
LVM, the lazy virtual machine

DAAN LEIJEN
University of Utrecht

Dept. of Computer Science
PO.Box 80.089, 3508 TB Utrecht

The Netherlands
daan@cs.uu.nl,http://www.cs.uu.nl/~daan/lvm.html

Revision : 1.12

November 12, 2002

1

mailto:daan@cs.uu.nl
http://www.cs.uu.nl/~daan/lvm.html

2 LVM, the lazy virtual machine

1 Introduction

The Lazy Virtual Machine (lvm), like the JVM, defines a portable instruction set and file
format. However, it is specifically designed to execute languages with non-strict (or lazy)
semantics. These languages are hard to map to stock hardware and require an extensive
runtime system. By providing a standard runtime environment we hope to make it easier
to experiment with new lazy languages, profilers or debuggers.

Prominent features of the lvm are:

• A portable file format and instruction set.

• High level and simple instructions – ie. easy to compile to from a lazy language.

• Efficient interpretation or JIT compilation is possible.

• Interaction with existing C and Java libraries.

The lvm is implemented on top of the OCaml runtime system and there is a toolkit that
translates enriched lambda expressions to bytecode files. The system currently runs on many
platforms, including Windows, various Unix’s, MacOSX and 64-bit platforms like the DEC
alpha.

The current lvm implementation is an interpreter and the lvm modules are generated with a
very naive compiler that performs no inlining or simplification. However, preliminary bench
marks (queens, sieve) show that it performs quite well in practice – it is orders of magnitude
faster than Hugs and about three times as slow as unoptimised GHC code.

The instruction set of the lvm is closely based on the STG machine. The most notable
differences are that the machine is environment-less but not tag-less. Both changes were
made to make efficient interpretation possible. The design of the lvm instruction set was
further influenced by the implementation of the once existing STG-Hugs interpreter written
by Alastair Reid. Allthough it initiated the design of the lvm, it now differs fundamentally
on many aspects, like partial applications, uniform values and continuation frames.

2 The LVM language 3

Program program → {top {var}∗ = expr;}∗
Expression expr → let! var = expr in expr

| match var with { {pat -> expr;}+ }

| primn {atom}n

| let in expr
| atom

Let let → letrec { {var = atom;}+ }

| let var = atom

Atomic atom → let in atom
| id {atom}∗
| conn

t {atom}n

| literal

Pattern pat → var
| conn

t {var}n

| literal

Literal literal → int | float | bytes
Identifier id → var | top
Variable var → local identifier (x)

Global top → top level identifier (f)
Constructor conn

t → constructor with tag t and arity n
Primitive primn → instruction or foreign function of arity n
Integer int → integer (i)
Float float → floating point number
Bytes bytes → a sequence of bytes (packed string)

Notation {p}∗ → zero or more p

{p}+ → one or more p
{p}n → exactly n occurrences of p

Figure 1: Abstract syntax of the LVM language

2 The LVM language

Since the lvm is supposed to be (functional) language neutral, we define a small lvm lan-
guage that is used to explain the instruction set and to define a formal compilation scheme.
The abstract syntax for the lvm language is given in figure 1. Allthough the form of expres-
sions is restrictive, any enriched lambda calculus expression can be translated into a lvm
expression. As such, the lvm language can be seen as the assembly language of the lambda
calculus.

Just like the STG language (Peyton Jones, 1992), we attach an operational reading to
the lvm language: let and letrec perform heap allocation, let! evaluates expressions
and match distinguishes evaluated values. The lvm languages doesn’t contain lambda-
expressions or local function definitions – all functions have been lambda-lifted to toplevel
(Johnsson, 1985). This means that no lvm function contains free variables and a program
consists of recursive equations.

The let! expression is a strict version of let. It evaluates its right hand side to weak-
head-normal-form before evaluating the body of the expression. The usual case expression
of lazy languages is easily translated into a let! and match pair:

case e of alts
⇒

4 LVM, the lazy virtual machine

let! x = e in match x with alts

Strict languages can easily be translated into the lvm language. Every language let binding
becomes a lvm let! binding. The letrec binding of O’Caml and ML can only be used on
recursive functions which are lifted to toplevel and present no problem.

The distinction between atomic and normal expressions is more than a syntactic convenience.
An atomic expression can always be constructed without failure but a let!, match or prim
expression can fail or loop. This is the reason why let expressions can only contain atomic
expressions on their right-hand side.

2.1 Translating into the LVM language

The following transformations should be applied to translate enriched lambda calculus into
the lvm language:

• Replace binary application with vector application.

(... ((id e1) e2) ...) en ⇒ id e1 ... en

• Saturate all applications to constructors and primitives.

conn
t e1 ... em | (m < n) ⇒ \x(m+1) ... xn. conn

t e1 ... em x(m+1) ... xn

• Introduce a let expression for all anonymous lambda expressions.

\x1 ... xn . e ⇒ let x x1 ... xn = e in x

• Introduce a let expression for all non-atomic arguments.

e (match x with alts) ⇒ let y = (match x with alts) in e y

• Introduce a let expression for all applications that are not applied to a variable or
constructor.

e x1 ... xn ⇒ let x = e in x x1 ... xn

• Pass all free variables in non-atomic expressions as explicit arguments. This leads
to an environment-less lvm machine. This transformation corresponds essentially to
lambda-lifting.

f x = let y = (let! z = 1/x in z) in y
⇒

f x = let y x = (let! z = 1/x in z) in y x

• Lift all local functions and non-atomic right-hand sides of let bindings to top-level.

f x = let y x = (let! z = 1/x in z) in y x
⇒

fy x = let! z = 1/x in z
f x = fy x

2 The LVM language 5

2.2 Let floating

An explicit let floating pass can often be avoided since the lvm language allows let expres-
sions as atomic expressions Consider the following Haskell expression:

f = let x = [1, 2] in e

A straightforward translation gives:

f = let x = (let y = Cons 2 Nil in Cons 1 y) in e

Another way to translate the expression is to float the let binding one level up:

f = let y = Cons 2 Nil in let x = Cons 1 y in e

Both programs are almost equivalent under the compilation scheme presented in the next
section. The only difference is that the first program slides out the y value from the stack
and therefore uses slightly less stack space with slightly more work. In contrast to the
STG machine, both programs will construct the Cons 2 Nil node, even when x is never
demanded. If the same behaviour as the STG is desired, the binding should be lifted to the
top level:

fy = Cons 2 Nil
f = let x = Cons 1 fy in e

However, it is hard to garbage collect a top level binding without arguments and it is not
recommended to lift bindings to top level in general (Peyton Jones et al., 1996).

2.3 Strictness and speculative evaluation

In general, we can not float up other constructs like let! or match since they might fail
or perform an unbounded amount of computation. It is possible when a strictness analyser
determines that the value is demanded later, but in that case it is easier to transform the
let binding into a let! binding, which can have full expressions at its right-hand side.

If the strictness analyser can not prove that a value is demanded but if we are reasonably sure
that the expression uses a bounded amount of computation, we could speculatively evaluate
the expression. The value is computed eagerly but if it fails or uses too much resources, in
terms of time or space, it is suspended. Currently, this is still an area of research but we
plan to add the atomic let$ construct for speculative bindings.

6 LVM, the lazy virtual machine

2.4 Compilation scheme

The compilation scheme translates the lvm language into lvm instructions. In order to make
the translation as clear as possible, the compilation scheme uses a few pseudo instructions
to delay offset computations. This allows us to move the complexity of computing stack
offsets of local variables to a seperate resolve phase. The pseudo instructions are:

• Param(x) declares a local variable x that resides on the stack as an argument. This
instruction allows the resolve phase to calculate the correct stack offset for x .

• Var(x) declares a local variable x that is bound to the current top of the stack.

• Eval(is). After executing instructions is, execution is continued at the next instruction.
It is translated during code generation into (PushCont(ofs); is). Eval is introduced to
delay the computation of the offset ofs which is only known at code generation time.

• Atom(is). This instruction is used for translating expressions that result in a single
value on the stack. During resolve it is translated into the instructions (is; Slide(1,m))
where m dead values are slided out of the stack. Atom is used to delay the computation
of the correct value for m which is only known during the resolve phase.

• Init(is). This instruction is used for translating the initialization of letrec bindings.
The instructions is don’t compute any value on the stack. During resolve it is trans-
lated into the instructions (is;Slide(0,m)) where m dead values are slided out of the
stack.

2.4.1 Program

A lvm program is translated with the P scheme.

P[[f1 args1 = e1; ...; fn argsn = en;]] ⇒
let index (fi) = i
let arity(fi) = |argsi |
let code(fi) = T [[argsi = ei]]

The P scheme translates a program into three functions, code gives the code for a function,
arity returns the number of parameters and index returns the index used in binary lvm
files.

Each top level value is translated with the T scheme. The T scheme emits the pseudo
instruction Param for each argument in order to resolve the stack offsets of each argument
during the resolve phase. As signified by the Atom instruction, a single value is computed
that is subsequently entered by the Enter instruction.

T [[x1 ... xn = e]] ⇒
ArgChk(n); Atom(Param(xn); ...; Param(x1); E [[e]]); Enter

Each top level value first checks the number of arguments with an argument check instruc-
tion. This is necessary in a higher-order language since it is not always possible to determine
at a call site if a function is partially applied or not. For example:

2 The LVM language 7

apply f x = f x

Is f partially applied or not? This can not be determined without a whole-program analy-
sis. For this reason, each function checks the number of arguments itself with the ArgChk
instruction, building a partial application node if there are too few arguments. Many times
however, the compiler can determine if there are enough arguments. The rewrite rules that
are given later in this document will emit an EnterCode instruction if a function call is satu-
rated. This instruction enters a function just beyond the ArgChk instruction since we know
that the check will succeed. For this reason, every supercombinator always has to start with
this instruction or otherwise the EnterCode instruction will enter the function at a random
location!

2.4.2 Expressions

Expressions are translated with the E scheme.

E [[let in e]] ⇒
L[[let]]; E [[e]]

E [[let! x = e in e ′]] ⇒
Eval(Atom(E [[e]]); Enter); Var(x); E [[e ′]]

E [[match x with { alts }]]
PushVar(x); M[[alts]]

E [[primn a1 ... an]] ⇒
A[[an]]; ...; A[[a1]]; Call(prim,n)

E [[a]] ⇒
A[[a]]

2.4.3 Atomic expressions

The A scheme wraps the instructions in an Atom pseudo instruction to slide out any dead
local variables arising from nested let expressions.

A[[a]] ⇒
Atom(A′[[a]])

The A′ scheme translates atomic expressions without entering them.

A′[[let in a]] ⇒
L[[let]];A′[[a]];

A′[[x a1 ... an]] ⇒
A[[an]]; . . . ; A[[a1]]; PushVar(x); NewAp(n + 1);

A′[[f a1 ... an]] ⇒
A[[an]]; . . . ; A[[a1]]; PushCode(f); NewAp(n + 1);

A′[[conn
t a1 ... an]] ⇒

A[[an]]; . . . ; A[[a1]]; NewCon(t ,n);
A′[[i]] ⇒

PushInt(i);

8 LVM, the lazy virtual machine

Note that this simple translation scheme is quite inefficient – it allocates an application node
for every function call. Take for example the following expression:

swap f x y = f y x

Using the simple translation scheme, swap is translated into:

ArgChk(3);Atom(
Param(y); Param(x); Param(f);
Atom(PushVar(x); NewAp(1));
Atom(PushVar(y); NewAp(1));
Atom(PushVar(f); NewAp(1));
NewAp(3))

Enter

After resolve, this instruction stream becomes:

ArgChk(3);
PushVar(1);NewAp(1); Slide(1, 0);
PushVar(3);NewAp(1); Slide(1, 0);
PushVar(2);NewAp(1); Slide(1, 0);
NewAp(3); Slide(1, 3);
Enter

Instead of just pushing the arguments on the stack and entering the function f , the code first
builds an application node with application nodes for each variable, which is subsequently
entered, unpacked and, only than, the function f is entered! Fortunately, we can use some
simple rewrite rules on the instruction stream to remove these inefficiencies. Using the
rewrite rules from section 2.6, the instruction stream becomes much more efficient.

ArgChk(3);PushVar(1); PushVar(3); PushVar(2);Slide(3, 3); Enter

We made the compilation scheme as simple and straightforward as possible and let the com-
piler do its optimizations on the lvm language and the instruction streams. It is quite easy
to prove that transformations on the lvm language and instruction stream are correct. For
example, the above transformation is simply a matter of applying the operational semantics
described in section 3. In contrast, proving that the compilation scheme is correct is much
harder – we have to show a correspondence between the operational semantics of the lvm
language and the translated instructions. By making the compilation scheme dumb, we
hope that it becomes at least ‘obviously’ correct.

2.4.4 Let expressions

L[[let x = a]] ⇒
A[[a]]; Var(x)

L[[letrec { x1 = a1; ...; xn = an ; }]] ⇒
Atom(U [[a1]]); Var(x1); ...; Atom(U [[an]]); Var(xn);
Init(I[[x1 = a1]]); ...; Init(I[[xn = an]])

The rule for letrec first allocates uninitialized values for its bindings using the U scheme
and binds the stack slots to it’s local variables using the Var pseudo instruction. Later, the

2 The LVM language 9

values are initialized using the I scheme. The rule for let is not concerned with recursive
bindings and immediately allocates a value.

The U scheme allocates an uninitialized application- or constructor node that later initial-
ized. This allows the different bindings in a letrec expression to refer to each other.

U [[let in a]] ⇒
U [[a]]

U [[id a1 ... an]] ⇒
AllocAp(n + 1);

U [[conn
t a1 ... an]] ⇒

AllocCon(t ,n);

Later, the I scheme is used to initialize each node with the proper values.

I[[x = let in a]] ⇒
L[[let]]; I[[x = a]]

I[[x = x ′ a1 ... an]] ⇒
A[[an]]; . . . ; A[[a1]]; PushVar(x ′); PackAp(x ,n + 1);

I[[x = f a1 ... an]] ⇒
A[[an]]; . . . ; A[[a1]]; PushCode(f); PackAp(x ,n + 1);

I[[x = conn
t a1 ... an]] ⇒

A[[an]]; . . . ; A[[a1]]; PackCon(x ,n);

2.4.5 Matching

A match is translated with the M scheme.

M[[pat1 -> e1; ...; patn -> en]] | ∃ i . pati is a constructor pattern ⇒
MatchCon(P[[pat1 -> e1]], ..., P[[patn -> en]])

M[[pat1 -> e1; ...; patn -> en]] | ∃ i . pati is an integer pattern ⇒
MatchInt(P[[pat1 -> e1]], ..., P[[patn -> en]])

Each pattern is compiled with the P scheme. Note that the Param instruction is used to
bind the values of a matched constructor.

P[[conn
t x1 ... xn -> e]] ⇒
〈t , Atom(Param(xn); ...; Param(x1); E [[e]])〉

P[[i -> e]] ⇒
〈i , Atom(E [[e]])〉

P[[x -> e]] ⇒
〈x , Atom(Param(x); E [[e]])〉

2.4.6 Optimized schemes

Allthough we tried to put as little smartness as possible into the compilation scheme, some
transformations are hard to apply during a different phase. For example, the following rule

10 LVM, the lazy virtual machine

discards a stack push of a value that has just been evaluated. However, it can only do so if
the bound variable is not used in the alternatives. This is a good example of where we need
both high level information (is x used in the alternatives?) and low-level information (we
can skip a PushVar instruction).

E [[let! x = e in match x with alts]] | x /∈ fv(alts) ⇒
Eval(Atom(E [[e]]);Enter); M[[alts]]

Another important optimization removes superfluous continuation frames. This is especially
important for efficient arithmetic. For example:

discriminant a b c = let! ac = a ∗ c in
let! ac4 = 4 ∗ ac in
let! b2 = b ∗ b in b2 + ac4

If we suppose that a, b and c are already in weak head normal form and that ∗ and + expand
to the primitive MulInt and AddInt instructions, we would get the following instruction
sequence (after some rewriting):

ArgChk(3)
Eval(PushVar(c); PushVar(a); MulInt; Slide(1, 0); Enter)
Var(ac);
Eval(PushVar(ac); PushInt(4);MulInt; Slide(1, 0); Enter)
...

However, the result of MulInt is already in weak head normal form and entering it will only
return immediately to the continuation frame pushed by Eval. A much better instruction
sequence (that gives the same result) is possible:

ArgChk(3)
PushVar(c); PushVar(a); MulInt;
Var(ac);
PushVar(ac); PushInt(4);MulInt;
...

In general, when an expression is evaluated that already returns a strict result, we don’t
need to enter that result again.

E [[let! x = e in e ′]] | whnf (e) ⇒
Atom(E [[e]]);Var(x); E [[e ′]]

The whnf predicate determines whether the expression e puts a value in weak head normal
form on the stack. We assume that every primitive operation prim has an associated type t
where the result type is annotated with a (!) when the result is always in weak head normal
form. The function whnf can be conservatively defined as:

whnf (let in e) = whnf (e)
whnf (let! x = e in e ′) = whnf (e ′)
whnf (match x with alts) = whnfAlts alts
whnf (x a1 ... an) = False
whnf (conn

t a1 ... an) = True
whnf (i) = True
whnf (primn a1 ... an) | prim :: t1 → ... → tn → t! = True

| otherwise = False

2 The LVM language 11

whnfAlts ({ alt1; ...; altn }) = whnfAlt(alt1) & ... & whnfAlt(altn)
whnfAlt (pat -> e) = whnf (e)

2.5 Resolve rules

The resolve phase resolves all offsets of local variables and removes the Param, Var, Init and
Atom pseudo instructions. Guided by these pseudo instructions, the algorithm simulates the
stack and calculates the correct offsets for each variable.

2.5.1 The resolve monad

We use a monadic formulation of the algorithm. The monad type is defined as:

newtype M a = M (〈Env , Depth〉 → 〈a, Depth〉)

The monad uses an enviroment, Env that maintains the mapping from local variables to
their stack location. The monad also has a state Depth that contains the current depth of
the (simulated) stack.

The monadic functions are defined as usual (Hutton and Meijer, 1996):

return x =
M (\〈env , depth〉 → 〈x , depth〉)

(M m) >>= f =
M (\〈env , depth〉 →

let 〈x , depth ′〉 = m 〈env , depth〉
(M fm) = f x

in fm 〈env , depth ′〉

The push and pop non-proper morphisms simulate stack movements.

pop n =
M (\〈env , depth〉 → 〈(), depth − n〉)

push n =
M (\〈env , depth〉 → 〈(), depth + n〉)

The depth function returns the current stack depth.

depth =
M (\〈env , depth〉 → 〈depth, depth〉)

Variables are bound using bind and the function offset returns their current offset relative
to the top of the stack.

offset x =
M (\〈env , depth〉 → 〈depth − env [x], depth〉)

bind x (M m) =
M (\〈env , depth〉 →m 〈env ⊕ { x 7→ depth}, depth〉)

Note that the offset of a local variable is the difference between the current stack depth
and the stack depth at which the variable was bound (with the bind function). This well

12 LVM, the lazy virtual machine

known trick allows us to dereference all local variables relative to the current stack pointer
and removes the need for a seperate base pointer , which is still used in some C compilers to
aid debuggers.

2.5.2 The algorithm

An instruction stream is resolved by the resolves function.

resolves (Param(x) : instrs) =
do{ push 1; bind x (resolves instrs) }

resolves (Var(x) : instrs) =
bind x (do{ resolves instrs })

resolves (instr : instrs) =
do{ is ← resolve instr

iss ← resolves instrs
return (is ++ iss) }

Individual instructions are resolved by the resolve function.

resolve PushVar(x) =
do{ ofs ← offset x ;

push 1;
return [PushVar(ofs)] }

resolve PackAp(x ,n) =
do{ ofs ← offset x ;

pop n;
return [PackAp(ofs,n)] }

resolve PackCon(x ,n) =
do{ ofs ← offset x ;

pop n;
return [PackCon(ofs,n)] }

resolve Eval(is) =
do{ push 3;

is ′← resolves is;
pop 3;
return [Eval(is ′)] }

resolve Atom(is) =
do{ resolveSlide 1 is }

resolve Init(is) =
do{ resolveSlide 0 is }

resolve (MatchCon(alts)) =
do{ pop 1;

alts ′← sequence (map resolveAlt alts);
return [MatchCon(alts ′)] }

resolve instr =
do{ effect instr ; return [instr] }

The resolveSlide n is function slides out any dead values on the stack, only preserving the
top n stack values.

resolveSlide n is =
do{ d0← depth;

2 The LVM language 13

is ′← resolves is;
d1← depth;
let m = d1− d0− n
pop m;
return (is ′ ++ [Slide(n,m)]) }

Alternatives are resolved with resolveAlt . Note that every alternative should return with
the same stack depth.

resolveAlt 〈t , is〉 =
do{ is ′← resolves is; return 〈t , is〉 }

Most instructions are not transformed but they do have an effect on the stack. The effect
function simulates this effect in the resolve monad.

effect PushCode(f) = push 1
effect AllocAp(n) = push 1

effect AllocCon(t ,n) = push 1

effect NewAp(n) = do{ pop n; push 1 }
effect NewCon(t ,n) = do{ pop n; push 1 }
effect AddInt = do{ pop 2; push 1 }
...

effect instr = return ()

2.6 Rewrite rules

The rewrite rules transform a sequence of instructions into a more efficient sequence of
instructions with the same semantic effect. As described in section 2.4.3, the rewrite rules
are an important optimization since the compilation scheme is quite näıve.

There are two essential rewrite rules that push instructions following a match into the
branches of the match. This is needed since the branches are not able to jump to those
instructions. The transformation is safe, since every alternative leaves the stack at the same
depth.

MatchCon(alt1, ..., altn); instrs ⇒
MatchCon(alt1; instrs , ..., altn ; instrs)

MatchInt(alt1, ..., altn); instrs ⇒
MatchInt(alt1; instrs , ..., altn ; instrs)

The first optimizing rules transform partial and saturated applications. The first rule emits
NewNap instructions for a known partial application – this instruction will not push an ex-
pensive update frame. The second rule uses EnterCode for saturated applications to a known
top level function. This instruction behaves just like Enter except that an implementation
can safely skip the expensive argument check for the entered function.

PushCode(f); NewAp(n) | arity(f) > (n − 1) ⇒
PushCode(f); NewNap(n)

PushCode(f); Slide(n,m); Enter | arity(f) = (n − 1) & arity(f) 6= 0 ⇒
Slide(n − 1,m); EnterCode(f)

If an application node is entered immediately after building it, we can safely enter the

14 LVM, the lazy virtual machine

application directly without building the application node at all! The last rule moves the
Slide instruction up in order to prevent space leaks while calling external functions.

NewAp(n); Slide(1,m); Enter ⇒
Slide(n,m); Enter

NewNap(n); Slide(1,m); Enter ⇒
Slide(n,m); Enter

Call(prim,n); Slide(1,m); Enter ⇒
Slide(n,m); Call(prim,n); Enter

Expressions of the form (let! x = e in x) lead to code that push variable x and subsequently
discard the original binding. We can instead discard the push and leave the original binding
in place.

PushVar(0);Slide(1,m) | m ≥ 1 ⇒
Slide(1,m − 1)

The previous rule naturally generalizes to a sequence of n pushes:

PushVar1(n − 1); ...;PushVarn(n − 1); Slide(n,m) | m ≥ n ⇒
Slide(n,m − n)

If a value is entered that is already in weak head normal form, we can directly use the Return
instruction. We assume that all primitive functions have a type that ends with a (!) when
they return a strict result. This is the case for many primitive operations and instructions.

Call(prim,n); Enter | prim :: t1 → ... → tn → t! ⇒
Call(prim,n); Return

Commonly, a constructor or literal is returned. The lvm has the special ReturnCon and
ReturnInt instructions that can potentially execute without extra heap allocation implied
by building a new constructor. Instead of building a new constructor that is immediately
entered, the constructor is kept on the stack. This is the ‘return in registers’ convention as
described in the STG machine paper (Peyton Jones, 1992).

NewCon(t ,n); Slide(1,m); Enter ⇒
Slide(n,m); ReturnCon(t ,n)

PushInt(i); Slide(1,m); Enter ⇒
Slide(0,m); ReturnInt(i)

An lvm interpreter can test a variable cheaply to see if it is already in a weak head normal
form. The EvalVar instruction can use this in order to avoid creating a continuation frame
that is immediately popped.

Eval(PushVar(ofs); Slide(1, 0); Enter) ⇒
EvalVar(ofs − 3)

Many times we can merge slides, arising from instructions pushed into an alternative.

Slide(n0,m0); Slide(n1,m1) | n1 ≤ n0 ⇒
Slide(n1,m0 + m1− (n0− n1))

The last rules deal with instructions that have no effect and primitive instructions. By
treating instructions like AddInt as a primitive call, the compiler can be simplified since it
doesn’t need special code to deal with built-in operations. In a sense, these instructions are
just like external calls except that they have a very efficient calling convention and encoding.

2 The LVM language 15

Call(prim,n) | prim = instr instr :: t1 → ... → tn → t ⇒
instr

NewAp(n) | n ≤ 1 ⇒
−

Slide(n, 0) ⇒
−

2.7 Code generation

The code generation phase resolves the code offsets relative to program counter.

codegens is =
concat (map codegen is)

codegen Eval(is) =
let is ′ = codegens is
in [PushCont(size is ′)] ++ is ′

codegen PushCode(f) =
[PushCode(index (f))]

codegen EnterCode(f) =
[EnterCode(index (f))]

codegen MatchCon(alts) =
let iss = map (codegen . snd) alts

tags = map fst alts
ofss = scanl (+) 0 (map size iss)

in [MatchCon(length alts, 0, zip tags ofss)] ++ concat iss
codegen instr =

[instr]

For simplicity, the rule for MatchCon(alts) assumes that there are no (default) variable
patterns inside alts.

2.8 More optimization: superfluous stack movements

An important optimization is to reduce the number of superfluous stack movements. Due to
the close relation of the low-level lvm language with the lvm instruction set, it is possible
to perform this optimization on the language level instead of the instruction level.

As an example of unnecessary stack pushes we look at a definition of the S combinator.

combS f g x = let z = g x in f x z

After translating, resolving, and rewriting this program, it is compiled into:

ArgChk(3);
PushVar(2 (x)); PushVar(2 (g)); NewAp(2);
PushVar(0 (z));PushVar(4 (x));PushVar(3 (f));
Slide(3, 4); Enter

However, the variable z is pushed on the stack immediately after building it and later
discarded with the Slide instruction. Better code can be obtained by inlining the definition
of z .

16 LVM, the lazy virtual machine

combS f g x = f x (g x)

This program uses the application node immediately and discards the superfluous PushVar
instruction.

ArgChk(3);
PushVar(2 (x)); PushVar(2 (g));NewAp(2);
PushVar(3 (x)); PushVar(2 (f));
Slide(3, 3); Enter

Et voilá, we can optimize stack movements (and remove dead variables) by using a standard
inliner. The inliner for the lvm language can be much simpler than a full fledged inliner
(Peyton Jones and Marlow, 2002) since we will not instantiate across lambda expressions
but only perform local substitutions. This property makes it also easier to analyse whether
work or code is ever duplicated.

It is always beneficial to inline trivial expressions since they never duplicate either work or
code. Trivial expressions consist of:

• literals (literal),

• variables (x),

• constructors with no arguments (con0
t).

For other expressions, we need to determine how often the binder occurs. The occurrence
analysis can be as simple as counting the number of syntactic occurrences. If code duplication
is not perceived as a problem, we can refine the analysis by taking the maximum of the
occurrences inside alternatives instead of the sum. If a binder occurs only once, we can
safely inline it (since lambda expressions are not part of the lvm language). When a binder
has no occurrences, the binding can be removed entirely.

2.8.1 Inlining strict bindings

We look again at the example program discriminant from section 2.4.6:

discriminant a b c = let! ac = a ∗ c in
let! ac4 = 4 ∗ ac in
let! b2 = b ∗ b in b2 + ac4

The optimized instruction sequence was:

ArgChk(3)
PushVar(c); PushVar(a); MulInt;
Var(ac);
PushVar(ac); PushInt(4);MulInt;
...

This example can be optimized a little bit more since it still pushes variable ac allthough it
already resides on the stack. An optimal instruction sequence would be:

ArgChk(3)

2 The LVM language 17

PushVar(c); PushVar(a); MulInt;
Var(ac);
PushInt(4);MulInt;
...

Unfortunately, our simple inliner will not inline the binding for ac since let! bindings can
not be inlined in general. However, we can define some side conditions under which the
inlining of let! bindings is possible.

First, we extend the grammar and allow let! expressions as atomic expressions – off course,
this is in general unsafe and should only be used ‘internally’. Together with the grammar
extension, the translation scheme for atomic expressions is also extended:

A′[[let! x = e in e ′]] | whnf (e) ⇒
Atom(E [[e]]);Var(x);A′[[e ′]];

A′[[let! x = e in e ′]] ⇒
Eval(Atom(E [[e]]);Enter); Var(x);A′[[e ′]];

When an evaluated expression is both pure and total , we can transform let! bindings into
let bindings. The standard inliner can now inline let! expressions via those let bindings.

let! x = e in e ′ | pure(e) & total(e) ⇒ let x = (let! x = e in x) in e ′

The pure(e) predicate ensures that the expression has no side effect and the total(e) predi-
cate ensures that the expression can not fail or loop. These conditions can probably only be
approximated in practice but works for many common primitive expressions like compari-
son and bitwise operations, but not for operations that can raise an exception, like addition,
multiplication and division. Note that the let! binding inside the let is still needed in
order to emit an Eval instruction during compilation.

The above approach works for expressions that are both pure and total but many times we
don’t know enough about the expression to ensure those predicates. Other strict expressions
can be inlined only if the following conditions hold:

1. the inliner never duplicates code (to avoid duplication of an impure expression).

2. the binding is used once.

3. the binding is used before any other primitive function, let!, or match construct.

The first two conditions are already handled in the inliner. The last condition, is formalized
with the firstuse predicate.

let! x = e in e ′ | once x e ′ & firstuse x e ′ ⇒ let x = (let! x = e in x) in e ′

The firstuse predicate is defined in terms of the first function that has as its second argument
a possible continuation that starts out as False. As soon as a primitive operation, let!,
or match is encountered, the continuation is set to False again to avoid inlining a binding
beyond that construct.

firstuse x e = first x False e

18 LVM, the lazy virtual machine

first x c x = True
first x c (y a1 ... an) = firsts x c [y , a1, ..., an]
first x c (conn

t a1 ... an) = firsts x c [a1, ..., an]
first x c (primn a1 ... an) = firsts x False [a1, ..., an]
first x c (match y with alts) = False
first x c (let! y = e in e ′) = first x False e
first x c (let y = e in e ′) = firsts x c [e, e ′]
first x c (letrec { y1 = e1 ; ... ; yn = en } in e ′) = firsts x c [e1, ..., en , e ′]
first x c other = c

firsts x c es = foldl (first x) c es

3 The abstract machine 19

3 The abstract machine

The state of the lvm is determined by the current instructions is, the stack st , and the heap
hp.

The instruction sequence is consists of instructions and arguments. The empty sequence
is written as [] and an initial instruction is written as Instr(x , y) : is where x and y are its
arguments. Arguments and instructions have the same size and the previous expression is
equivalent to Instr : x : y : is.

The stack st is a sequence of values. The empty stack is written as [] and a non-empty stack
with an initial value x as x : st . The nth value on the stack is written as st [n] where st [0]
is the top of the stack. Besides values, the stack can also contain stack markers. These
markers take up 2 stack slots. Normally a marker is associated with the value next on the
stack. A marker with its value is called a frame. There exist three kinds of frames:

upd : p An update frame. Update the heap value pointed to by p with the value on top
of the stack.

cont : is A continuation frame. Continue with the instructions is with the evaluated value
on top of the stack.

catch : p A catch frame. Continue at the exception handler p when an exception occurs.

The heap hp is a dynamic map from pointers p to heap values. We write hp[p 7→ x] if the
heap hp contains a pointer p that points to value x . The extension of the heap with a fresh
pointer p to value x is written as hp ◦ [p 7→ x]. The update of a pointer p with value x is
written as hp • [p 7→ x].

Heap values are tagged. There exist six kinds of heap values:

instr(is) A sequence of instruction is.
ap(x1, ..., xn) An updateable application block.
nap(x1, ..., xn) A non-updateable application block.
cont(x1, ..., xn) A constructor with tag t and values x1 to xn .
invn An invalid block of size n.
raise(x) An exception block, raises exception x when entered.

The initial heap contains all global values. All instructions that reference a global are fixed
by the runtime loader to contain the proper heap pointer. For example, if function f has
index i , then the initial heap contains fi 7→ instr(code(i)) and all instructions that reference
function f are updated: PushCode(i) ⇒ PushCode(fi). The special value inv points to an
invalid block of size 0: inv 7→ inv0

The semantics of the lvm is given by state transitions (Plotkin, 1981). The initial state of
the machine consists of the instructions of the function main with an empty stack and an
initial heap.

3.1 Basic instructions

We first introduce a minimal set of instructions that support a minimal subset of the lvm
language. New instructions are added incrementally with each new language feature. The

20 LVM, the lazy virtual machine

minimal subset of the lvm language is called lvm-min and consists of top-level values with
(partial) function applications.

All let-bound local variables and function parameters reside on the stack. Three instruc-
tions manipulate the stack: PushVar pushes a local variable (or parameter), PushCode pushes
an index to a top-level value, and Slide slides out unused values.

Code Stack Heap
PushCode(f) : is st hp

=⇒ is f : st hp

PushVar(ofs) : is st hp
=⇒ is st [ofs] : st hp

Slide(n,m) : is x1 : ... : xn : ... : xn+m : st hp
=⇒ is x1 : ... : xn : st hp

The parameters of a function are pushed on the stack in a right-to-left order. In a higher-
order language that allows partial applications, it is necessary to use this calling convention.
This is dual to most imperative languages that use left-to-right order, like Java and ML.
The most notable exception is the C language that uses a right-to-left calling convention
in order to support functions with a variable number of arguments. The following example
illustrates why partial applications force a right-to-left order.

id x = x
const x y = x
apply f x = f x
main = apply (const id) const

With a right-to-left order, everything works well – inside apply , the argument x is pushed
(which is const) and than f is called. This is actually the expression const id which pushes id
and enters const with a proper stack: id : const : [], where parameter x is id and parameter
y is const . If a left-to-right order is used, the partial application const id somehow has to
insert its argument on top of the other argument. This leads to a lot of complexity and
might even be impossible to do in general.

Partial applications combined with polymorphism also lead to the famous argument check .
In a higher-order, polymorphic language it is not always possible to determine at a call site
if a function is partially applied or not. In the previous example, we can not determine
without a whole-program analysis whether the parameter f in the apply function is partially
applied or not. For this reason, each function checks the number of arguments itself with
the ArgChk instruction, which is always the first instruction of a top-level value. If there are
enough arguments on the stack, execution continues. If there are not enough arguments on
the stack, we stop with a funtional value as a result.

Code Stack Heap
n ≤ m ArgChk(n) : is f : x1 : ... : xm : st hp

=⇒ is x1 : ... : xm : st hp

(1) n > m ArgChk(n) : is f : x1 : ... : xm : [] hp
=⇒ [] f : x1 : ... : xm : [] hp

1. termination with a functional value.

Just like partial applications, it is not always possible to determine at a call site which
particular function is called. Therefore, the Enter instruction is able to enter any kind of

3 The abstract machine 21

value that resides on top of the stack.

Code Stack Heap
Enter : is f : st hp[f 7→ instr(isf)]

=⇒ isf f : st hp

Note that we enter a function instead of calling it. Every function application in the lvm-
min is a tail call and there is no need to push a return address. It is necessary however
to remove any local variables and parameters that are still on the stack with the Slide
instruction. Besides keeping the stack from growing, it is essential for our definition of the
ArgChk instruction – if the local variables or parameters are not slided out, they are treated
by the argument check as if they are extra parameters!

Here are some examples of functions that can be compiled with the current instruction set:

id x = x
swap x f = f x
main = swap id id

The final value of this program is the functional value id . With the compilation scheme
from section 2.4 we get the following initial heap:

id 7→ instr(ArgChk(1);Enter)
swap 7→ instr(ArgChk(2);PushVar(0);PushVar(2); Slide(2, 2); Enter)
main 7→ instr(ArgChk(0);PushCode(id); PushCode(id);

PushCode(swap); Enter)

In the above program, it is clear that the swap function is called with enough arguments.
This special case can be optimized with the EnterCode instruction. If a known function is
called with enough arguments, the argument check of the called function can be skipped.
This is called the ‘direct entry point’ in the STG machine. The EnterCode instruction
performs this optimization and enters a known function with enough arguments.

Code Stack Heap
EnterCode(f) : is st hp[f 7→ instr(ArgChk(n) : isf)]

=⇒ isf st hp

This instruction is essentially what a C compiler would use to implement tail calls: a jump!
In contrast, the Enter instruction performs an indirect jump based on the kind of value that
is entered – object oriented people would probably call this a ‘virtual method tail-call’.

3.2 Local definitions

In this section we extend the instruction set to deal with local let and letrec bindings. A
let binding is non-strict and delays evaluation its right-hand side. The NewNap instruction
allocates a (non-updateable) application node in the heap that contains the function to be
called and its arguments.

Code Stack Heap
NewNap(n) : is x1 : ... : xn : st hp

=⇒ is p : st hp ◦ [p 7→ nap(x1, ..., xn)]

22 LVM, the lazy virtual machine

When the Enter instruction sees a (non-updateable) application node, the values are moved
to the stack and the top of the stack is entered again.

Code Stack Heap
Enter : is p : st hp[p 7→ nap(x1, ..., xn)]

=⇒ Enter : is x1 : ... : xn : st hp

3.3 Sharing

Allthough the NewNap instruction delays the evaluation of an expression, it isn’t lazy since
it doesn’t share the result. Take for example the following program:

main = let x = nfib 10 in x + x

The expression nfib 10 is calculated twice if the let binding uses the NewNap instruction.
To share the computation, we use graph reduction instead of simple tree reduction. The
NewAp instruction allocates an updateable application node in the heap. When this node
is evaluated it is updated with its evaluated value, thus sharing the computation. The Enter
instruction puts a special update marker on the stack as a reminder that the node has to
be updated with its evaluated value. The ArgChk instruction looks for these update frames
– indeed, the only whnf values at this moment are functional values and the updateable
application node is overwritten with a non-updateable one.

Code Stack Heap
NewAp(n) : is x1 : ... : xn : st hp

=⇒ is p : st hp ◦ [p 7→ ap(x1, ..., xn)]

Enter : is p : st hp[p 7→ ap(x1, ..., xn)]
=⇒ Enter : is x1 : ... : xn :upd : p : st hp

n > m ArgChk(n) : is f : x1 : ... : xm :upd : p : st hp
=⇒ ArgChk(n) : is f : x1 : ... : xm : st hp • [p 7→ nap(f , x1, ..., xm)]

The argument check instruction suddenly looks fairly expensive. Previously, the number
of arguments on the stack was equal to the depth of the stack, but now it seems the the
argument check has to search the stack for an update marker to determine the number of
arguments! Fortunately, we can use some conventional compiler technology to overcome this
inefficiency.

An implementation uses a frame pointer fp that points to the top frame on the stack. Now
we also see why a marker takes up 2 stack slots: one slot is the real marker while the
second is just a link back to the previous stack frame. When a frame is pushed, the current
frame pointer is saved in the marker and the frame pointer is updated to point to the new
top frame. When a frame is popped, the frame pointer is updated with the back-link. The
argument check can now simply substract the frame pointer from the stack pointer to obtain
the number of arguments on the stack.

Not only local values should be shared but top-level values that take no arguments should
be shared too. These values are called constant applicative forms or caf’s. The initial heap
contains an ap node for each caf. In the previous example, main takes no arguments and
its initial heap nodes are:

main 7→ ap(main ′)

3 The abstract machine 23

main ′ 7→ instr(ArgChk(0); ...)

3.4 Recursive values

Recursive values are constructed in two steps: dummy values are allocated first and later
initialized, allowing the values to refer to each other. The AllocAp instruction allocates an
application node without initializing its fields. Later the Pack(N)Ap instruction initializes
the fields.

Code Stack Heap
AllocAp(n) : is st hp

=⇒ is p : st hp ◦ [p 7→ invn]

p = st [ofs − n] PackAp(ofs,n) : is x1 : ... : xn : st hp
=⇒ is st hp • [p 7→ ap(x1, ..., xn)]

p = st [ofs − n] PackNap(ofs,n) : is x1 : ... : xn : st hp
=⇒ is st hp • [p 7→ nap(x1, ..., xn)]

3.5 Algebraic data types

The lvm supports open ended algebraic data types. Constructor blocks are allocated just
like application blocks.

Code Stack Heap
NewCon(t ,n) : is x1 : ... : xn : st hp

=⇒ is p : st hp ◦ [p 7→ cont(x1, ..., xn)]

AllocCon(t ,n) : is st hp
=⇒ is p : st hp ◦ [p 7→ cont(...)]

p = st [ofs − n] PackCon(ofs,n) : is x1 : ... : xn : st hp[p 7→ cont(...)]
=⇒ is st hp • [p 7→ cont(x1, ..., xn)]

When the Enter instruction sees a constructor values, it behaves like the Return instruction.
The Return instruction is used when the final value is known to be a constructor. Just like
the ArgChk instruction, the Return instruction looks for frames on the stack. An update
frame causes the value to be updated with the constructor value. When the stack is empty,
execution stops with the constructor value as the result.

Code Stack Heap
Enter : is p : st hp[p 7→ cont(x1, ..., xn)]

=⇒ Return : is p : st hp

Return : is p :upd : u : st hp[p 7→ cont(x1, ..., xn)]
=⇒ Return : is p : st hp • [u 7→ cont(x1, ..., xn)]

(1) Return : is p : [] hp
=⇒ [] p : [] hp

1. Termination with a constructor value.

24 LVM, the lazy virtual machine

3.6 Strict evaluation

Before describing how algebraic data types are matched, we first look at their evaluation.
The let! binding strictly evaluates its right-hand side before evaluating the body. A
continuation marker is pushed on the stack before the evaluation of the right-hand side.
When evaluation of the right-hand side is done, execution is resumed at the instructions in
the continuation frame.

Code Stack Heap
PushCont(n) : is st hp

=⇒ is cont : drop n is : st hp

Return : is p : cont : is ′ : st hp
=⇒ is ′ p : st hp

n > m ArgChk(n) : is f : x1 : ... : xm : cont : is ′ : st hp
=⇒ is ′ p : st hp ◦ [p 7→ nap(f , x1, ..., xm)]

Continuation frames resemble conventional calling conventions closely – a C compiler pushes
a return address before calling a function. The STG machine (Peyton Jones, 1992) also uses
plain return adresses instead of continuation frames. This seems impossible at first sight –
The argument check builds a partial application block if there are too few arguments, which
is checked by looking at the top frame. If only a plain return address is pushed instead
of a frame, the number arguments can’t be determined! However, the STG machine only
evaluates expressions that are scrutinized by a case expression. These expressions can never
have a functional type, and the STG machine never reaches this configuration. Indeed, the
STG machine has special seq frames to support the polymorphic seq function of Haskell.
This function can be expressed directly in the lvm language: seq x y = let! z = x in y

3.7 Matching

Once a value is evaluated to weak head normal form, it can be matched. The MatchCon
instruction matches on constructors.

Code Stack Heap
∃i . t = ti MatchCon(n, o, t1, o1, ..., tn , on) : is p : st hp[p 7→ cont(x1, ..., xm)]

=⇒ drop oi is x1 : ... : xm : st hp

∀i . t 6= ti MatchCon(n, o, t1, o1, ..., tn , on) : is p : st hp[p 7→ cont(x1, ..., xm)]
=⇒ drop o is p : st hp

The MatchCon instruction pops the argument p when a constructor matches. This opens up
the possibility of an important optimization. Many constructors are allocated in the heap
and immediately deconstructed with a match. The ReturnCon instruction tries to avoid
many of these allocations. The ReturnCon behaves denotationally exactly like a NewCon
followed by a Return:

ReturnCon(t ,n) ⇒ NewCon(t ,n); Return

However, there exist a more efficient implementation that sometimes avoids an expensive
heap allocation. This is called the ‘return in registers’ convention in the STG machine.

ctch 25

Code Stack Heap
(1) ReturnCon(t ,n) : is x1 : ... : xn : cont : is ′ : st hp
=⇒ drop oi is ′′ x1 : ... : xn : st hp

ReturnCon(t ,n) : is st hp
=⇒ NewCon(t ,n) :Return : is x1 : ... : xn : st hp

1. is ′ = MatchCon(n, o, t1, o1, ..., tn , on) : is ′′ ∧ ∃ i . t = ti

In the special but common case that a constructor returns immediately into a MatchCon
instruction, the ReturnCon instruction avoids the allocation of the constructor in the heap.
In all other cases, it behaves like a NewCon/Return pair. This happens for example when
there is an update frame before the continuation or when the constructor is not immediately
matched after being evaluated.

3.8 Synchronous exceptions

Any robust programming language needs to handle exceptional situations. The lvm in-
struction set should support exception handling at a fundamental level for two reasons. The
first reason is efficiency – since exceptional situations are, well exceptional, normal execu-
tion shouldn’t be penalized. Another reason is that lvm instructions, like division, can raise
exceptions themselves and thus, the lvm needs a standard mechanism for raising exceptions.

The Catch instruction installs an exception handler. The instruction pushes a frame on the
stack. When an exception is raised, execution is continued at the exception handler. When
no exception is raised, the frame is simply ignored by other instructions that look for stack
frames, i.e. ArgChk and Return.

Code Stack Heap
Catch : is h : st hp

=⇒ is catch : h : st hp

n > m ArgChk(n) : is x1 : ... : xm : catch : h : st hp
=⇒ ArgChk(n) : is x1 : ... : xm : st hp

Return : is x : catch : h : st hp
=⇒ Return : is x : st hp

Note that a catch frame should immediately follow another frame or the end of the stack.
If this is not the case, the Return instruction could end up in an undefined configuration. An
implementation can actually deal quite easily with catch frames that don’t follow another
frame directly. When the Return instruction pops the catch frame, it also pops any values
up to the next frame on the stack.

An exception is raised explicitly with the Raise instruction. It unwinds the stack until it
finds a catch frame. Execution is continued at the exception handler with the exception as
its argument.

26 LVM, the lazy virtual machine

Code Stack Heap
Raise : is x : catch : h : st hp

=⇒ Enter : is h : x : st hp

(1) Raise : is x : [] hp
=⇒ [] x : [] hp

Raise : is x :upd : p : st hp
=⇒ Raise : is x : st hp • [p 7→ raise(x)]

Raise : is x : cont : is ′ : st hp
=⇒ Raise : is x : st hp

Raise : is x : y : st hp
=⇒ Raise : is x : st hp

1.Termination with an exceptional value.

Again, we assume that there is another frame immediately following the Catch frame. Oth-
erwise, the Raise instruction has to pop any values following the Catch frame to prevent that
they are treated as extra arguments by the Enter instruction.

When the Raise instruction encounters an update frame it updates the value with a raise
block – indeed, if a value raises an exception it will always raise that exception and should be
updated with that exception. When a raise block is entered, it raises the exception again.

Code Stack Heap
Enter : is p : st hp[p 7→ raise(x)]

=⇒ Raise : is x : st hp

4 The instruction set 27

4 The instruction set

All instructions and their arguments are 32 bits. Besides uniformity and simplicity, it has the
advantage of executing much faster on current hardware architectures. The disadvantage is
slightly larger code than bytecode oriented formats like the Java VM for example. We plan
to define a compressed lvm format for distributing modules over slow networks or execution
on mobile devices. This section only gives an overview of all instructions, appendix B gives
the precise operational semantics for each instruction.

The basic types of values are:

int32 – a 32 bit signed integer.
float64 – a 64 bit IEEE floating point value.
rec32 – a 32 bit signed record index (1-based).

The int32, and rec32 types have only 30 bits of garanteed significance. The rec32 type is an
index into the standard records of the module format (see section 5).

n,m – int32 values.
ofs,i – int32 values.
d – float64 value.
f – rec32, value record index.
c – rec32, constructor record index1.
b – rec32, bytes record index.

4.1 Stack

(0) ArgChk(n) The argument satisfaction check – are there n arguments on the
stack?

(1) PushCode(f) Push a function or CAF at record f .
(2) PushCont(ofs) Push a continuation frame to the code at ofs relative to the current

location.
(3) PushVar(n) Push a local variable at stack location n.
(4) PushInt(i) Push a 32 bit signed integer i .
(5) PushFloat(d) Push a 64 bit IEEE floating point value d .
(6) PushBytes(b) Push the bytes at record b.
(7) Slide(n,m) Slide the top n values over the next m values.
(8) Stub(n) Overwrite the local variable at st [n] with an inv value.

4.2 Functions

(9) AllocAp(n) Allocate an uninitialized application node with n fields.
(10) PackAp(n,m) Create an updateable application node at stack location n with m

values.

1hackers extension: a negative or zero index i is interpreted as an anonymous constructor with tag |i|.

28 LVM, the lazy virtual machine

(11) PackNap(n,m) Create a non-updateable application node at stack location n with
m values.

(12) NewAp(n) Allocate and initialize an updateable application node with n values
from the stack.

(13) NewNap(n) Allocate and initialize a non-updateable application node with n
values from the stack.

4.3 Control

(14) Enter Enter the value at the top of the stack.
(15) Return Return the whnf value at the top of the stack.
(16) Catch Install the exception handler at the top of the stack.
(17) Raise Raise the exception at the top of the stack.
(18) Call(c,n) Call an external function c with n arguments.

4.4 Alternatives

(19) AllocCon(c,n) Allocate a constructor c with n uninitialized fields.
(20) PackCon(n,m) Initialize a constructor node at stack location n with m values.
(21) NewCon(c,n) Allocate and initialize a constructor c with n values from the stack.
(22) UnpackCon(n) Move n fields from the constructor at the top of the stack to the

stack.
(23) TestCon(c, ofs) Test the tag of the constructor at the top of the stack with the tag of

the constructor c. If it is not equal, jump to the code at ofs relative
to the current location (ie. the start of the next instruction).

4.5 Integers

(24) TestInt(i , ofs) Test the integer at the top of the stack with i . If it is not equal,
jump to the code at ofs relative to the current location.

(25) AddInt Add two integers at the top of the stack; pop the integers and push
the result.

(26) SubInt Subtract.
(27) MulInt Multiply.
(28) DivInt Euclidean division (see appendix E).
(29) ModInt Euclidean modulus (see appendix E).
(30) QuotInt Truncated Quotient (see appendix E).
(31) RemInt Truncated Remainder (see appendix E).
(32) AndInt Bitwise and.
(33) XorInt Bitwise xor.
(34) OrInt Bitwise or.
(35) ShrInt Bitwise arithmetic shift right (pad with highest bit).
(36) ShlInt Bitwise shift left.
(37) ShrNat Bitwise unsigned shift right (pad with zeros).
(38) NegInt Negate.

4 The instruction set 29

4.6 Comparison

(39) EqInt Equal.
(40) NeInt Not equal.
(41) LtInt Lower.
(42) GtInt Greater.
(43) LeInt Lower or equal.
(44) GeInt Greater or equal.

4.7 General sums and products

(45) Alloc Allocate a new heap block with the size at st [1] and the tag at st [0].
(46) New(n) Allocate and initialize a new heap block with n values with the tag

at st [0].
(47) GetField Push field st [1] of the heap block at st [0] on the top of the stack.
(48) SetField Set field st [1] of the heap block at st [0] to the value at st [2].
(49) GetTag Push the tag of the heap block on the top of the stack.
(50) GetSize Push the size of the heap block on the top of the stack.
(51) Pack(n) Initialize the heap block on top of the stack with n values at the

following stack locations and pop them all.
(52) Unpack(n) Move n fields from the heap block at st [0] to the stack.

4.8 Optimized stack

(53) PushVar0 ⇒ PushVar(0)
(54) PushVar1 ⇒ PushVar(1)
(55) PushVar2 ⇒ PushVar(2)
(56) PushVar3 ⇒ PushVar(3)
(57) PushVar4 ⇒ PushVar(4)
(58) PushVars2(n1,n2)

⇒ PushVar(n1) : PushVar(n2)
(59) PushVars3(n1,n2,n3)

⇒ PushVars2(n1,n2) : PushVar(n3)
(60) PushVars4(n1,n2,n3,n4)

⇒ PushVars3(n1,n2,n3) : PushVar(n4)

4.9 Optimized functions

(61) NewAp1 ⇒ NewAp(1)
(62) NewAp2 ⇒ NewAp(2)
(63) NewAp3 ⇒ NewAp(3)
(64) NewAp4 ⇒ NewAp(4)
(65) NewNap1 ⇒ NewNap(1)
(66) NewNap2 ⇒ NewNap(2)
(67) NewNap3 ⇒ NewNap(3)
(68) NewNap4 ⇒ NewNap(4)

30 LVM, the lazy virtual machine

4.10 Optimized constructors

(69) NewCon0(c) ⇒ NewCon(c, 0)
(70) NewCon1(c) ⇒ NewCon(c, 1)
(71) NewCon2(c) ⇒ NewCon(c, 2)
(72) NewCon3(c) ⇒ NewCon(c, 3)

4.11 Optimized control

(73) EnterCode(c) ⇒ PushCode(c) : Enter. Enter the function declared at constant
c. The stack is required to hold at least all the arguments of the
function.

(74) EvalVar(n) ⇒ PushCont(6) : PushVar(n + 3) : Slide(1, 0) : Enter. Push a contin-
uation frame and enter the variable at offset n on the stack.

(75) ReturnCon(c,n) ⇒ NewCon(c,n) : Slide(1, ?) : Enter. Return a constructor c with n
fields on the stack.

(76) ReturnInt(i) ⇒ PushInt(i) : Slide(1, ?) : Enter. Return the integer i .
(77) ReturnCon0(c) ⇒ ReturnCon(c, 0).

4.12 Optimized alternatives

(78) MatchCon(n, ofs, c1, ofs1, ..., cn , ofsn)
Pop the constructor on top of the stack and match it with c1 to
cn , jumping to ofsi when matching. Jump to ofs when no match is
found.

(79) SwitchCon(n, ofs, ofs1, ..., ofsn)
Pop the constructor on top of the stack and switch on its tag. Jump
to ofs when the tag is greater than n.

(80) MatchInt(n, ofs, i1, ofs1, ..., in , ofsn)
Pop the int on top of the stack and match it with i1 to in , jumping to
the corresponding ofsi when matching. Jump to ofs when no match
is found.

(81) MatchFloat(n, ofs, d1, ofs1, ..., dn , ofsn)

(82) Match(n, ofs, tag1, arity1, ofs1, ..., tagn , arityn , ofsn)

4.13 Floating point

(83) ReturnFloat(d) ⇒ PushFloat(d) : Slide(1, ?) : Enter. Return the float d .
(84) AddFloat Add.
(85) SubFloat Subtract.
(86) MulFloat Multiply.
(87) DivFloat Divide.
(88) NegFloat Negate.

4 The instruction set 31

4.14 Floating point comparison

(89) EqFloat Equal.
(90) NeFloat Not equal.
(91) LtFloat Lower.
(92) GtFloat Greater.
(93) LeFloat Lower or equal.
(94) GeFloat Greater or equal.

32 LVM, the lazy virtual machine

5 The module format

An lvm module consists of 8-bit bytes. Multi byte values are stored in the big-endian format
where the most significant byte comes first. There are two multi byte values:

int32 A 32 bit signed integer.
float64 A 64 bit IEEE floating point value.

Besides these raw values, there are also encoded values that are also stored as int32 values:

int An encoded signed integer value. An encoded integer n is represented by the int32

value n = 2n + 1.
rec An encoded signed record index. An encoded record index r is represented by the

int32 value r = 2r.

Record indices and numbers are easily distinguished now – record indices are even integers
while numbers are stored as odd integers.

The encoded values int and rec can also be typed:

enum t An enumeration value of type t stored as an int . For example, enum flags
rec t A record index rec that points to a record of type t. For example, rec code is a

record index that points to a code record.

5.1 Records

The lvm format consists of records. These records are always aligned on 32 bits and should
be padded with zero bytes if they don’t align properly. A length is always the number of
bytes, while a count is always the number of logical units.

Every lvm module consists of a header record, a number of program records and a footer
record.

struct lvm-file
{ struct header header;

record [records count] program-records;
struct footer footer;

}

The header contains the number of program records, records count . Records are indexed
with rec values that are 1-based indices in the program-records array. An index of zero is
used when no information is available.

5.2 Header and Footer

The header contains the records count and the total length of those records.

5 The module format 33

struct header
{ int32 header kind = x1F4C564D (= HLVM);

int header length;
int total length;
int runtime major version;
int runtime minor version;
int records count;
int records length;
rec module module information;
... ...;

}

The runtime version numbers correspond to the lvm runtime version for which this file was
build. The module major version is incremented on each non-compatible interface change,
whereas the minor version is incremented for each new build.

struct footer
{ int32 footer kind = x1E4C564D (= NLVM);

int length = 4;
int total length;

}

The footer marks the end of the lvm file and enables stand-alone executables. The lvm
runtime has a special option that concatenates the runtime with all the needed lvm module
files. When this program is invoked, the runtime loads its own image and looks if it ends
with a footer, if so, it traces all catenated modules and executes them – et voilá, a portable
method for stand-alone executables.

5.3 A Record

A record starts with the kind and the length of the record (always a multiple of 4). The
length doesn’t include the kind and length field.

A standard record starts with an enum standard-kind while a custom record starts with a
rec kind. The lvm ignores custom records but they can be used by a compiler to encode
extra information – for example, algebraic data declarations.

struct record
{ enum standard-kind or rec kind record-kind;

int record length;
... ...;

}

Standard record kinds include:

enum standard-kind

34 LVM, the lazy virtual machine

{ name = 0;
kind = 1;
bytes = 2;
code = 3;
value = 4;
constructor = 5;
import = 6;
module = 7;
extern = 8;
externtype = 9;

}

The following records are all described without their standard header, i.e. the kind and
length. To distinguish them from a struct, we use the special record declaration.

5.4 Byte records

A byte record contains a number of raw bytes. There exist four kinds of byte records: name,
kind, bytes and externtype records.

A name record contains a serie of bytes that are used for a static (link-time) names or
identifiers.

record name
{ int name length;

byte[name length] name;
byte[...] padding;

}

A bytes record also contains a serie of bytes. These are used for dynamic (run-time) enitities,
like big integers or strings.

record bytes
{ int bytes length;

byte[bytes length] bytes;
byte[...] padding;

}

The kind of a custom record is described by a kind record. A kind record contains a serie
of bytes that hold the static name of a custom kind.

record kind
{ int kind length;

byte[kind length] kind name;
byte[...] padding;

}

The type of an extern declaration is an externtype record. An externtype record is just a
static string describing the type of an external function.

record externtype

5 The module format 35

{ int type length;
byte[type length] type;
byte[...] padding;

}

5.5 Instruction records

An instruction record constains lvm instructions. There is only one instance of an instruc-
tion record, namely code.

record code
{ int32[record length/4] instructions;
}

5.6 Structured records

A structured record consists of rec and int values. All records that are not instruction- or
byte records belong to this group. Structured records are either standard records or custom
records.

Structured records have predefined fields but can also contain custom values encoded as
rec or int values. Custom values are ignored by the lvm but can be used by a compiler
to encode more information, like type signatures or inline declarations. Potential custom
values are notated with three dots – “...”.

A structured declaration record starts with a name and access flags. The flags determine
the external visibility of a record.

enum flags
{ private = 0;

public = 1;
}

5.7 Standard records

record value
{ rec name name;

enum flags flags;
int arity;
rec value enclosing value;
rec code code;
... ...;

}

record constructor

36 LVM, the lazy virtual machine

{ rec name name;
enum flags flags;
int arity;
int tag;
... ...;

}

5.7.1 Import records

record import
{ rec name name;

enum flags flags;
rec module imported module;
rec name imported name;
enum standard-kind or rec kind imported record kind;
... ...;

}

A module declaration contains the version numbers of the module that it was linked to at
compile time.

record module
{ rec name name;

int major version;
int minor version;
... ...;

}

5.7.2 Extern declarations

A extern declaration contains the signature of an external function.

record extern
{ rec name name;

enum flags flags;
int arity;
rec externtype external type;
rec name external library name;
rec name or int external name or ordinal;
enum name-mode name-mode;
enum link-mode link-mode;
enum call-mode calling convention;
... ...;

}

There are three link-modes. static linkage is used for static libraries, dynamic for dynamic
link libraries and runtime for functions that are referenced by address. The first argument
of a runtime function is always the address of this function.

enum link-mode

5 The module format 37

{ static = 0;
dynamic = 1;
runtime = 2;

}

The call-mode is either the C calling convention (ccall) or the stdcall (or pascal) calling
convention (used on windows platforms).

enum call-mode
{ ccall = 0;

stdcall (pascal) = 1;
}

The name-mode gives the mode of a name. Mode decorate decorates the name according to
the calling convention. The ccall convention for example prefixes a name with an underscore.
If mode ordinal is specified, the external name should contain an ordinal instead of a rec
name. The ordinal is the index of a function in a (dynamic) library, used for example in the
windows system libraries. The normal mode leaves the name as it is.

enum name-mode
{ normal = 0;

decorate = 1;
ordinal = 2;

}

The type of an extern declaration is a externtype record, that just consists of a string of
bytes. The type is interpreted as an ASCII string where each character describes the type
of each argument. The first character describes the type of the result.

character c-type lvm-type
a value any lvm value
c char int
i int int
I long int
f float float
d double float
D long double float
F double (or long double) float
u unsigned int int
U unsigned long int
p void* ptr
z char* string
Z wchar_t* string
v void ()
1 8 bit value int
2 16 bit value int
4 32 bit value int32
8 64 bit value int64
n long (or int) native-int

38 LVM, the lazy virtual machine

5.8 Custom records

A custom record always starts with a rec kind instead of a standard int kind. A custom
record is either a declaration record, starting with a name and flags, or an anonymous record
that starts with a zero index for the name.

record custom
{ rec name name;

enum flags flags;
... ...;

}

record custom
{ rec name name = 0;

... ...;
}

A Assessment 39

A Assessment

We have implemented a lvm interpreter on top of the O’Caml runtime system, which is well
known for its portability and the efficient bytecode interpreter. By taking advantage of this
excellent system, we were able to build an lvm interpreter in a relatively short time frame.

There is also a core compiler that translates enriched lambda expressions into lvm files using
the compilation rules described in section 2.4. The compiler is still very naive and doesn’t
perform any ‘essential’ optimizations like simplification, inlining or strictness analysis. Even
though we tried to keep the lvm instruction set and compilation scheme as simple as possible,
the total line count of the core compiler is still about 7000 lines of Haskell which is a bit
disappointing. On the other hand, the core compiler has a very modular structure and it
is easy to use as the backend for a real compiler or as a platform to experiment with new
transformation algorithms. It is currently used as a backend to the Helium Haskell Light
compiler.

To assess the performance of the interpreted lvm instruction set, we ran some preliminary
benchmarks. Since each benchmark is rather small the results should be interpreted with
care. However, we believe that the benchmarks will at least give an indication whether
the performance of the an lvm interpreter is acceptable in practice. The following three
programs were tested.

nfib 27 Calculates the 27th nfib number.

nfib :: Int -> Int
nfib 0 = 1
nfib 1 = 1
nfib n = 1 + nfib (n-1) + nfib (n-2)

queens 9 Finds the number of ways to put 9 queens on a 9×9 checkboard where no queen
threatens another.

queens n = length (qqueens n n)

qqueens k 0 = [[]]
qqueens k n = [(x:xs) | xs <- qqueens k (n-1)

, x <- [1..k], safe x 1 xs]

safe x d [] = True
safe x d (y:ys) = x /= y && x+d /= y

&& x-d /= y && safe x (d+1) ys

sieve 1000 Calculates the 1000th prime number using the sieve of Erasthones.

sieve n = last (take n (ssieve [3,5..]))
where
ssieve (x:xs) = x:ssieve (filter (noDiv x) xs)
noDiv x y = (mod x y /= 0)

40 LVM, the lazy virtual machine

32 15 100

0

1

2

3

4

nfib 27 queens 9 sieve 1000

se
co

nd
s ghc

lvm

hugs

Figure 2: Benchmarks

Each program was translated with the Hugs interpreter (May 1999), the GHC compiler
(5.02) and the LVM core compiler. GHC was run without the -O flag but it still does
simplification and inlining. Since the core compiler can not parse full Haskell, each program
was manually desugared into enriched lambda expressions before compilation. All programs
were run on a 266Mhz PentiumII PC with 128Mb RAM.

Figure A shows the running times of each program. Note that the running times of the
programs run with Hugs are outside the scale of the y-axis. Perhaps not surprisingly, the lvm
performs about 15 to 30 times better on these programs than Hugs. What is more surprising
is that the interpreted, non-inlined, unsimplified lvm programs run just 3 times as slow as
GHC compiled programs. The queens benchmark is even just 25% faster when compiled
with GHC. Off course, the programs are too small to be used as realistic benchmarks but the
results still give us confidence that the interpreter approach can be successful in practice.

We also measured how the lvm performs if the core compiler would have a simple strictness
analyser and inliner. We naively hand-optimized the programs for the lvm, trying to emulate
a simple strictness analyser and inliner. Here is for example the optimized source for nfib:

nfib :: Int -> Int
nfib n = match n with

0 -> 1
1 -> 1
n -> let! n2 = primSubInt n 2 in

let! nf2 = nfib n2 in
let! n1 = primSubInt n 1 in
let! nf1 = nfib n1 in
let! m = primAddInt nf1 nf2 in
primAddInt 1 m

Figure A shows the benchmarks with the optimized compilers. The ghc-opt programs are
compiled with GHC with the -O flag while the lvm-opt programs are the hand-optimized

A Assessment 41

1001532

0

1

2

3

4

nfib 27 queens 9 sieve 1000

se
co

nd
s

ghc-opt

lvm-opt

ghc

lvm

hugs

Figure 3: Benchmarks

sources compiled for the lvm. Optimized GHC is much faster on the nfib and sieve bench-
marks but, surprisingly, the queens benchmark runs faster with the optimized lvm. We
don’t know why the queens program performs so well, it might be that we have been too
smart in strictifying the program or it might be linked to the ‘return in registers’ convention
that can avoid heap allocation – maybe the lvm avoids an expensive allocation in a critical
part of the algorithm.

42 LVM, the lazy virtual machine

B Instruction reference

B.1 General sum and products

Code Stack Heap
Alloc : is t :n : st hp

=⇒ is p : st hp ◦ [p 7→ cont(inv1, ..., invn)]

New(n) : is t : x1 : ... : xn : st hp
=⇒ is p : st hp ◦ [p 7→ cont(x1, ..., xn)]

Pack(n) : is p : x1 : ... : xn : st hp[p 7→ cont(y1, ..., yn)]
=⇒ is st hp • [p 7→ cont(x1, ..., xn)]

UnPack(n) : is p : st hp[p 7→ cont(x1, ..., xn)]
=⇒ is x1 : ... : xn : st hp

0 ≤ i < n GetField : is p : i : st hp[p 7→ cont(x1, ..., xn)]
=⇒ is xi+1 : st hp

0 ≤ i < n SetField : is p : i : x : st hp[p 7→ cont(x1, ..., xi+1, ..., xn)]
=⇒ is st hp • [p 7→ cont(x1, ..., x , ..., xn)]

GetTag : is p : st hp[p 7→ cont(x1, ..., xn)]
=⇒ is t : st hp

GetSize : is p : st hp[p 7→ cont(x1, ..., xn)]
=⇒ is n : st hp

C Primitive operations 43

C Primitive operations

C.1 Exceptions

The Exception data types are in principle open-ended but the following exceptions are
pre-defined by the system.

type BString = Bytes

data Exception

= HeapOverFlow -- heap overflow

| StackOverflow Int -- stack overflow

| Signal SignalException -- interrupt occurred

| Runtime RuntimeException -- runtime system exception

| Arithmetic ArithmeticException -- arithmetic exception

| System SystemException -- operating system exceptions

| InvalidArgument BString -- invalid argument passed

| Assert BString -- assertion failed

| NotFound -- no object is found

| UserError BString -- general failure (raised by "error")

data RuntimeException

= PatternFailure BString -- pattern match failure

| NonTermination BString -- non terminating program

| OutOfBounds BString -- field access out of bounds

| Exit Int -- exiting program

| InvalidOpcode Int -- invalid opcode

| LoadError BString BString -- runtime loader exception

| RuntimeError BString -- general failure

data SystemException

= EndOfFile -- end of input reached

| BlockedOnIO -- blocked I/O channel

| SystemError Int BString -- general system error

data ArithmeticException

= FloatInvalidOperation -- invalid float operation

| FloatDivideByZero -- float division by zero

| FloatOverflow -- float has overflowed

| FloatUnderflow -- float has underflowed

| FloatInexact -- float result is inexact

| FloatDenormal -- denormalized float value

| DivideByZero -- integer division by zero

| Overflow -- integer overflow

| Underflow -- integer underflow

| InvalidOperation -- general arithmetic error

| UnEmulated -- cannot emulate float instruction

| NegativeSquareRoot -- square root of negative number

| FloatStackOverflow -- float hardware stack has overflowed

| FloatStackUnderflow -- float hardware stack has underflowed

data SignalException

= SignalNone -- runtime: no signal

| SignalGarbageCollect -- runtime: GC needed

| SignalYield -- runtime: thread should yield

| SignalLost -- runtime: lost signal

44 LVM, the lazy virtual machine

| SignalKeyboard -- interactive interrupt (ctrl-c)

| SignalKeyboardStop -- interactive stop (ctrl-break)

| SignalFloatException -- floating point exception

| SignalSegmentationViolation -- invalid memory reference

| SignalIllegalInstruction -- illegal hardware instruction

| SignalAbort -- abnormal termination

| SignalTerminate -- termination

| SignalKill -- termination (can not be ignored)

| SignalKeyboardTerminate -- interactive termination

| SignalAlarm -- timeout

| SignalVirtualAlarm -- timeout in virtual time

| SignalBackgroundRead -- terminal read from background process

| SignalBackgroundWrite -- terminal write from background process

| SignalContinue -- continue process

| SignalLostConnection -- connection lost

| SignalBrokenPipe -- open ended pipe

| SignalProcessStatusChanged -- child process terminated

| SignalStop -- stop process

| SignalProfiler -- profiling interrupt

| SignalUser1 -- application defined signal 1

| SignalUser2 -- application defined signal 2

C.2 Bytes

value prim_string_of_chars(long count, value chars);

value prim_chars_of_string(value string);

long prim_string_length(value string);

C.3 IO

long prim_flag_mask(long flags);

long prim_open(const char* fname, long sysflags);

void prim_close(long handle);

value prim_open_descriptor(long handle, bool output);

void prim_close_channel(value channel)

void prim_set_binary_mode(value channel, bool binary);

bool prim_flush_partial(value channel);

void prim_flush(value channel);

void prim_output_char(value outchannel, char c);

void prim_output(value outchannel, const char* buffer

, long start, long count);

long prim_input_char(value inchannel);

The prim_flag_mask function converts a portable flag into a system flag mask used by
prim_open. The portable flags are:

enum open_flags {

Open_readonly = 0,

Open_writeonly,

Open_append,

Open_create,

C Primitive operations 45

Open_truncate,

Open_exclusive,

Open_binary,

Open_text,

Open_nonblocking

};

46 LVM, the lazy virtual machine

D Floating point

data RoundMode = RoundNear

| RoundUp

| RoundDown

| RoundZero

void fp_set_round_mode(value mode);

value fp_get_round_mode(void);

data ArithmeticException

= FloatInvalidOperation -- invalid float operation

| FloatDivideByZero -- float division by zero

| FloatOverflow -- float has overflowed

| FloatUnderflow -- float has underflowed

| FloatInexact -- float result is inexact

| ...

long fp_sticky_mask(value exn);

long fp_get_sticky(void);

long fp_set_sticky(long sticky);

long fp_trap_mask(value exn);

long fp_get_traps(void);

long fp_set_traps(long traps);

void fp_reset(void);

bool signal_is_trapped(value exception);

bool signal_trap(value exception);

void signal_untrap(value exception);

E Division and modulus for computer scientists 47

E Division and modulus for computer scientists

There exist many definitions of the div and mod functions in computer science literature
and programming languages. Boute (Boute, 1992) describes most of these and discusses
their mathematical properties in depth. We shall therefore only briefly review the most
common definitions and the rare, but mathematically elegant, Euclidean division. We also
give an algorithm for the Euclidean div and mod functions and prove it correct with respect
to Euclid’s theorem.

E.1 Common definitions

Most common definitions are based on the following mathematical definition. For any two
real numbers D (dividend) and d (divisor) with d 6= 0, there exists a pair of numbers q
(quotient) and r (remainder) that satisfy the following basic conditions of division:

(1) q ∈ Z (the quotient is an integer)
(2) D = d · q + r (division rule)
(3) |r | < |d |

We only consider functions div and mod that satisfy the following equalities:

q = D div d
r = D mod d

The above conditions don’t enforce a unique pair of numbers q and r. When div and
mod are defined as functions, one has to choose a particular pair q and r that satisfy these
conditions. It is this choice that causes the different definitions found in literature and
programming languages.

Note that the definitions for division and modulus in Pascal and Algol68 fail to satisfy even
the basic division conditions for negative numbers. The four most common definitions that
satisfy these conditions are div-dominant and use the same basic structure.

q = D div d = f (D/d)
r = D mod d = D − d · q

Note that due to the definition of r, condition (2) is automatically satisfied by these defini-
tions. Each definition is instantiated by choosing a proper function f :

q = trunc(D/d) (T-division)
q = bD/dc (F-division)
q = round(D/d) (R-division)
q = dD/de (C-division)

The first definition truncates the quotient and effectively rounds towards zero. The sign
of the modulus is always the same as the sign of the dividend. Truncated division is used
by virtually all modern processors and is adopted by the ISO C99 standard. Since the
behaviour of the ANSI C functions / and % is unspecified, most compilers use the proces-
sor provided division instructions, and thus implicitly use truncated division anyway. The
Haskell functions quot and rem use T-division, just as the integer / and rem functions of
Ada (Tucker Taft and Duff (eds.), 1997). The Ada mod function however fails to satisfy the
basic division conditions.

48 LVM, the lazy virtual machine

F-division floors the quotient and effectively rounds toward negative infinity. This definition
is described by Knuth (Knuth, 1972) and is used by Oberon (Wirth, 1988) and Haskell
(Peyton Jones and Hughes (eds.), 1998). Note that the sign of the modulus is always the
same as the sign of the divisor. F-division is also a sign-preserving division (Boute, 1992),
i.e. given the signs of the quotient and remainder, we can give the signs of the dividend and
divisor. Floored division can be expressed in terms of truncated division.

Algorithm F:

qF = qT − I
rF = rT + I · d
where
I = if signum(rT) = −signum(d) then 1 else 0

The round- and ceiling-division are rare but both are available in Common Lisp (Steele Jr.,
1990). The modR function corresponds with the REM function of the IEEE floating-point
arithmetic standard (Cody et al., 1984).

E.2 Euclidean division

Boute (Boute, 1992) describes another definition that satisfies the basic division conditions.
The Euclidean or E-definition defines a mod-dominant division in terms of Euclid’s theorem
– for any real numbers D and d with d 6= 0, there exists a unique pair of numbers q and r
that satisfy the following conditions:

(a) q ∈ Z
(b) D = d · q + r
(c) 0 ≤ r < |d |

Note that these conditions are a superset of the basic division conditions. The Euclidean
conditions garantee a unique pair of numbers and don’t leave any choice in the definition
the div and mod functions. Euclidean division satisfies two simple equations for negative
divisors.

D divE (−d) = −(D divE d)
D modE (−d) = D modE d

Euclidean division can also be expressed efficiently in terms of C99 truncated division. The
proof of this algorithm is given in section E.5.

Algorithm E:

qE = qT − I
rE = rT + I · d
where
I = if rT ≥ 0 then 0 else if d > 0 then 1 else − 1

Boute argues that Euclidean division is superior to the other ones in terms of regularity
and useful mathematical properties, allthough floored division, promoted by Knuth, is also
a good definition. Despite its widespread use, truncated division is shown to be inferior to
the other definitions.

An interesting mathematical property that is only satisfied by Euclidean division is the shift-
rule. A compiler can use this to optimize divisions by a power of two into an arithmetical

E Division and modulus for computer scientists 49

shift or a bitwise-and operation

D divE (2n) = D asr n
D modE (2n) = D and (2n−1)

Take for example the expression, (−1) div (−2). With T- and F-division this equals 0 but
with E-division this equals 1, and indeed:

(−1) divE (−2) = −((−1) divE 21) = −((−1) asr 1) = 1

The lvm implements Euclidean division through the DivInt and ModInt instructions. For
completeness, truncated division is also supported by the QuotInt and RemInt instructions.

E.3 Comparision of T-, F- and E-division

The following table compares results of the different division definitions for some inputs.

(D, d) (qT , rT) (qF , rF) (qE , rE)

(+8, +3) (+2, +2) (+2, +2) (+2,+2)
(+8,−3) (−2, +2) (−3,−1) (−2,+2)
(−8, +3) (−2,−2) (−3, +1) (−3,+1)
(−8,−3) (+2,−2) (+2,−2) (+3,+1)

(+1, +2) (0, +1) (0, +1) (0,+1)
(+1,−2) (0, +1) (−1,−1) (0,+1)
(−1, +2) (0,−1) (−1, +1) (−1,+1)
(−1,−2) (0,−1) (0,−1) (+1,+1)

E.4 C sources for algorithm E and F

This section implements C functions for floored- and Euclidean division in terms of truncated
division, assuming that the C functions / and % use truncated division. Note that any
decent C compiler optimizes a division followed by a modulus into a single division/modulus
instruction.

/* Euclidean division */
long divE(long D, long d)
{

long q = D/d;
long r = D%d;
if (r < 0) {

if (d > 0) q = q-1;
else q = q+1;

}
return q;

}

long modE(long D, long d)
{

long r = D%d;

50 LVM, the lazy virtual machine

if (r < 0) {
if (d > 0) r = r + d;

else r = r - d;
}
return r;

}

/* Floored division */
long divF(long D, long d)
{

long q = D/d;
long r = D%d;
if ((r > 0 && d < 0) || (r < 0 && d > 0)) q = q-1;
return q;

}

long modF(long D, long d)
{

long r = D%d;
if ((r > 0 && d < 0) || (r < 0 && d > 0)) r = r+d;
return r;

}

E.5 Proof of correctness of algorithm E

We prove that algorithm E is correct with respect to Euclid’s theorem. First we establish
that T-division satisfies the basic division conditions. The first two conditions follow directly
from the T-definition.

condition (1) :
qT = trunc(D/d) ∈ Z ¤

condition (2) :
rT = D − d · qT ≡ D = rT + d · qT ¤

condition (3) :
|rT | = {def }
|D − d · qT | = {def }
|D − d · trunc(D/d)| = {math}
|d · (D/d − trunc(D/d))| < {|D/d − trunc(D/d)| < 1}
|d | ¤

Any division that satisfies Euclid’s conditions also satisfies the basic division conditions since
these are a subset of Euclid’s conditions. Given the properties of T-division, we can now
prove that algorithm E is correct with respect to Euclid’s theorem.

condition (a) :
qE = qT − I ∈ {(1) ∧ I ∈ Z}
Z ¤

condition (b) :
D = {(2)}
d · qT − rT = {math}

E Division and modulus for computer scientists 51

d · qT − d · I + rT + d · I = {math}
d · (qT − I) + (rT + I · d) = {def }
d · qE + rE ¤

condition (c) :
rE = {def }
rT + I · d = {math}

if (rT ≥ 0) then I = 0
rT ⇒ {(3) ∧ rT ≥ 0}
0 ≤ rE < |d |

if (rT < 0 ∧ d < 0) then I = −1
rT − d ⇒ {(3) ∧ rT < 0 ∧ d < 0}
0 ≤ rE < |d |

if (rT < 0 ∧ d > 0) then I = 1
rT + d ⇒ {(3) ∧ rT < 0 ∧ d > 0}
0 ≤ rE < |d | ¤

52 LVM, the lazy virtual machine

References

Raymond T. Boute. The Euclidean definition of the functions div and mod . In ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 14(2):127–144, New York,
NY, USA, April 1992. ACM press.

W. J. Cody et al. A proposed radix- and word-length-independent standard for floating-point
arithmetic. In IEEE Micro, 4(4):86–100, August 1984.

Graham Hutton and Erik Meijer. Monadic parser combinators. Technical Report NOTTCS-
TR-96-4, Department of Computer Science, University of Nottingham, 1996.
http://www.cs.nott.ac.uk/Department/Staff/gmh/monparsing.ps.

Thomas Johnsson. Lambda lifting: transforming programs to recursive equations. In Func-
tional programming languages and computer architecture (FPCA), New York, NY, USA,
September 1985. Springer-Verlag.
http://www.citeseer.nj.nec.com/johnsson85lambda.html.

Donald. E. Knuth. The Art of Computer Programming, Vol 1, Fundamental Algorithms.
Addison-Wesley, 1972.

Simon Peyton Jones and John Hughes (eds.). Report on the language Haskell’98 , February
1998. http://www.haskell.org/report.

Simon Peyton Jones and Simon Marlow. Secrets of the Glasgow Haskell Compiler inliner .
submitted to the Journal of Functional Programming, 2002.
http://www.research.microsoft.com/~simonpj/Papers/papers.html#compiler.

Simon Peyton Jones, Will Partain, and Andre Santos. Let-floating: moving bindings to give
faster programs. In International Conference on Functional Programming (ICFP’96), May
1996. http://www.research.microsoft.com/~simonpj/Papers/papers.html#compiler.

Simon Peyton Jones. Implementing non-strict languages on stock hardware: The Spineless
Tagless G-machine. Journal of Functional Programming, 2(2):127–202, April 1992.
http://www.research.microsoft.com/~simonpj/Papers/papers.html#compiler.

Gordon D. Plotkin. A structural approach to operational semantics. Technical Report DAI-
MI FN-19, Computer Science department, Aarhus University, September 1981.

Guy L. Steele Jr. Common LISP: The Language, 2nd edition. Digital Press, Woburn, MA,
USA, 1990. ISBN 1-55558-041-6.

S. Tucker Taft and Robert A. Duff (eds.). Ada95 Reference Manual: Language and Standard
Libraries. International Standard ISO/IEC 8652:1995(E), 1997.

Niklaus Wirth. The programming language Oberon. Software Practice and Experience,
19(9), 1988. The Oberon language report. http://www.oberon.ethz.ch.

http://www.cs.nott.ac.uk/Department/Staff/gmh/monparsing.ps
http://www.citeseer.nj.nec.com/johnsson85lambda.html
http://www.haskell.org/report
http://www.research.microsoft.com/~simonpj/Papers/papers.html#compiler
http://www.research.microsoft.com/~simonpj/Papers/papers.html#compiler
http://www.research.microsoft.com/~simonpj/Papers/papers.html#compiler
http://www.oberon.ethz.ch

	Introduction
	The LVM language
	Translating into the LVM language
	Let floating
	Strictness and speculative evaluation
	Compilation scheme
	Program
	Expressions
	Atomic expressions
	Let expressions
	Matching
	Optimized schemes

	Resolve rules
	The resolve monad
	The algorithm

	Rewrite rules
	Code generation
	More optimization: superfluous stack movements
	Inlining strict bindings

	The abstract machine
	Basic instructions
	Local definitions
	Sharing
	Recursive values
	Algebraic data types
	Strict evaluation
	Matching
	Synchronous exceptions

	The instruction set
	Stack
	Functions
	Control
	Alternatives
	Integers
	Comparison
	General sums and products
	Optimized stack
	Optimized functions
	Optimized constructors
	Optimized control
	Optimized alternatives
	Floating point
	Floating point comparison

	The module format
	Records
	Header and Footer
	A Record
	Byte records
	Instruction records
	Structured records
	Standard records
	Import records
	Extern declarations

	Custom records

	Assessment
	Instruction reference
	General sum and products

	Primitive operations
	Exceptions
	Bytes
	IO

	Floating point
	Division and modulus for computer scientists
	Common definitions
	Euclidean division
	Comparision of T-, F- and E-division
	C sources for algorithm E and F
	Proof of correctness of algorithm E

	References

