frangei(start, end=None, inc=1.0):
 "An xrange-like simple generator that does accept float increments..."

 if end == None:
 end = start + 0.0
 start = 0.0
 assert inc # sanity check

 i = 0
 while 1:
 next = start + i * inc
 if inc > 0 and next >= end:
 break
 elif inc < 0 and next <= end:
 break
 yield next
 i += 1

If you use this recipe a lot, you should probably take a look at Numeric Python and
other third-party packages that take computing with floating-point numbers seri-
ously. This recipe, for example, will not scale well to very large ranges, while those
defined in Numeric Python will.

See Also
Documentation for the range built-in function in the Library Reference; Numeric
Python (http://www.pfdubois.com/numpy/).

1.16 Transposing Two-Dimensional Arrays
Credit: Steve Holden

Problem
You need to transpose a list of lists, turning rows into columns and vice versa.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

30 | Chapter 1: Python Shortcuts

Solution
You must start with a list whose items are lists all of the same length:

arr = [[1,2,3], [4,5,6], [7,8,9], [10,11,12]]

A list comprehension offers a simple, handy way to transpose it:

print [[r[col] for r in arr] for col in range(len(arr[0]))]
[[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]]

Discussion
This recipe shows a concise way (although not necessarily the fastest way) to turn
rows into columns. List comprehensions are known for being concise.

Sometimes data just comes at you the wrong way. For instance, if you use
Microsoft’s ADO database interface, due to array element ordering differences
between Python and Microsoft’s preferred implementation language (Visual Basic),
the GetRows method actually appears to return database columns in Python, despite
its name. This recipe’s solution to this common problem was chosen to demonstrate
nested list comprehensions.

Notice that the inner comprehension varies what is selected from (the row), while
the outer comprehension varies the selector (the column). This process achieves the
required transposition.

If you’re transposing large arrays of numbers, consider Numeric Python and other
third-party packages. Numeric Python defines transposition and other axis-swinging
routines that will make your head spin.

See Also
The Reference Manual section on list displays (the other name for list comprehen-
sions); Numeric Python (http://www.pfdubois.com/numpy/).

1.17 Creating Lists of Lists Without
Sharing References
Credit: David Ascher

Problem
You want to create a multidimensional list, but the apparently simplest solution is
fraught with surprises.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Creating Lists of Lists Without Sharing References | 31

Solution
Use list comprehensions (also known as list displays) to avoid implicit reference
sharing:

multilist = [[0 for col in range(5)] for row in range(10)]

Discussion
When a newcomer to Python is shown the power of the multiplication operation on
lists, he often gets quite excited about it, since it is such an elegant notation. For
example:

>>> [0] * 5
[0, 0, 0, 0, 0]

The problem is that one-dimensional problems often grow a second dimension, so
there is a natural progression to:

>>> multi = [[0] * 5] * 3
>>> print multi
[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]

This appears to have worked, but the same newcomer is then often puzzled by bugs,
which typically can be boiled down to the following test:

>>> multi[0][0] = 'Changed!'
>>> print multi
[['Changed!', 0, 0, 0, 0], ['Changed!', 0, 0, 0, 0], ['Changed!', 0, 0, 0, 0]]

This problem definitely confuses most programmers at least once, if not a few times
(see the FAQ entry at http://www.python.org/doc/FAQ.html#4.50). To understand it,
it helps to decompose the creation of the multidimensional list into two steps:

>>> row = [0] * 5 # a list with five references to 0
>>> multi = [row] * 3 # a list with three references to the row object

The problem still exists in this version (Python is not that magical). The comments
are key to understanding the source of the confusion. The process of multiplying a
sequence by a number creates a new sequence with the specified number of new ref-
erences to the original contents. In the case of the creation of row, it doesn’t matter
whether references are being duplicated or not, since the referent (the object being
referred to) is immutable. In other words, there is no difference between an object
and a reference to an object if that object is immutable. In the second line, however,
what is created is a new list containing three references to the contents of the [row]
list, which is a single reference to a list. Thus, multi contains three references to a
single object. So when the first element of the first element of multi is changed, you
are actually modifying the first element of the shared list. Hence the surprise.

List comprehensions, added in Python 2.2, provide a nice syntax that avoids the
problem, as illustrated in the solution. With list comprehensions, there is no shar-
ing of references—it’s a truly nested computation. Note that the performance
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

32 | Chapter 1: Python Shortcuts

characteristics of the solution are O(M × N), meaning that it will scale with each
dimension. The list-multiplication idiom, however, is an O(M) computation, as it
doesn’t really do duplications.

See Also
Documentation for the range built-in function in the Library Reference.
This is the Title of the Book, eMatter Edition
Copyright © 2002 O’Reilly & Associates, Inc. All rights reserved.

Creating Lists of Lists Without Sharing References | 33

	1.1 Swapping Values Without Using a Temporary Variable
	Solution
	Discussion
	See Also

	1.2 Constructing a Dictionary Without Excessive Quoting
	Solution
	Discussion
	See Also

	1.3 Getting a Value from a Dictionary
	Solution
	Discussion
	See Also

	1.4 Adding an Entry to a Dictionary
	Solution
	Discussion
	See Also

	1.5 Associating Multiple Values with Each Key in a Dictionary
	Solution
	Discussion
	See Also

	1.6 Dispatching Using a Dictionary
	Solution
	Discussion
	See Also

	1.7 Collecting a Bunch of Named Items
	Solution
	Discussion
	See Also

	1.8 Finding the Intersection of Two Dictionaries
	Solution
	Discussion
	See Also

	1.9 Assigning and Testing with One Statement
	Solution
	Discussion
	See Also

	1.10 Using List Comprehensions Instead of map and filter
	Solution
	Discussion
	See Also

	1.11 Unzipping Simple List-Like Objects
	Solution
	Discussion
	See Also

	1.12 Flattening a Nested Sequence
	Solution
	Discussion
	See Also

	1.13 Looping in Parallel over Index and Sequence Items
	Solution
	Discussion
	See Also

	1.14 Looping Through Multiple Lists
	Solution
	Discussion
	See Also

	1.15 Spanning a Range Defined by Floats
	Solution
	Discussion
	See Also

	1.16 Transposing Two-Dimensional Arrays
	Solution
	Discussion
	See Also

	Head1.17 Creating Lists of Lists Without Sharing References
	Solution
	Discussion
	See Also

