
Appears in Proceedings of the 3rd Usenix Workshop on Electronic Commerce, 1998.

VarietyCash: a Multi-purpose

Electronic Payment System

(Extended Abstract)

M. Bellare
�

J. Garay
y

C. Jutla
z

M. Yung
x

Abstract

VarietyCash is a new electronic money system which strikes a balance between functionality,

security, and user privacy. The system can encompass both network and stored-value card based

payment mechanisms, with transferability between them, hence the name.

�Department of Computer Science & Engineering, Mail Code 0114, University of California at San Diego, 9500

Gilman Drive, La Jolla, CA 92093, USA. E-mail: mihir@cs.ucsd.edu. URL: //www-cse.ucsd.edu/users/mihir.

Supported in part by a 1996 Packard Foundation Fellowship in Science and Engineering, and by NSF CAREER

Award CCR-9624439.
yInformation Sciences Research Center, Bell Laboratories, 600 Mountain Ave, Murray Hill, NJ 07974. E-mail:

garay@research.bell-labs.com. URL: www.bell-labs.com/user/garay/.
zIBM T.J. Watson Research Center, PO Box 704, Yorktown Heights, New York 10598. E-mail: csjutla@watson.

ibm.com.
xCertCo, 55 Broad St., New York, NY 10004. E-mail: moti@certco.com.

1

Contents

1 Introduction 3

1.1 Background . 3

1.2 Variety Cash . 4

1.3 Implementation . 4

1.4 Organization of the paper . 5

2 Model and System Architecture 5

2.1 Security design goals . 5

2.2 Parties and roles . 6

2.3 Adversaries and attacks . 6

2.4 Coins and cryptographic terminology . 7

2.5 Databases, modules, components . 9

2.6 General requirements and principles . 9

3 Processes and Protocols 10

3.1 Coin Purchase . 11

3.2 Payment . 14

4 Integrating Card Cash 17

4.1 Card-based systems . 17

4.2 Cardcash . 17

4.3 Load protocol . 18

4.4 Transfer protocols and complex payment transactions 19

References 20

1 Introduction

Electronic payment systems are well-understood to be an essential step on the road to electronic

commerce, and are thus in high demand. These systems need to strike a good balance between a

number of di�erent issues. Amongst these are:

� Anonymity: The extent to which a third party (bank or other payment service provider) or the

merchant has information about the identity of the buyer.

� Account-based or account-less: Account based systems are higher cost from the point of view of

the service provider. In the US, at least, so-called Regulation E obligates the service provider of

account-based systems to provide customers with a level of account maintenance (e.g., periodic

statements) which increases the cost of such systems.

� Network versus card-based: Some systems are software-based for transactions across the net-

work; in others, like Mondex [14], stored-value cards are used.

� Atomicity: The system should be fair and robust in the sense that network failures, for example,

do not result in incomplete transactions [22].

We propose a simple, versatile system that is account-less, provides some degree of anonymity in

the form of anonymity by trust , is versatile enough to allow both network-based and card-based

payment to inter-operate in the system, and provides atomicity. The system is the result of a

thorough system's analysis, design, and proof of concept carried out by the authors for a large

�nancial institution.

1.1 Background

There are many good reasons to have some degree of anonymity: people want to avoid being

added to mailing lists, or simply keep secret the kinds of goods they buy; businesses may not want

competitors to know what kinds of information they are buying. The strongest form of anonymity

(unconditional) is provided by systems based on so-called blind signatures [10]. (These systems

were �rst proposed by Chaum [8]. At this point, there are many of them published.) However,

these systems have many well-known drawbacks. Tygar and Yee (as reported in [22]) point out

that the protocols lack atomicity: network failures during a transaction will result in loss of the

electronic money involved. That double spending is only caught after the fact is considered too

high risk by banks. Another problem (as pointed out in [16]) is scalability: as all coins that have

been spent have to be recorded, the coin data base will grow over time, increasing the cost to detect

double spending. Attempts to address some of these issues have been made (e.g. via escrow [13])

and stored-value card based settings mitigate others [7], but drawbacks remain.

Mondex [14], on the other side of the spectrum, provides no anonymity. It seems to be a shared

key based card design. There are well-known scalability and security problems with such designs.

For example the security is totally dependent on the security of a master key, and this master

key must be distributed to many users and points of sale across the system. If a single module

is penetrated, not only is signi�cant retailer fraud facilitated, but the entire card base may be

compromised.

NetBill [19] has a large spectrum of desirable properties, including atomicity. It might be able

to provide some limited anonymity via trust in the NetBill server and the use of pseudonyms,

but linkage is still possible. Also the NetBill server maintains accounts for buyers and merchants,

which is costly. Also, NetBill's transaction protocols include functions that are beyond payment,

such as price negotiation. The trend nowadays is that these functions should be separated, and

standardized; e.g., JEPI [12], SEMPER [20].

Our design (its network version) shares many features with NetCash [16, 15] (NetCash has

no \o�-line" operation, meaning the ability to also work with stored-value cards). The NetCash

protocols also combine symmetric-key cryptography for performance with public-key mechanisms.

A consequence of shared-key operations is no non{repudiability in some key functions (e.g., in ex-

changes with currency server). Anonymity in NetCash is also trust-based, with multiple currency

servers which the client selects; this in turn implies an accounting infrastructure in order to main-

tain consistency accross servers, etc. [17]. Additionally, NetCash is cast as a framework that can

accommodate various electronic currency mechanisms,

iKP [3], SET [21], etc., are credit card-based payment systems. We are looking for some form

of cash.

1.2 Variety Cash

In VarietyCash, the issuer functions as a mint. Coins are tokens authenticated under an issuer

master key. The system is on-line, meaning the issuer maintains a coin database, and the merchant

checks on-line with the issuer that a coin has not been previously spent. Since the system is on-line,

the master key is present only at the issuer, so, unlike in Mondex, can be well protected.

Spent coins can be erased from the database, unlike some systems; if this were not possible

scalability would be adversely impacted.

VarietyCash provides \trust-based anonymity." At withdrawal time the issuer does note the

association of user ID to coin serial numbers, but this user database is separate from the database

recording the spent or unspent status of a coin which is looked up when a merchant wants to

con�rm that no double spending has occurred. The information can be co-related as necessary in

case of law enforcement needs, but the issuer is expected to maintain user privacy except in such

cases. While not anonymity at the level of digicash, this relies on no more trust than we put in our

�nancial service providers today, and with a well-known, reputable service provider, is likely to be

deemed adequate by most people for most things. Furthermore, users can use pseudonyms.

The system is robust, functional and
exible. The protocols for withdrawal and spending will

provide atomicity. Coins can be purchased in any number or denomination, and paid for in a variety

of ways. The system is account-less, so Regulation E is avoided, and the payment service provider

does not have to issue statements to customers or incur other such overhead. The same coins can be

used for network based payment transactions or put on stored-value cards in the Mondex style, and

the coins are transferable between the two. Novel features include transferability of coins without

any speci�c payment transaction, ie. \making change".

The main concern is cost arising from it being an on-line system. The issuer will have to invest

some resources to be able to handle lots of transactions quickly. This, however, appears feasible

for reasonable load. Our protocols minimize the overhead. Batching and aggregation can be used

to reduce costs (e.g., [4]).

This design originated in response to a request of a certain large �nancial service corporation to

seek a practical, viable e-money system. In discussions with them we found they were more ready

to take on the cost of on-line veri�cation than to incur the risks arising from anonymous cash, or to

fall under Regulation E. From this it appears that there is a market for a system like VarietyCash.

1.3 Implementation

Our design has been implemented in C++. The core of the system can be viewed as a distributed

cryptographic application framework. The issuer and merchant sides have been implemented to run

on AIX, whereas the client (buyer) runs on Windows 95. A buyer can access web-sites of merchants

through a browser. If the web-site is e-money-enabled, on a purchase it returns a document with a

special mime-type, which the browser has been con�gured to recognize. The browser then invokes

an external e-money daemon. The daemon launches (if not already running) a graphical user

interface for the client, and rest of the communication between the three parties takes place via

the daemon. The transaction databases have been implemented persistently, so that malfunctions

such as network breakdowns do not hamper the protocol.

1.4 Organization of the paper

We start in Section 2 by describing the model and system architecture of the main component of

VarietyCash, namely, a network-based, on-line payment system. Some of the design considerations

and requirements for the processes we present may be of wider applicability. In Section 3 we

concentrate on two processes (and corresponding protocols) in detail: withdrawal of e-money and

payment. Finally, in Section 4 we show how to integrate to the network component a typical

card-based payment system.

2 Model and System Architecture

2.1 Security design goals

We start by identifying the basic aspects that compose the security of an e-money system.

Protocol Security. By this we mean liveness and safety guarantees, namely, that the protocols

achieve their goals and that every participant gets its information, and is secure in the sense that

the other parties which are considered adversaries do not compromise or spoil the system. This

aspect is the main focus of this paper.

Internal Security. The security of the internal operation system of the issuer of electronic

currency, its capability to withstand insider attacks and abuses. The internal network architecture,

operation policies, employment of tamper-proof hardware as well as dual control measures and

access-control and physical access limitations should be reviewed. The internal security architec-

ture has to be combined with issues such as availability, reliability, load balancing and back-up

requirements.

Network Security. The security of the network (e.g., Internet) of users and the issuer, to

prevent attacks not via the protocol but rather through \break-ins;" these attacks exploit the lack

of proper protection into the system and software holes. Careful design of the interface to the

external network (�rewall protection) is required. Both the internal and the network systems have

to be evaluated under \Global Security Testing," which includes penetration attempts and security

assessment of design and implementation.

User Security. Security of the user's assets. The user must obviously protect his electronic

currency, and the software and procedures supplied to the user have to provide for protection at a

proper level (e.g., beyond password-only protection), but at the same time be user-friendly.

In this paper, we deal speci�cally with the protocol aspects and their security. In this presen-

tation we do not cover all the protocols, but what we cover seems to capture the basic needs of the

system. For simplicity, nor do we deal with the temporal aspects of maintaining the system, such

as long-term key management and cryptographic policies.

2.2 Parties and roles

We will use the following terminology for the parties involved in VarietyCash. In a typical transac-

tion there would be three parties involved: the payer, the payee, and the bank or e-money server.

However, we would like to be more speci�c than that:

Participant { A generic name for a party involved in the system.

Issuer (I) { Party who issues coins.

Coin-holder (CH) { A party who holds coins or has the potential to do so.

Payee (PY) { A party who is willing to accept coins as payment (e.g., a merchant).

Bank (B) { A number of banks will be involved in moving funds due to conversions between

electronic and real money.

Certi�cation Authority (CA) { The party who can \certify" the public keys of the participants.

(In some scenarios, this role can be played by the Issuer itself.)

In turn, a coin-holder may play the following roles:

Coin Purchaser (CP) { purchases coins from issuer

Redeemer (RD) { turns coins into real money

Payer (PA){ customer who pays for goods/services with coins

Refresher (Rf) { gets new coins for old

Changer (Ch) { makes change

Further, we make the following distinction amongst participants:

Registerer (RG) { Register a public key at the issuer

Enroller (EN) { Enroll for a particular role such as coin purchaser or merchant

The idea here is that a participant may wish to be able to \play the game," i.e., accept and use

coins as a form of payment, without going through the more elaborate process that enables the

purchase or redemption of e-money. Note that parties and roles are not mutually exclusive.

In VarietyCash all the participants have distinct identities, as well as public keys. The issuer

has a database listing the identities of all participants, and, for each one, its public key. This

information is entered at the time of registration. In all transactions directly involving the issuer,

there is thus no need for an external certi�cation authority; however, the design leaves an option

for such a case.

We assume in this extended abstract a unique issuer, thus dispensing with the presentation of

a more elaborate clearing system.

2.3 Adversaries and attacks

We distinguish between two major kinds of attackers: the abusers and the spoilers. Abusers try to

get some speci�c advantage, such as get coins without properly paying for them; forge or steal coins;

etc. Spoilers do not seek any advantage per se; they just try to disrupt the system. An example of

a spoiler attack is to replay a coin purchase request in an attempt to make an unnecessary transfer

of funds (from the withdrawer's bank to the issuer). Another example is the denial of service attack

in which the attacker tries to tie up issuer resources.

Attackers may be external (e.g., on the Internet lines), or they may be parties themselves (for

example, a malicious payee or withdrawer trying to get some money for free), or they may be

insiders (such as an employee at the issuer).

Active attackers are the main problem. Pure eavesdroppers only try to learn information, such

as the nature of a transaction. Our protocols will be designed to resist active attacks.

We do not discuss error handling or denial of service attacks. An adversary can always interrupt

a
ow and thus disrupt a protocol. It is assumed that standard re-transmission and time-out

procedures underly the transmission of protocol
ows and address these attacks as well as possible.

2.4 Coins and cryptographic terminology

An e-coin (coin for short) is an object consisting of a unique identi�er (serial number, counter)

called the coin ID, an indication of value (denomination), an expiry date, and an authenticating

cryptographic tag. This cryptographic tag can be implemented in di�erent ways. In our design we

choose to use a MAC, or message authentication code, on the rest of the information, computed

using a symmetric key which is kept in secret by the issuer. Thus, the issuer can compute and

verify the tag, but no other party can compute a valid tag. Because it is secret-key based, the tag

cannot even be checked by anyone except the issuer, i.e., this is not a digital signature. This is

done for e�ciency reasons|symmetric key based cryptography is hundreds of times more e�cient

than public-key operations. A schematic representation of a coin is shown in Figure 1.

 TRIPLE−DES

EXPIRYDATE

AMOUNT EXPIRYDATEMAC−TAG

TRIPLE−DES MAC−TAG above is computed using a secret key K1 of the mint .

 RANDOM COIN−ID

1024 bit RANDOM COIN−ID

AMOUNT

AMOUNT EXPIRYDATEMAC−TAG RANDOM COIN−ID AMOUNT EXPIRYDATEMAC−TAG RANDOM COIN−ID AMOUNT EXPIRYDATEMAC−TAG RANDOM COIN−ID

Figure 1: Structure of an un-encrypted coin.

The cost of successful tag forgery can be enormous, since if an adversary could forge tags, he or

she could manufacture counterfeit coins at will. In order to minimize the possibility of successful

tag forgery, we suggest the following:

First, the tag should be computed in protected, tamper-proof hardware. This minimizes the

risk of loss of the secret key.

� Keys:

PKX ; SKX Public and secret key of Party X

CERTX Public key certi�cate of PartyX , issued by CA. We assume it includes

X;PKX and CA's signature on PKX .

� Cryptographic primitives:

H(�) A strong collision-resistant one-way hash function. Think of H(�) as

returning \random" values.

E
�

X Plaintext-aware public key encryption using PKX

SX(�) Digital signature with respect to SKX . Note the signature of message

M does NOT include M . We assume the signature function hashes

the message before signing.

eK Symmetric key based encryption algorithm, taking key K and a plain-

text, and producing the ciphertext

macK Symmetric key based signature, or message authentication code

(MAC), taking key K and a plaintext, and returning a short tag.

Figure 2: Keys and cryptographic primitives used in protocols

Second, the tag-computing algorithm should be \strong." One can of course use MACs based

on existing primitives such as DES. This may be acceptable, but we suggest that a Triple-DES

based MAC be used. A good choice would be a Wegman-Carter [23] type MAC, meaning that

one applies an XOR-universal hash function to the data and then XORs the result with the

value of a Triple-DES based pseudorandom function applied to a counter. The size of each tag

should be (at least) 128 bits, so the total tag length is 28 bytes. Outside the cryptographic

module the tag is encrypted inside the issuer database, and it goes encrypted over the network.

It is only available in plain form to the receiver of the coin.

Additional protection is provided by the fact that the coin database itself is protected. So that

if an adversary manages to forge the correct tag for a coin which has not yet been issued, it will

not help, because the issuer will fail to validate the coin. Thus, the adversary must be able to

successfully forge tags of issued, un-spent coins to achieve a meaningful gain.

A coin can have various states. For example, spent or not; anonymous or not; split, and if so

how; etc. These are marked in the database.

The issuer will expect from a coin purchaser requesting coins, or a change maker wanting change,

a speci�cation of exactly what kinds of coins are being requested. The speci�cation takes the form

of a list of denominations, and for each denomination, the number of coins of that denomination

that is desired. The simplest thing is to just ask for one coin of a certain denomination, for example

a single coin of $0.80. But one could ask for, say, (2; $2:50); (1; $1:25); (3; $2), meaning I want 2

coins of value $2.50 each, one coin of value $1.25, and 3 coins of value $2. The total value of the

list is the total dollar value, $12.25 in the example just given. The choice of speci�cation is decided

by a combination of the user's needs and the software (purse).

The cryptographic primitives used in the protocols of Section 3 are summarized in Figure 2.

All the parties have public keys. The issuer has a cache of identities and their corresponding public

keys, so that the certi�cation authority is not needed in transactions with the issuer. (But it may

be needed for other transactions.)

The encryption function E�

X
must provide, besides secrecy, some form of \message integrity."

Decryption of a ciphertext results either in a plaintext message, or in a
ag indicating non-validity.

Formally, the property we require of the encryption scheme is plaintext awareness [5, 2]. Roughly

speaking, this means that correct decryption convinces the decryptor that the transmitter \knows"

the plaintext that was encrypted. This is the strongest known type of security, and in particular it is

shown in [2] that it implies non-malleability (it is not possible to modify a ciphertext in such a way

that the resulting plaintext is meaningfully related to the original one, as formalized in [11]) and

security against chosen-ciphertext attacks. A simple, e�cient scheme to achieve such encryption

using RSA is OAEP [5]. A Di�e-Hellman based solution can be found in [1]. (Note that the RSA

PKCS #1 encryption standard can be broken under chosen ciphertext attacks [6], and is thus not

suitable for our purposes.)

However we stress that plaintext-aware encryption does not provide authentication in the man-

ner of a signature, i.e., it does not provide non-repudiation. But it prevents an adversary from

tampering with a ciphertext.

Also note that the encryption function is randomized: E�, invoked upon message m will use, to

compute its output, some randomizer, so that each encryption is di�erent from previous ones.

Finally, the notation � denotes bitwise XOR.

2.5 Databases, modules, components

We brie
y mention the components that interact with the processes we describe. Brie
y, a partic-

ipant has a purse, which has a database of coins. The issuer has a coin database and a participant

database. These indicate the status of a coin, including the withdrawer ID if anonymity was not

requested. A schematic view of the issuer's coin database is shown in Figure 3.

The issuer has a secure cryptographic module for coin generation. The coin-generation key is

hardware-protected inside this module.

2.6 General requirements and principles

A global requirement is the conservation of cash. This means that the total e-money in the system

is equal to the total amount of real money that the issuer's logs show is in e-money.

A general principle is that any coin representation is seen by at most one participant other than

the issuer. Thus, after an issuer issues a coin, the withdrawer is the only party who \sees" this coin.

When the withdrawer makes a payment with it, the payee doesn't see the coin; it is in a digitally

sealed envelope which goes straight to the issuer for validation. This implies \on-line" payments

where the issuer is involved in every such transaction. In addition, the internal representation

of the coin does not enable insiders with access to its database to use it|a coin is checked by a

tamper-proof hardware for its validity.

Coins are treated as bearer instruments, like real currency. The user has the money if s/he has

a (valid) coin; no questions asked.

The security requirements that we pursue are those of \strong cryptography" for the protection

of �nancial transactions; the use of \weak cryptography" only (e.g., 40 bit-long keys and passwords)

is insu�cient for e-money. International usage of the system is possible if the encryption is not

made \general purpose," but is rather restricted to the use inside the user's software.

AMOUNT EXPIRYDATEMAC−TAG RANDOM COIN−ID

128 bits 896 bits

AMOUNT EXPIRYDATEMAC−TAG RANDOM COIN−ID

128 bits 896 bits

AMOUNT EXPIRYDATEMAC−TAG RANDOM COIN−ID

128 bits 896 bits

AMOUNT EXPIRYDATEMAC−TAG RANDOM COIN−ID

128 bits 896 bits

used/unsed

issued/non−issued

DES ENCRYPTION under Issuer’s Key K2

TAG for
searching ENCRYPTED COIN plus STATUS

Figure 3: Encrypted coin in the Issuer's coin database.

3 Processes and Protocols

We �rst enumerate the basic processes taking place in VarietyCash, and the parties involved in

them. Later we describe in detail the requirements and protocols that realize them for the two

more relevant processes: Coin Purchase and Payment.

Registration { A party chooses an identity, and has his/her public key registered at the issuer.

Enrollment (PY ; I or PA; I) { An already registered participant enrolls for a role such as coin

purchaser or redeemer.

Coin Purchase (CP ; I ;B) { The withdrawer speci�es what kinds of coins s/he wants, and a

corresponding set of coins is then issued and sent to the withdrawer. The coins are paid for

by funds of value equal to the total dollar value of the issued coins, which the withdrawer

authorizes the issuer to get from his/her bank account.

Payment (PA;PY ; I) { The payer pays to the payee a requested sum, using one or more coins

totalling to the requested value. The payee immediately (i.e., on-line) validates the coins with

the issuer, and may either obtain new coins in return, redeem the coins, or aggregate them for

later redemption.

Change (CH ; I) { The coin-holder gives the issuer a set of coins, and also speci�es what kinds

of coins he wants in change, the total dollar value of the requested coins being the same as that

of the provided coins. Coins corresponding to the request are then issued to the coin-holder.

Redeem (RD ; I ;B) { The redeemer gives some set of coins to the issuer, and the latter turns

them into real money in the redeemer's bank account.

Refresh (Rf ; I) { The refresher turns in old (expired) coins for an equivalent value in new coins.

Refund { A non-anonymous coin holder can request the issuer to resend him his coins in case

of a failure (e.g., disk crash).

Again, we note the distinction between the Registration and Enrollment processes. Intuitively,

Registration is a simpler, on-line process that will let a user participate in the transactions. It

basically consists of chooshing and ID (possibly a pseudonym) and a secret/public key pair, and

making sure that requirements such as availability and security (e.g., minimizing spoiler attacks)

are met. On the other hand, Enrollment is accomplished by a combination of on-line and out-of-

band steps. It comprises steps such as providing DDA/credit card information, validation of this

information, and issuance of initial amount. Being enrolled allows a user to play an \active" role in

the system, in the sense of generating money conversions from regular to electronic, and viceversa.

We leave the details of these two important processes for the full version of the paper, and will

assume in the following description that they have already taken place.

3.1 Coin Purchase

Issuer

CH’s Bank

Coin
Request

Issuance

ACH Request

Withdrawer

Figure 4: The Coin Purchase process.

The Coin Purchase process involves the coin purchaser, the issuer and the coin purchaser's

bank. The coin purchaser speci�es how much he wants in e-coins, and in what denominations,

and provides the information to make the coin purchase from the bank. The issuer makes the coin

purchase and then issues the coins.

The requirements are as follows:

W1{ Valid transactions go through.

W2{ Can't get coins for nothing. It is not possible to get coins without paying for them: if a party

ends up getting a certain dollar value of valid coins, then the issuer has the corresponding

funds from the same party's bank account.

W3{ Can't create false debits. An adversary may want to play spoiler: it doesn't want coins, but

wants the coin purchaser's account to be unnecessarily debited. This should not be possible.

That is, it is not possible for an adversary to create a fake coin request which leads the issuer

into debiting the coin purchaser's account.

A protocol for the coin purchase process is shown in Figure 5. The �eld W-DESC contains two

things. First, the type and number of coins he wants: this is a list of denominations, and, for

each denomination, the number of coins of that denomination that are desired (see Section 2.4).

Second, information necessary to enable the issuer to get paid, in real funds of equal value to the

� Fields:

W-DESC Coin Purchase description{ amount, denominations of desired coins,

information and authorization required to make debit at bank.

RX Random challenge chosen by party X

KX Random number chosen by party X

K KCP �KI

� Protocol Flows:

WRequest1 : CP ����������

E
�

I
(IDCP ;KCP)

����������������������! I

WRequest2 : CP ����������

E
�

CP
(IDI ;KI ; RI)

������������������������ I

WRequest3 : CP �

eK(W-DESC; SCP (IDI ; RI ;W-DESC))
��������������������������������! I

WExecution : I ����������
ACH-Req

����������������������! B

Issuance1 : CP �

EncC
z }| {

eK(Coin1; : : : ;Coinn); macK(IDI ;EncC)
��������������������������������� I

Issuance2 : CP ����������

macK(IDCP ; RI)
�����������������������! I

Figure 5: Coin Purchase rotocol

total dollar value of the coins. Here we take the case that this payment is made by coin purchase

from the coin purchaser's bank, so this information includes the bank name and address, and the

coin purchaser's account number.1

Note that this protocol does not make use of a certi�cation authority. It assumes that the parties

have each other's public keys and certi�cates already cached. The coin purchaser has the issuer ID

and public key in his purse from enrollment, and similarly the issuer has the coin purchaser ID and

public key in his database from enrollment.

There are three transactions: the coins request, in which the coin purchaser asks for the coins

and provides the bank information; the execution, in which the ACH transaction is done; and the

�nal issuance of coins. The protocol is designed to guarantee both privacy and authenticity of the

data. This is to protect the coin purchase information and the coins that are issued. It must also

1Another possibility is that this payment is made by credit card, in which case an iKP/SET-type protocol [3, 21]

may be used, instead of the protocol we are describing here. The issuer would play the role of the merchant in SET.

provide freshness. For e�ciency's sake we use a key exchange protocol to get a session key K under

which later messages are encrypted or MACed. However, the coin purchase information is digitally

signed for non-repudiability. We now go over the transactions in more detail.

(1) Coin Request. The coin purchaser requests that a certain amount in coins be returned to him,

and authorizes the issuer to withdraw this amount from his bank account. The protocol begins

with a key exchange which issues the key K = KCP �KI to both parties:

(1.1) WRequest1. The coin purchaser chooses a random number KCP , and then encrypts his

identity IDCP and KCP under the public encryption key of the issuer, using the plaintext

aware encryption algorithm. The ciphertext is passed to the issuer.

(1.2) WRequest2. The issuer applies the plaintext-aware decryption algorithm to the received

ciphertext. If this algorithm rejects the text as non-authentic then he rejects; else be

obtains and records the identity IDCP of the withdrawer and KCP . Now he chooses a

random number KI and also a random nonce RI . He uses IDCP to retrieve PKCP and

then encrypts IDI ;KI ; RI under PKCP using the plaintext aware encryption algorithm.

The ciphertext is sent to the coin purchaser. The value K = KI �KCP is stored as the

session key.

(1.3) WRequest3. The withdrwawer applies the plaintext-aware decryption algorithm to the

received ciphertext. If this algorithm rejects the text as non-authentic then he rejects;

else be obtains and records the identity IDI , and the numbers KI ; RI . He checks that

the identity is really that of the issuer by matching it with the value in his purse. He

forms the session key K = KCP �KI . Now he forms the indicated
ow, which contains

W-DESC and a signature, the whole encrypted under the shared session key K to ensure

privacy of the bank coin purchase information. Note the nonce RI is included in the

signature to ensure freshness.

(2) Execution. The issuer now uses the coin purchase information and authorization provided by

the customer to make the ACH transaction of coin purchase from the bank.

(2.1) WExecution. The coin purchaser uses K to decrypt the ciphertext and obtain W-DESC

and the signature. He checks that the signature is valid, and stores it. Now he uses

the information in W-DESC to make the ACH request. The issuer then waits a suitable

period (which can range up to the order of days). If there is anything wrong, the bank

sends a reject within this period; else the funds are in the issuer account. Now the issuer

is ready to issue the coins.

(3) Issuance. The issuer forms e-coins Coin1; : : : ;Coinn of the denominations requested inW-DESC.

(These coins may have been created earlier and are archived, or may be formed at this time.)

Then:

(3.1) Issuance1. The issuer encrypts the coins under the session key K to get EncC. This

ciphertext is then authenticated, also under K, by computing macK(IDI ;EncC). The

ciphertext and the MAC are sent to the coin purchaser.

(3.2) Issuance2. The coin purchaser checks that the MAC is correct. (This means the coins

are really from the issuer.) Then he decrypts the ciphertext to get the coins, which go

into the purse. He now issues a �nal acknowledgment, consisting of the issuer nonce RI
MACed under the session key.

In the full paper we show how requirementsW1{3 are met. We now turn to the description of

the Payment process.

3.2 Payment

Issuer

Issuance

1

Validation
Request

Receipt

2

3 4

5

Invoice

SendCoins

Payer Payee

Figure 6: Payment with Refresh: Flows

The Payment process involves the payer (e.g., a customer), the payee (e.g., a merchant) and

the issuer. The requirements are as follows:

P1{ Valid payments go through. If the payer transfers a certain amount in valid coins, and if

these coins are as yet unspent, then, after checking with the issuer, the payee accepts the

payment. (He may end up with refreshed coins, or have redeemed them, or aggregated, as

he wishes.)

P2{ Accepted payments are valid. If after checking with the issuer a payee accepts a payment,

then he knows that the refreshed coins he has obtained are valid. In particular, already-

spent coins are detected: If a payer uses an already-spent coin then (by checking with the

issuer) the payee will detect it, and the payee will not accept the payment.

P3{ Payment is for the goods or services the parties have agreed on. An adversary A cannot

divert a payment by the payer to A's advantage, or even change the order description in

\spoiler" ways. This is an optional requirement, which can be provided given an external

certi�cation authority.

P4{ Payer is informed of double spending. In case the issuer detects double spending, the payer

should be told his coins are bad, and be sure that the issuer thinks so.

We provide two basic kinds of payment protocols: payment with refresh (i.e., the payee obtains

new coins) and payment with redemption (the payee is enrolled, and obtains real funds). In this

abstract we only describe the former; payment with redemption has the same
avor. The same

applies to payment with aggregation. The
ows involved in payment with refresh are shown in

Figure 6, and the protocol in Figure 7. The V-DESC �eld indicates which option is being used. In

addition, it includes whatever information is needed for the option being used. For example, if it

is refresh, the V-DESC �eld includes the type and number of the desired coins; if it is redemption,

the V-DESC �eld includes the bank name, address and the account number.

� Fields:

P-DESC Purchase description{ amount, description of goods, payment method

or mechanism. Assumed part of starting information of payer and payee.

TIDPY Transaction ID{ a number generated by the payee which is uniquely

associated to this transaction

Com P-DESC;TIDPY ; IDPA; IDPY ; IDI

V-DESC Veri�cation and execution request text. Indicates one of three options

(refresh, immediate redeem, or aggregate) and provides corresponding

data. Includes amount.

KX Random number chosen by party X

K KPY �KI

� Protocol Flows:

Invoice : PA ��������������

IDPY ; TIDPY ; [SPY (H(Com))]
�� PY

SendCoins : PA ��������������

EncC1

z }| {

E
�

I
(PY ;TIDPY ;Coin1; : : : ;Coinn)

���! PY

ValidationReq : PY ����������

E
�

I
(IDPY ; KPY ; TIDPY ; V-DESC; EncC1)

��! I

Issuance1 : PY �

E
�

PY (IDI ;KI);

EncC2

z }| {

eK(Coin
0

1; : : : ;Coin
0

n0); macK(IDI ;TIDPY ;EncC2)
�� I

Issuance2 : PY ������������������

macK(IDPY ;TIDPY)
�����������������������������������! I

Receipt : PY ���������������

[SPY (IDPA;H(Com);EncC1)]
���������������������������������������! PA

Figure 7: Payment with Refresh protocol.

The payment protocols have certain optional
ows. They are indicated in square brackets, for

example [SPY (H(Com))] means providing this signature in the �rst
ow is an option. The issue

here is certi�cates. The basic protocol does not need a certi�cation authority: it is enough that the

issuer have the public keys of the participants. But for the extra functionality of order protection

and receipt, an external certi�cation authority is needed to provide the payer with the public key

of the payee. We now describe how the
ows are computed.

(1) Invoice. This transaction consists of a single
ow in which the payee provides the transaction

ID. The latter is a randomly chosen number which uniquely identi�es the transaction. For

con�rmation of amount and order information, it is suggested that this be accompanied by a

signature of the common information.

(2) SendCoins. The payer picks from his purse a collection of coins Coin1; : : : ;Coinn whose total

dollar value equals the amount to be paid. (If the purse happens to not currently hold this

amount, but holds coins of total dollar value which is larger, the payer can go through a change

transaction to get change, and then resume the payment. If the purse has insu�cient funds, the

payer will have to make a coin purchase, and, since this is a lengthy process, he will probably

stop the payment here and re-start when he has the funds.) The coins are put in an envelope

by encrypting them (and the identity of the payee) under the public key of the issuer . The

ciphertext is transmitted to the payee.

(3) Validation Request. The payee cannot open the envelope; he never sees the coins. Instead, he

forwards them to the issuer for validation, along with V-DESC which indicates whether he

wants refresh, redemption or aggregation. The payee also includes in V-DESC the amount, to

guard against the payer paying less than the agreed amount. This is done, for privacy, under

cover of an encryption under the issuer's public key. Also in the scope of the encryption go the

payer identity, the transaction id, and a number KPY , chosen at random, which will be used

to derive a session key.

At this point the process is di�erent depending on whether we are doing refresh or redeem. We

continue to describe the refresh case.

(3) Issuance. The issuer decrypts the ciphertext to obtain IDPY ;KPY ;TIDPY ;V-DESC;EncC1.

He then decrypts EncC1 to get the coins which were sent by the payee. The validity of these

coins is checked, as also the fact that the total value of these coins matches the amount claimed

by the payee that is present in V-DESC. Now new coins are issued, of the type speci�ed in

V-DESC, via two
ows:

(3.1) Issuance1. The issuer picks a number KI at random and forms the session key K =

KI �KPY . The session key, together with IDI , are encrypted under the public key of the

payee, and the resulting ciphertext is transfered to the payee. Also the issuer encryptes

the new coins under K; then MACs this ciphertext and some other stu� as shown. The

second ciphertext and the MAC are also sent to the payee.

(3.2) Issuance2. The payee acknowledge having received the new coins by sending a message

signed under the session key K.

(4) Receipt. The last
ow is optional, and consists of a receipt, from payee to payer, that the

payer's payment was accepted by the issuer.

We have omitted from the protocol picture the
ows related to error conditions, such as the issuer

informing the payer if his coins are bad, or the issuer informing both parties if the claimed and paid

amounts do not match. The issuer would sign the bad coins and the error statement, and pass this

to the payee, who in turn passes it to the payer.

Several spoiling attacks are possible. For example an attacker could
ip some bits in the MAC

in the Issuance1
ow, making the payee reject. In a seemingly more sophisticated attack, he can

remove the ValidationReq
ow sent by the payee and substitute a fake one which contains the same

information except that the value of KPY is di�erent. (Note he is in possession of all information

except KPY so can indeed do this.) Then the payee will again reject the Issuance1
ow since he will

recover the wrong session key. However, such attacks do not really help the attacker. These kinds of

spoiling attacks are unpreventable, and handled by appropriate error handling and re-transmission.

4 Integrating Card Cash

4.1 Card-based systems

Typically, a card-based e-money system is an electronic payment system based on a tamper-proof

device, with the properties of being pseudo-anonymous, o�ine, and non-circulating. The term

non-circulating refers to the fact that the monetary value once paid cannot be reused o�ine (by

the payee of the �rst transaction) and must be redeemed. Being an o�ine system, it requires

tamper-proof smartcards holding monetary values (for making payments), as well as tamper-proof

devices for accepting payments. The devices for accepting payments require even higher level of

protection as they may contain certain global cryptographic keys.

The e-money system outlined in Sections 2 and 3 is a network-based, online payment system.

In this section we show how that system can be combined with this card-based system to o�er

additional services and functionality, i.e., VarietyCash. For example, the combined system allows

transfer of monetary value from one system to another and vice versa. The advantages of one

system can then be used in the other. Fortunately, these transfer protocols can be built at a high

level, on top of the two systems.

4.2 Cardcash

We assume the card-based system has the following components:

Purse smartcard (smartcard for short) (SM),

load/unload device,

load/unload server (LUS),

purchase device,

purchase SAM (Security Access Module), and

collection server.

In addition, there maybe one or more payment and clearing agencies (AG) which are not part of

the system, but are needed for transfering the real money to electronic money and vice versa.

The cryptographic protocols used in these systems typically use symmetric keys (e.g., DES).

The security is hierarchical in nature. In other words, there are devices which have the capability of

generating their own keys, whereas devices higher up in the hierarchy can generate keys of devices

immediately lower in rank using identi�cation information of the lower ranked device. For example,

a smartcard is lower ranked than a Purchase Security Access Module(PSAM). The PSAM has a

global key K, whereas the purse just has a derived key f(K; ID), where f is a prede�ned one-

way function, and ID is the identi�cation number of the smartcard. The PSAM can dynamically

generate the derived key once it has the identi�cation of the smartcard.

In general, the keys are \segmented" for further security. In such a scheme there maybe many

global keys for a particular device class. In this abstract we will simplify the presentation by

assuming no segmentation of keys.

We now turn to the description of some of the \native" card-based system protocols, and the

transfer protocol between systems.

� Fields:

SMID Smartcard's unique ID

TID A unique transaction ID for the smartcard

Amount Monetary value to be loaded

eLoad�key(SM ID) Encrypted under the derived Load key of the SM , stored as it is on the

SM , and computable by the load server using its own global key and

SM ID

RX Random challenge chosen by party X

H A standard one-way hash function

� Protocol Flows:

LInitialize1 : LUS ����������

TID;SM ID; Amount
�������������������������� AG

LInitialize2 : SM �����

eLoad�key(SM ID)(TID;RLUS); T ID
�������������������������������� LUS

LDebit : SM �

eLoad�key(SM ID)(H(TID;RLUS); RSM); T ID
������������������������������������! LUS

LCredit : SM ��

eLoad�key(SM ID)(H(RSM); Amount); T ID
���������������������������������� LUS

LAck1 : SM �

eLoad�key(SM ID)(H(TID;RSM �RLUS)); T ID
�������������������������������������! LUS

LAck2 : LUS ������������

TID; ``OK 00

������������������������! AG

Figure 8: Load protocol

4.3 Load protocol

There are many modes of loading value onto the card, such as o�-line load using Load Security

Access Modules (LSAM), on-line account-based loads, and on-line non-account-based loads. In this

abstract we will only cover on-line account-based loads. In the on-line account-based load, there is

a payment agency involved with which the card holder has an account (or registration). The load

is mediated by the payment agency, and the account is debited.

Informally, when a user with a card wants to load value onto his card (using an on-line account

based method), he communicates with his payment agency using the load/unload device. Once a

load of a particular value is requested by the card, the payment agency (which acts as a trusted

party), instructs the load/unload server to load the monetary value onto the card (while guarantee-

ing payment). All further messages between the load/unload server and card go via the payment

agency (or the client), and the payment agency and the load/unload server commit the transaction

based on acknowledgments from the two end parties. The load/unload server logs the transaction,

and clears the payment with the payment agency via a clearing system.

A sketch of the protocol is shown in Figure 8. There are three parties invloved: the load/unload

server (LUS), the card (SM), and the payment agency (AG). The �rst step of the Load protocol

(not shown) is itself a high level protocol between an account holder and a payment agency. This

protocol ensures a monetary value transfer from the smartcard holder to the payment agency. For

example, if the payment agency is your bank, this payment protocol is an electronic authorization

to debit your account. As to how this protocol is de�ned is independent of the card-based system,

except for the fact that it should be able to associate a SM ID, a unique transaction ID for this

SM ID, and an amount with this transaction to be used in the composite transaction.

All the messages between SM and LUS go via the payment agency (or the load/unload client

in the payment agency). However, note that in this protocol there is no way for the server LUS

to prove to the payment agency that the load into the card actually happened, since the key is

symmetric. In other words the signature (i.e., signed ack) in the protocol|it could have been

generated by the server itself. Thus, the server is assumed to be a trusted party.

The Unload protocol is symmetrically opposite to the one of Figure 8.

4.4 Transfer protocols and complex payment transactions

We now brie
y describe the transfer protocols between card- and software-based systems. Ef-

fectively, this is a composition of an online protocol between a user and a load/unload server,

followed by an online protocol between the same user and the issuer of Section 2. Speci�cally,

an account-based Unload protocol followed by a Coin Purchase protocol similar to that of Fig-

ure 5. The issuer acts as the payment agency in the Unload protocol. Call this combined protocol

Cardcash-to-Softcash.

The reverse direction, software cash to card cash, is composed of the Redeem protocol between

the user and issuer, followed by the Load protocol of Figure 8 between the same user and a

load/unload server. Again, the issuer acts as the payment agency in of the Load protocol. Call

this protocol Softcash-to-Cardcash.

In the same way, transactions between users from the same or di�erent payment \media" are

also enabled. For example, the payment from one card user to another is achieved as follows. This

type of transfer can be accomplished by any intermediary, in particular, the issuer of Section 2:

1. The payer runs Cardcash-to-Softcash;

2. the payer, payee and issuer run the Payment with Redeem protocol (Section 3);

3. the payee runs Softcash-to-Cardcash.

Note that in the card-based system a clearing system is used for transfering money back and

forth between the load/unload servers and the payment agencies. Thus, there is not much of an

overhead in running these composed protocols. At the end of the three steps above the payment

agency (the issuer) and the load/unload server are even.

Similarly, card payers can pay software payees with not much of an overhead, since a clearing

system is involved. Here, the unload server owes money to the issuer. In the reverse direction, the

issuer owes money to the load server.

Acknowledgements

We are thankful to the anonymous referees for the many comments regarding comparison with

other payment systems, as well as spoiling attacks against some of the protocols.

References

[1] M. Abdalla, M. Bellare and P. Rogaway. DHAES: An encryption scheme based on

the Di�e-Hellman problem. Manuscript.

[2] M. Bellare, A. Desai, D. Pointcheval and P. Rogaway. Relations among notions of

security for public-key encryption schemes. Advances in Cryptology { Crypto 98 Proceedings,

Lecture Notes in Computer Science Vol. 1462, H. Krawczyk ed., Springer-Verlag, 1998.

[3] M. Bellare, J. Garay, R. Hauser, A. Herzberg, H. Krawczyk, M. Steiner,

G. Tsudik and M. Waidner. iKP { A Family of Secure Electronic Payment Protocols.

Proc. First Usenix Workshop on Electronic Commerce, pp. 89-106, New York, June 1995.

[4] M. Bellare, J. Garay and T. Rabin. Fast Batch Veri�cation for Modular Exponentiation

and Digital Signatures. Advances in Cryptology { Eurocrypt 98 Proceedings, Lecture Notes

in Computer Science Vol. 1403, K. Nyberg ed., Springer-Verlag, 1998.

[5] M. Bellare and P. Rogaway. Optimal Asymmetric Encryption. Advances in Cryptology

{ Eurocrypt 94 Proceedings, Lecture Notes in Computer Science Vol. 950, A. De Santis ed.,

Springer-Verlag, 1994.

[6] D. Bleichenbacher. A chosen ciphertext attack against protocols based on the RSA en-

cryption standard PKCS #1. Advances in Cryptology { Crypto 98 Proceedings, Lecture Notes

in Computer Science Vol. 1462, H. Krawczyk ed., Springer-Verlag, 1998.

[7] J.-P. Boly et al. The ESPRIT Project CAFE - High Security Digital Payment Systems.

ESORICS '94, LNCS 875, Springer-Verlag, Berlin 1994, 217-230. <http://www.informatik.

uni-hildesheim.de/FB4/Projekte/sirene/projects/cafe/index.html>.

[8] D. Chaum. Blind signatures for untraceable payments. Advances in Cryptology - Crypto 82

Proceedings, D. Chaum, R. Rivest & A. Sherman eds., Plenum Press, New York, pp. 199-203.

[9] CyberCash. The CyberCash(tm) System - How it Works. <http://www.cybercash.com/

cybercash/cyber2.html>.

[10] DigiCash. About ecash. <http://www.digicash.com/ecash/ecash-home.html>.

[11] D. Dolev, C. Dwork, and M. Naor, Non-malleable cryptography. Proceedings of the

23rd Annual Symposium on the Theory of Computing, ACM, 1991.

[12] W3C Joint Electronic Payments Initiative (JEPI). <http://www13.w3.org/

ECommerce/Overview-JEPI.html>.

[13] M. Jakobsson and M. Yung. Revokable and versatile electronic money. Proceedings of

the Third Annual Conference on Computer and Communications Security , ACM, 1996.

[14] Mondex. <http://www.mondex.com>.

[15] G. Medvinsky. NetCash: A framework for electronic currency. Ph. D thesis, Dept. of Com-

puter Science, USC, 1997.

[16] G. Medvinsky, C. Neuman. NetCash: A design for practical electronic currency on

the Internet. Proceedings of the First Annual Conference on Computer and Communica-

tions Security , ACM, 1993. <ftp://prospero.isi.edu/pub/papers/security/netcheque-

requirements-compcon95.ps.Z>.

[17] C. Neuman. Proxy-based authorization and accounting for distributed systems. Proc. 13th

International Conf. on Distributed Computing Systems, pp. 283-291, May 1993.

[18] C. Neuman, G. Medvinsky. Requirements for Network Payment: The NetCheque Per-

spective. IEEE COMPCON, March 95. <ftp://prospero.isi.edu/pub/papers/security/

netcheque-requirements-compcon95.ps.Z>.

[19] M. Sirbu, J. D. Tygar. NetBill: An Internet Commerce System. IEEE COMPCON, March

95. <http://www.ini.cmu.edu/netbill/CompCon.html>.

[20] Secure Electronic Marketplace for Europe (SEMPER). <http://www.semper.

org/>.

[21] SET. <http://www.mastercard.com/set/>.

[22] D. Tygar. Atomicity in electronic commerce. Invited talk and paper, Proc. Fifteenth Annual

ACM Symposium on Principles of Distributed Computing,, pp. 8-26, Philadelphia, May 1996.

[23] M. Wegman and L. Carter. New hash functions and their use in authentication and set

equality. J. of Computer and System Sciences 22, pp. 265{279, 1981.

