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AN APPLICATION OF THE EFRON-STEIN INEQUALITY IN
DENSITY ESTIMATION 1

BY Luc DEVROYE
McGill University

The Efron-Stein inequality is applied to prove that the kernel density
estimate f,, with an arbitrary nonnegative kernel and an arbitrary smoothing
factor, satisfies the inequality var(f Ifn - I l) < 4/n for all densities f. Similar
inequalities are obtained for other estimates.

The main result . Let X1 , . . ., Xn , Xn+1 be iid random vectors and let
S(x 1 , . . . , x,) be a symmetric function of its arguments . Define

Sz = S(X1, . . ., Xi-1 ,

	

Xn+1),

and S = ( n + 1) -1~n+1ST . The Efron-Stein inequality [Efron and Stein (1981)]
states that

n+1

	

_

Var S(X1, . . .,Xn)l < E((_)2S'
i= 1
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i=1, . . .,n+1,

The inequality originates from studies of the jackknife estimate of variance .
Several interesting proofs [see, e.g ., Vitale (1984)] and applications [see, e.g.,
Steele (1981, 1982)] highlight the depth and usefulness of the Efron-Stein
inequality. The purpose of this short note is to point out an application in
density estimation .

We consider in particular a density estimate fn of a density f on Rd with the
following properties.

A. fn is a symmetric function of the data X1 , . . ., X, .
B. fn is absolutely integrable .
C. f ~fni - fn;) < 8 for all 1- i, j - n + 1, where fn ~ is the density estimate

based upon X1, . . ., Xn + 1, with Xi deleted.

Most well-known density estimates satisfy properties A-C. It is well known
that symmetric functions of the data make the best density estimates [Wertz
(1976); Devroye and Gyorfi (1985), page 283], so that A is not restrictive . The
kernel and histogram estimates satisfy A and B. The constant 8 in condition C
can always be taken equal to 2 when fn is a density itself. Unfortunately, the
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results presented below are only useful when S is small and decreasing in n •
Consider for example the kernel estimate

1 n
fn(X) - An i=1

where K is a given absolutely integrable function (the kernel) fK =1, Kh(x) _
(1/hd)K(x/h), and the smoothing factor h is a positive number [Parzen (1962),
Rosenblatt (1956)] • It is clear that if h is not a function of the data,

~

	

2fIKl
fitni

- fnj) <
- (fIKh(x - Xi ) Idx -}- IKh(x - Xj ) I

	

_n

	

n
Similarly, for a histogram estimate based upon a partition of the space that is
independent of the data,

2
fIfni-fnjI < n

The main result is

THEOREM 1, Let fn be a density estimate satisfying A-C for some constant
8 > 0, Then

var Ifn- fI

	

ns2 ,

It is interesting to observe that this inequality is valid for all densities f, and
that it has virtually no relationship with the consistency of the density estimate
or the closeness of fn to f . It merely states that for estimates on which deletions
of one data point have little impact (i.e., estimates with small 8), f fn - f l can-
not oscillate wildly.

For symmetric density estimates, we have

var Ifn - fI < nE 2I
f

	

,nl

	

fn2I

This inequality is obtained very easily by generalizing the proof of Theorem 1 .

THEOREM 2 . For the kernel estimate with kernel K, we have

var Ifn - fI <
4f2IKI

n
For the histogram estimate and for the kernel estimate with nonnegative kernel,
we have

4
var Ifn - f I < - .

n

Relative stability of the kernel estimate . Chebyshev's inequality implies
that an estimate fn is relatively stable, i,e •,
	 flfn-

f)
1 1n probability

E(Iltn -fU
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when war( j I fn - I l) = o(E(j I fn - f I ) . Let us recall that for the kernel estimate
with data-independent h, E( j I fn - f I ) > 1/ V528n [Devroye (1986b)]. Thus, a
kernel estimate is relatively stable at a density f when

lim VE Ifn - fI = o0

It is well known that this is the case for most combinations of K and h. In
particular, relative stability follows for any f and any sequence h when K > 0
[in view of a universal lower bound of the order of n -

215 obtained by Devroye
and Penrod (1984)]. Relative stability also follows for all f and K when h -> 0
[in view of a result found on page 136 of Devroye and Gyorfi (1985)]. But there
are combinations of K, f and h for which E(j) fn - f I) = 0(1/ so that we
cannot make the statement as general as we would like it to be. An example of
this includes a density with bounded spectrum, combined with a kernel whose
characteristic function is one in an open neighborhood of the origin, and a small
enough constant smoothing factor h.

Strong relative stability was studied by Devroye (1986a) . He also obtained
distribution-free exponential bounds for the deviation Jn - E (J), ), where Jn =
j Ifn - f I and fn is the kernel estimate. For example,

P()Jn - E(Jn)) ? ~) _< exp(- c nE2 )

for some constant c depending upon K only, and for all a smaller than a given
constant. This result is stronger than Theorem 2 in the sense that a
distribution-free 0(1/n) bound for var(Jn ) can be obtained from it. Unfor-
tunately, the constant is worse than in Theorem 2 ; the proof is much more
involved ; and some restrictions have to be placed on K (K needs to be bounded,
and of compact support). We can obtain a quadratic bound

4f2IKI
P()Jn - E(Jn)I ~ ~) <	2

by Chebyshev's inequality. In contrast, the exponential inequality is better for
large values of ne e. It is more useful for some kinds of confidence intervals and
for studies of strong convergence .

Confidence intervals for estimating the Ll error . In a simulation study,
we may wish to estimate E(J) = E(j) fn - f I), where both f and fn are known .
This is a common problem in the testing stage of density estimators . If we
estimate the quantity by j I fn - f I , i.e., without averaging over any runs, we
nevertheless see that

P
Jn

E(J) - 1

flE2E 2(eJn )

var(Jn)

E 2E 2( Jn) ~

which, in the case of a kernel estimate with K > 0, or a histogram estimate, is
further bounded by

4
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Since E(J) > (0.86 + o(1))n - 2/ 5, we see that the bound is O(n -1/5) for all f

and for constant e . The fact that all the constants are explicitly known makes
bounds of this type very useful in practice .

Needless to say, the performance of the estimate can be improved by averag-
ing over more than one run . Also, j fn - f is sometimes difficult to compute
accurately, especially when f has infinite tails or infinite peaks . In those cases,
one could use Monte Carlo methods based upon an independent sample drawn
from f .

PROOF OF THEOREM 1 . By the Efron-Stein inequality

var(fifn - ti)
n+1

(j(• n+1)E n+1 ~ lfnl-f~- fit-njfI)

(by the symmetry in the problem)
1 n+1

	

2
•

	

(n+l)E
I fnl - fnj)n + 1 j= 1

(by the triangle inequality)
n8 2

•

	

(n + 1 + 1 (by assumption)

•

	

nS 2 . o
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