
Automatic Event-Stream Notarization Using
Digital Signatures

Bruce Schneier John Kelsey

Counterpane Systems, 101 East Minnehaha Parkway, Minneapolis, MN 55419
{schneier,kelsey}@counterpane.com

Abstract. Some digital signature algorithms (such as RSA) require
messages to be padded before they are signed. Secure tokens can use
these padding bits as a subliminal channel to embed auditing information
in their signed messages. These auditing bits simplify protecting against
lost and stolen tokens, breaks of specific protocols, hash functions, and
ciphers, and attacks based on defeating a token’s tamper-resistance.

1 Introduction

We present a signature format which simplifies the task of designing strong
protocols for tamper-resistant tokens, like smart cards. The basic idea embeds
auditing information within the block to be signed. Packets signed by RSA are
typically 512- to 1024-bits long, sometimes even longer; hashed messages are
only 128- or 160-bits long. These hashed messages are padded to the length re-
quired by RSA, generally with fixed bits. Some fixed bits are required to prevent
arbitrary bit strings from being valid signatures and other cryptanalytic attacks
against RSA, but far more bits are available than are needed to prevent these
attacks. These bits can be more usefully used for other things.1

Many protocols add auditing information to messages before they are hashed
and signed, but that increases the length of the message and often cannot be
enforced from within a token. Our signature format is essentially a subliminal
channel [Sim84], under the control of the token—one that cannot be affected by
any party in the protocol—and allows the token to embed auditing information
in everything it signs. The token has this ability regardless of the protocols that
use it, even if it does not create or hash the actual messages.

The most generally useful part of the auditing information included is the
hash chain [And95]: a cumulative hash of everything the token has signed to date.
Every signed message depends on every previous signed message; this makes
it very difficult for an attacker to make any valid-looking changes in previous
transactions, even if he manages to defeat the token’s tamper-resistance. This
idea is used in [And92,HS91].
1 Jean-Jacques Quisquater and Louis Guillou suggested embedding message bits

within an RSA signature [QG95], which was the impetus for this idea.

Our protocols attempt to prevent as many potential attacks as possible. For
those attacks which we cannot prevent, we attempt to minimize their damage
and increase their cost to the attacker. Because token systems of this kind may
be implemented in many different legal environments, we do not generally as-
sume that the law will be helpful in tracking down incidents of fraud or misuse
[And93,And94].

We also attempt to increase the potential evidence available in the even of
fraud. Fraud does not happen in isolation: someone does not steal $1M and then
disappear. He is likely to spend some of the money. While our protocols might
not prevent someone from stealing $1M, they will lead investigators to potential
suspects for that theft.

1.1 Token Resources Needed

The tokens discussed in this paper require the following resources for most or
all protocol steps:

a. Sufficient storage to record all protocol messages in some kind of log. This
is needed to provide an audit trail. Some implementations can store this log
on the token itself, while others may require the user keep his own audit log
and surrender it in case of a dispute.

b. Sufficient non-secure storage to maintain a current public-key certificate for
the token’s internal key.

c. An internal, secure private/public key pair, with the private key not known
by any entity except the token, and the public key certified by the token
manufacturer or certification authority. (This is essentially the “Verify-Me”
key in National Semiconductor’s CAKE proposal [Swe95].)

d. Several internal, securely stored values: a counter, key ID, token ID, and
chained hash value.

e. Secure facilities for performing digital signatures and message hashing.
f. An internal, secure source of random bits.

Additionally, some protocols will also require:

g. Secure facilities for performing public key and symmetric encryption.
h. An internal, secure clock.
i. A non-secure link with some external device, such as a hard drive controller

or a LAN or modem card.
j. Some small additional secure memory, and the ability to do very simple

operations upon it, such as subtraction and comparison with zero.

2 Building the Signature Packet

This section defines a specific format for signature packets. This signature format
is incompatible with existing formats: e.g. PKCS [RSA93]. A signature packet is

2

a relatively large block of data which is digitally signed with message recovery
by the card. The best known digital signature scheme which allows signatures
with recovery is RSA. The DSA algorithm cannot be used for this, since it
does not allow message recovery. Digital signature schemes based on the discrete
logarithm problem which allow message recovery are discussed in [NR96]. For
the remainder of this paper, we will assume RSA.

The signature packet has the following fields:

a. Signature packet version
b. Token ID
c. Signing key ID
d. Packet sequence number
e. Hash of hash of most recently signed packet
f. Hash of hash of most recently received packet
g. Optional 64 or 128-bit data field
h. hash(hash(message), hash(a−−g))

Each of these fields is useful for preventing or increasing the difficulty of some
kinds of attack.

Signature packet version The signature packet type and version tells the
receiver of the packet how the packet is to be processed. (Many protocols will also
require a message-type byte in the message, rather than the signature packet.)
This is a 24-bit field, with the following structure:

bit 0 – always zero
bits 1..7 – reserved—set to all zeros for version 1.x
bits 8..15 – major version byte
bits 16..23 – minor version byte

A given version number corresponds to a single signature algorithm, key
size, packet format (including use and meaning of optional fields), hash func-
tion, symmetric and asymmetric encryption algorithm, as well as other things.
As an example, Version 01.00 might correspond to signature and asymmetric
encryption algorithm RSA with a 768-bit modulus, hash function SHA1, sym-
metric encryption function two-key triple-DES, and no defined optional fields.
Version 01.01 might correspond to the same thing, with a 64-bit optional field
defined as a token-generated random number. A recipient of a signature packet
with version 01.01 would then know that, if the sender’s tamper-resistance hadn’t
been defeated, the random number that appeared in the optional field was not
under the control of the sending token’s owner.

By including the signature packet version, we prevent some kinds of replay
attack which involve trying to get a system to use an older packet version.
We also make explicit our packet version, so that it is simple for the card to
internally scan the version and accept or refuse to accept it. We allow backward

3

compatibility if later versions add more fields or change their width, since the
first 24 bits of the packet can always be easily found. Note that the high-order
bit must always be a 0 in RSA-based versions.

Token ID Each token has a unique 64-bit ID, possibly further subdivided into
16 bits defining a specific manufacturer and 48 bits identifying a unique token.
By including the token ID, we dramatically simplify the problem of tracing lost
or stolen tokens. In most cases, lost or stolen tokens are dealt with using only
the token ID, key ID, and sequence number.

Signing key ID Each key has a unique 64-bit key ID. This key ID is always
included in key certificates, and can easily be fit into an X.509 certificate. The
purpose of the key ID is mainly to make easy to find a unique identifier of the
key being used to sign the signature packet. (Note that some tokens may have
more than one signing key.) In some applications, 16 bits may signal a specific
certification authority, and 48 bits this key’s specific ID. As long as the key ID
is unique, this does not present a problem.

Packet sequence number The packet sequence number is 32 bits long, and
is incremented by 1 every the token signs a message. Its purpose is to frustrate
most replay and insertion attacks on protocols, and also to make it easier to trace
lost or stolen tokens by issuing a “stop transaction” order on all transactions
after sequence number X. Additionally, this ensures that there are never two
identical signature packets generated by the same properly- functioning token.
Finding two packets with the same sequence number, key ID and token ID is
evidence that something very bad is happening with that token.

Hash of hash of most recently signed packet This field is included so that
the sequence of signatures from a given token will form a hash chain. This ensures
that, even when a token’s private key is compromised, it won’t be possible for
an attacker to modify previously-completed transactions. The audit trail created
by this hash chain is as difficult to bypass as it is to find collision values for the
hash function. A similar hashing chain is used to build a digital timestamping
service in [HS91].

We include the hash of the previous hash, instead of the hash itself, to avoid
any chance of an attack based on an untrusted application providing this value
to the token.

Hash of most recently received message This field ensures that the se-
quence of messages in a protocol form a hash chain. This makes replay and “cut
and paste” attacks impractical, and makes every step in each protocol dependent
on every previous step. We include the hash of the previous hash, instead of the

4

hash itself, to avoid any chance of an attack based on an untrusted application
providing this value to the token.

Optional 64- or 128-bit data field This field can be included in the packet
to carry internally generated random values or timestamps, often with the guar-
antee that if the token’s tamper resistance hasn’t been defeated, these values
come directly from the token and not from the user.

Hash(message, a−−g) This is the hash of the rest of the signature packet
and the current message. Note that by including the hash of the other party’s
most recent message in the current message, we get every protocol message cryp-
tographically dependent upon every previous protocol message, in an auditable
chain that extends through every transaction performed by each token. This is
intended to make recovery from various kinds of attack as easy as possible and to
leave a very strong audit trail. As a side-effect, this chain of hashes frustrates in-
sertion and replay attacks in any protocol where the chained hashes are checked
and all messages in the protocol are signed.

Note that prepending (rather than appending) a–g would leave the hash
chains vulnerable to some message-extending attacks after a token’s private key
had been compromised.

2.1 Size of the Packet

The packet’s minimum size is determined by the size of the hash function’s
output and by whether or not the optional 64- or 128- bit data field is used.
For a 160-bit hash, the minimum packet size is 664 bits. For a 128-bit hash, the
packet size is 568 bits. For most practical implementations of digital signatures,
there is sufficient room for both the signature packet and additional redundant
information to frustrate cryptanalysis.

3 Protocol building blocks

There are three protocol building blocks (subprotocols) which, along with the
signature packet format, simplify the design of robust and secure protocols. We
assume that, while executing these protocols, no other signing operations are
performed with the token. In other words, the token must complete all the steps
of one protocol before starting another.

3.1 Interlock

The interlock subprotocol is intended to convince two tokens (referred to in this
section as Alice and Bob) that they are communicating with one another in real

5

time [DP89]. If all messages passed after the interlock subprotocol is performed
are signed using the specified signature packet formats, then attacks based on
insertion, alteration, or replay of messages should be impossible.

If CA is Alice’s certificate, and CB is Bob’s certificate, the interlock protocol
works as follows:

(1) Alice:
(a) Generates a random number, R0.
(b) Forms message M0 = (R0, CA).
(c) Sends to Bob M0, Sign(M0).

(2) Bob:
(d) Verifies CA.
(e) Verifies Sign(M0).
(f) Generates a random number, R1.
(g) Forms M1 = hash(M0), R1, CB .
(h) Sends to Alice M1, Sign(M1).

(3) Alice:
(i) Verifies CB .
(j) Verifies Sign(M1).
(k) Verifies hash(M0).
(l) Forms M2 = (hash(M1), F irstProtocolMessage).What is “FirstPro-

tocolMessage”? Is it
M0?

(m) Sends to Bob M2, Sign(M2).
(4) Bob:

(n) Verifies Sign(M2).
(o) Verifies hash(M1).

At the end of step (3), Alice has seen enough to verify that she is getting a
response by someone who knows Bob’s private key, as specified in CB , because
he has returned a signed message which includes a hash of her first (partially
random) message, and a key certificate. After step (4), Bob can verify that he’s
getting a response from someone who knows Alice’s private key, as specified
in CA, because he, too has gotten an appropriate response to his message. In
both cases, Alice and Bob each know that the other party received their entire
certificates intact. This may guard against some obscure attacks, such as where
Alice is talking to Bob legitimately but simultaneously Bob is pretending to be
Alice to a third party.

Note that verifying the certificates means verifying the signatures, the valid
dates (possibly the issued-date of the other party’s certificate against the issued-
date of the token’s own certificate), and possibly checking the certificates against
a list of known stolen or invalid key IDs or token IDs.

It’s important to note that while Alice the token knows whom she’s dealing
with (Bob, whose token ID and key ID are clearly noted inside CB), there isn’t
any cryptographic way to ensure that Alice’s human owner knows which Bob
she’s interacting with. (This is known as the “Chess Grandmaster’s Problem.”)
For applications in which this is a problem, it is a good idea to equip the token

6

with some kind of display, and to show some human-readable identification from
CB . This gives the owner of Alice the token an opportunity to end a transaction
in which she doesn’t want to be involved, or at least the knowledge that she has
been involved in this unwanted transaction.

3.2 Interlock With Privacy

The interlock subprotocol can easily be extended to support a secure key ex-
change and encrypted communications. The protocol is identical for substeps
(a) through (k).

(1) Alice:
(a) Generates a random number, R0.
(b) Forms message M0 = (R0, CA).
(c) Sends to Bob M0, Sign(M0).

(2) Bob:
(d) Verifies CA.
(e) Verifies Sign(M0).
(f) Generates a random number, R1.
(g) Forms M1 = hash(M0), R1, CB .
(h) Sends to Alice M1, Sign(M1).

(3) Alice:
(i) Verifies CB .
(j) Verifies Sign(M1).
(k) Verifies hash(M0).
(l) Generates a random number, R2.

(m) Forms KE = (PKEncrypt(R2, key = PKBob), PKEncrypt(R2, key =
PKAlice)).

(n) Forms M2 = (hash(M1),KE).
(o) Sends to Bob M2, Sign(M2).
(p) Forms session key KS = hash(R0, R1, R2).

(4) Bob:
(q) Verifies Sign(M2).
(r) Verifies hash(M1).
(s) Forms session key KS = hash(R0, R1, R2).

In all messages after this one, Alice and Bob sign the plaintext messages,
then encrypt them and their signature packets under a symmetric algorithm.
(The specific symmetric algorithm should be specified by the signature packet
version.) Note that KE is encrypted under both Bob and Alice’s public keys, so
that either token can reproduce the session key, and thus present the plaintext
that was originally signed for audit. In some systems, it may also be necessary
to encrypt R2 under an auditor’s public key.

7

3.3 Trusted Values from the Card

Some protocols benefit from having the card generate some internal, trusted
value, such as random numbers or timestamps. In this case, the purpose of the
interlock operation is going to be for Alice to get this trusted value from Bob.
The simplest way to do this is to go through the interlock process, with Alice’s
FirstProtocolMessage set to a request for a random number or a timestamp.
Bob’s response is an acknowledgement message, signed with a signature packet
which also includes a random value. Note that the signature packet version is
used to indicate that this packet’s random number or timestamp emerged from
the token. Some tokens may always include random numbers in their signatures.
(It’s important to note that this kind of token would be especially vulnerable to
attacks based on a subliminal channel in the random number stream; it would be
trivial for a tamper-resistant device to leak 64 bits of private key per signature.
This needs to be guarded against.) For applications which need these trusted
values to be private as well, we use the Interlock-with-Privacy subprotocol, and
the next message requests a random number or timestamped signature packet.
Note that after Interlock-with-Privacy, all further communications, including
signature packets, are encrypted.

4 Sample applications

In this section, we give several sample applications using this signature packet
and the above subprotocols. These applications aren’t meant as finished prod-
ucts, but instead as examples of the usefulness of this kind of construction.

4.1 The Digital Timestamping Proxy

Haber and Stornetta have designed some clever methods for timestamping digital
documents [HS91]. Some variations of their methods can be used by a tamper-
resistant token, to allow it to function as a proxy for a master digital timestamp
server. For example, the card may sit on an internal network, and be available for
users of the network to timestamp their documents. Perhaps once per week, the
card interacts with the master timestamp server, leaving the hash of its chain of
hashes with the server. So long as the hash function is secure, this chain of hashes
can’t be altered even if the tamper resistance of the card is defeated somehow.
In this protocol, additionally, Bob is assumed to have a tamper-resistant clock.
(The protocol can be done less elegantly without the clock.)

Alice, Bob, and Trent are the players in this protocol. Alice is a user’s card,
Bob is the timestamping service proxy, and Trent is the timestamping service.
(As discussed below, it turns out that Trent doesn’t need to be just one device;
it can be a network of cooperating devices.)

When Alice has a hash value to get timestamped, she interlocks with Bob,
and sends her hash value as her first protocol message. After Alice and Bob

8

have completed steps (1) through (4) in the interlock protocol, Bob performs
the following:

(p) Forms M3 = hash(M2).
(q) Sends to Alice M3, SignWithT imestamp(M3).

At this point, Alice has a verification of her hash, timestamped by Bob the
tamper-resistant card.

When Bob interacts with Trent, things work the same way. Bob fills the part
of Alice in the interlocking protocol, and Trent takes the part of Bob. Bob ends
up with a timestamped verification of his hash value, which is the hash of his
chain of hashes since his last interaction with Trent. Bob must also send his
chain of hashes to Trent, as his FirstProtocolMessage.

If someone steals Bob, the users can get together to recreate their interactions
with Bob and can (with Trent’s help) produce authentication of the order of their
timestamps since Bob’s last interaction with Trent. Of course, every interaction
before that has been saved by Trent, and can be authenticated with a consistent
hashing chain and with newspaper-published hashes.

If someone hacks into Bob, or there are other reliability problems with Bob,
we can use similar techniques to maintain the integrity of our timestamps. It
is important to note that for some applications, Alice would need to send an
entire file to Bob, so that she could not conveniently lose it later if it held some
incriminating information about her. Even if Trent is lost or subverted, we can
use all of the proxies to reproduce complete, internally-consistent hash chains. In
a real-world system, these hash chains would be backed up off-site on a regular
basis.

4.2 Auditable Applications

Many applications need a strong audit trail. In particular, security-relevant op-
erations should generally be logged, and it should be very difficult to delete or
alter the logs, and impossible to do so without being detected. The most obvi-
ous applications for this kind of thing are for key certification and key escrow
agencies; in both cases, it should be infeasible to perform some operation (certify
public keys, recover private or secret keys) without leaving an audit trail.

Any auditable application can be attacked in at least one simple way, which
cannot be prevented by cryptographic means. We will call this the “end-run”
attack. The end-run attack happens when a group of users gets together and sets
up their own separate system which isn’t audited. To the extent that most or all
of the resources controlled by an auditable application can be acquired outside
the system, this attack is effective. The obvious example of an end-run attack is a
key-escrow system whose escrowed keys are kept in a carefully-audited database
for police use, and in a “black” unaudited database for intelligence agency use.
In real-world systems, this attack needs to be guarded against, but we cannot

9

provide much protection from this at the cryptographic level. About the only
thing we can do is to ensure that all messages to and from the auditable appli-
cation are encrypted. This makes it significantly harder for a rogue organization
with some, but not all users cooperating with it to keep its black system in synch
with the legitimate system.

Another potential attack exists any time we leave authenticated logs with a
user who could be prosecuted for whatever information is on the logs. The user
may decide he’s better off to “accidentally” delete the logs, and perhaps wind
up in jail for it, than to certainly go to jail for the evidence that exists on the
logs. We will call this the “Watergate attack.” This can’t be guarded against by
cryptography, but it can be guarded against by good system design.

These are the players in this protocol: Alice is the auditor’s card, Bob is
the user’s card, Carol is the card that’s controlling the audited application. We
also have Mallory, the possibly malicious network owner. He can insert, delete,
change, replay, and observe messages between Carol and Alice and Bob. He
has a card that he’s hacked open, which may or may not be on Carol’s list of
acceptable Bob users.

Bob uses the application by interlocking with privacy with Carol, and then
by sending a request for some operation or information. If Bob is authorized to
do this operation (Carol must know Bob’s identity at the end of the interlock-
with-privacy protocol), Carol carries it out. In any case, the protocol messages
are kept in a log. Additionally, Carol encrypts the session key used under Alice’s
public key as well as its own in substep (m) of the protocol. Any response data
is sent back to Bob, encrypted.

Alice regularly interacts with Carol. First, they Interlock- with-Privacy, and
then Alice requests copies of all logs since her last interaction. Carol verifies
that Alice is authorized for this, and if she is, sends her the logs, encrypted
and signed. Alice can use this and her knowledge of the signature packet format
and Carol’s public key to verify all transactions that have occurred in the time
covered by the logs.

Bob the card may have his tamper-resistance defeated, but while this allows
Bob’s human owner to hand out his private key to his friends, it doesn’t keep him
from being audited. Even defeating Carol’s tamper-resistance and recovering her
private key doesn’t allow repudiation of old logs, only of future ones.

Mallory can prevent messages from getting into and out of Carol. He can
even alter her log. However, by doing this, he can’t frame anyone: any alterations
he makes are detected by Alice when she interlocks with Carol (and thus has
the correct ending chained hash), and notices that there is an inconsistency.
Mallory can destroy the logs, but only for the short period of time between
Alice’s interactions with Carol. In addition, if Mallory wants to reverse engineer
Carol, he has to somehow convincingly interact with Alice and all of the Bobs
out there while he’s doing it; otherwise everyone will know something is going
on.

10

4.3 The Guaranteed Checking Account

Many secure payment protocols have been published. Ours is relatively simple,
and intended to demonstrate the ease with which we can build good protocols
from these signature packets and starting protocols.

This system is meant to allow users to have a guaranteed checking account,
where identity is verified by both possession of a smart card and by a PIN,
and where sufficient funds to cover each “check” is guaranteed by the tamper-
resistant card. It is important to note that the account that these cards draw on
must be frozen while the cards are active; otherwise they can’t possibly know
how much money they are allowed to spend. This system protects its users’
privacy by encrypting transactions, no anonymity is supported. This is a design
feature: recovery from many kinds of problems involves the ability to trace a
given user’s transactions.

Any two tokens, Alice and Bob, can transfer money freely between them,
so that if Alice has $500 and Bob has $200, it’s possible for them to interact
to distribute that $700 in any way they choose. This works just like a checking
account. However, there should be no way for them to interact in such a way
that their total money after their transactions is more or less than $700. Hence,
they are allowed neither to overdraw, nor to burn money in their fireplace.

Three interesting things can happen in this system: Alice can transfer some
money to Bob, Alice can reconcile with Dave the banker, and Trent the auditor
and Dave the banker can try to recover from some attack.

Spending Alice and Bob are tokens. The purpose of this protocol is to allow
Alice to transfer some money to Bob. The first part of this is that Alice’s human
owner requests a transfer of $X to Bob. Alice verifies that her current internal
balance is more than $X. If not, she refuses to initiate the protocol. This is
not seen as an attack, it’s seen as a standard operating mode of the system,
protecting the user from an embarrassing miscalculation.

Assuming she has the money, things proceed as follows: First, Alice and Bob
interlock-with-privacy. For this application, the KE value in substep (m) of the
protocol includes the session key encrypted under the bank’s public key. Also
for this application, note that the certificates contain valid date and sequence
number ranges. Each token’s certificate has an issued-date. If the issued-dates
of the two tokens’ certificates are more than T days apart (the smaller T is, the
more often tokens must interact with the bank, but also the less time a hacked
token has to write bad checks), then the tokens refuse to accept the certificates
as valid, and the interlock-with-privacy protocol fails. This is used to limit the
total amount of time that a rogue card (one which has been reverse-engineered)
can possibly write bad checks.

Next, Alice sends Bob an encrypted and signed “check” which says something
like “Alice’s account number transfers $X to Bob’s account number.” To prevent
attacks based on spoofed account numbers, their account numbers are the hashes

11

of their public keys. These have been exchanged with the certificates in the
interlock-with-privacy protocol, as described above. At this point, the protocol
ends with an acknowledgement message from Bob. If Alice doesn’t receive the
acknowledgement message, she flags it as an error condition and assumes that
the money has been transferred to Bob. This should be relatively rare, but it
needs to be defined to prevent some classes of attacks. Bob knows whether he’s
got the money, because he can assume he has money as soon as he has received
Alice’s signed check. Now, Bob and Alice each adjust their internal balances,
and go on about their business.

Note that if Alice the token has been reverse-engineered or hacked, she can
write bad checks to Bob. The bank has guaranteed these, and we can’t assume
that the authorities most places will be terribly helpful, so the bank has to have
some faith that tamper-resistance is hard to defeat, so that this occurs only very
rarely, and also that it can recover quickly from these rare events, and freeze the
hacked token before its owners can make much of a profit. (Losing $100,000 or
more on their attempted scam is more likely to deter them from trying again
than having the police after them.)

Reconciling with the Bank Alice is a user’s token and Dave is a bank’s
token. The purpose of reconciliation is for Alice to send her accumulated logs
of transactions to Dave, and then for Dave to send her a new certificate, and a
new list of invalid keys or certificates. This list should be fairly short, since the
certificates themselves are pretty short-lived.

The T parameter defines how often each user must reconcile with the bank,
because the bank issues certificates. If T is set to 20 days, then each account
owner must reconcile with the bank every 20 days, or their token can’t operate
with anyone. If T is set to 5 days, then we wind up with only a very short
window for a user with a hacked token and write bad checks, before his token
is permanently frozen. Similarly, if Alice complains to the bank that she was
mugged by some guy who’d just watched her punch in her PIN to buy something,
they won’t re-issue a valid certificate to the token, so the robber only has a few
days of spending left.

There may even be discounts for high-volume users to operate with a lower
T , perhaps reconciling once per day. Additionally, all tokens that reconcile after
the robbery is reported or the bounced checks are noticed have this token ID
and key ID on their reject list, so it should quickly become difficult for a robber
to use his stolen token, or for the user of a hacked token to write bad checks.
Reconciliation should be possible by telephone so long as the token’s certificate
hasn’t lapsed. If it has lapsed, then the token should need to be brought into
a branch office of the bank. This gives us some chance of noticing physically
hacked tokens, and also leaves us with pictures of some of the people involved
on our security cameras.

The reconciliation protocol works as follows: First, Alice and Dave interlock-
with-privacy. Next, Alice sends Dave her entire transaction log since her last

12

reconciliation, encrypted and signed. Dave verifies that her transactions don’t
disagree with other information available to him, and that all the logs are in-
ternally consistent. Alice may also request some additional transactions, such as
moving money into or out of this account. Dave either performs these, refuses, or
forwards them to some other party which can decide whether to perform them.
Dave sends Alice her new current balance and her new certificate in the same
message, and Alice verifies it, and sends Dave a receipt. Dave signs it and sends
it back to Alice. If she doesn’t get this receipt, she must call back and interact
with Dave again to deal with this. If Alice has had some transactions end with-
out proper receipts, she notes this in her transaction logs, and Dave reconciles
this as well as possible: If he hasn’t yet heard from the other parties in that,
he leaves her balance as she has calculated it, but notes that if the transaction
doesn’t show up in those parties’ logs, Alice should get the money back.

As soon as Dave learns of overdrawn checks or stolen or lost tokens, he adds
the token’s certificate (with its key and token ID) to the bad certificate list, and
refuses to issue that token another certificate until problems have been resolved.
This should require intervention from another token, Trent.

Audit Dave routinely interacts with Trent, the auditor and timestamp service,
at least once per day. He Interlocks-with-Privacy and sends encrypted, signed
logs and running hash chains that have come in since the last interaction, and
gets back a timestamped receipt. These, along with the chained hashes available
in Dave’s logs, protect the logs from someone defeating Dave’s tamper resistance
and changing previous logs. In addition, Dave needs to be under good physical
security, including continuous surveillance camera coverage.

If a problem arises, things have to be handled by humans using legal and
accounting, rather than cryptographic, methods. However, it should be possible
to verify that the logs are correct up to some point.

Trent also is able to (traceably) re-authorize frozen key and token IDs. Dave
will take no other source for these orders. Trent may well be several tokens that
must act together to authorize this.

4.4 Distributed Secure Applications

All of the schemes above can be implemented with the “overseer” role (Trent
the timestamping service, Alice the auditor, Trent the auditor) performed by a
network of cards interacting. We will outline this using the timestamping service
as an example.

Instead of having one Trent, we have some large number of time- stamp-
ing proxies. Each is implemented in tamper-resistant hardware, with a tamper-
resistant clock. Instead of publishing hashes, the network of proxies continuously
interacts. It’s fairly easy to draw a network in which each proxy connects to four
others: every so often, proxy A backs up its logs with an interaction with proxy
B, getting a timestamp from B in the process. This kind of design can make it

13

arbitrarily difficult to spoof a digital timestamp. Similar designs can work for
key certification or key escrow, audited applications, payment protocols, etc.

5 Further Work

Other audit fields could be embedded into the signature packet, which may be
useful in some applications: the identity of the signer (in the case where multiple
signers share the same token), the identity of the application producing the
signature, and the intended recipient of the signature. These fields are different
than the ones described above in that they must be explicitly told to the token
by the user or application, and hence can be forged.

6 Conclusions

We have presented a signature packet format which automatically includes the
key ID, token ID, a sequence number, and the current value in a running hash
chain. It is hoped that this format can be used to develop token-based protocols
which are more robust than was previously possible. Additionally, we feel that
these techniques could be useful design principles for software implementations
for abstract protocols.

7 Acknowledgments

The authors would like to thank Paul Kocher and David Wagner for their helpful
comments, and the National Semiconductor iPower Business Unit for helping
fund this research.

References

[And92] R. Anderson, “UEPS — A Second Generation Electronic Wallet,” Com-
puter Security — ESORICS ’92, Springer-Verlag, 1992, pp. 411-418.

[And93] R. Anderson, “Why Cryptosystems Fail,” Communications of the ACM,
v. 37, n. 11, Nov 1994, pp. 32-40.

[And94] R. Anderson, “Liability and Computer Security: Nine Principles,” Com-
puter Security — ESORICS ’94, Springer-Verlag, 1994, pp. 231-245.

[And95] R. Anderson, “Robustness Principles for Public Key Protocols,” Advances
in Cryptology — CRYPTO ’95, Springer-Verlag, 1995, pp. 236-247.

[DP89] D.W. Davies and W.L. Price, Security for Computer Networks, Second
Edition, John Wiley & Sons, 1989.

[HS91] S. Haber and W.S. Stornetta, “How to Time-Stamp a Digital Document,”
Journal of Cryptology, v. 3, n.2, 1991, pp. 99-112.

[NR96] K. Nyberg and R. Rueppel, “Message Recovery for Signature Schemes
Based on the Discrete Logarithm Problem,” Advances in Cryptology —
EUROCRYPT ’94, Springer-Verlag, 1995, pp. 182-193.

14

[QG95] J.-J. Quisquater and L. Guillou, “DSS and RSA,”presented at the rump
session of Eurocrypt 1995.

[RSA93] RSA Laboratories, “Public Key Cryptography Standards #1: RSA En-
cryption Standard,” version 1.5, 1 November 1993.

[Sch96] B. Schneier, Applied Cryptography, 2nd Edition, John Wiley & Sons,
1996.

[Sim84] G.J. Simmons, “The Prisoner’s Problem and the Subliminal Channel,”
Advances in Cryptology: Proceedings of CRYPTO ’83, Plenum Press,
1984, pp. 51-67.

[Swe95] W.B. Sweet, “Commercial Automated Key Escrow (CAKE): An Ex-
portable Strong Encryption Proposal, Version 2.0,” National Semicon-
ductor iPower Business Unit, 4 June 1995.

15

