
DefinitionandApplication of Metaclasses
�

MohamedDahchour Alain Pirotte EstebanZimányi †

Abstract

Metaclassesareclasseswhoseinstancesarethemselves classes.Meta-
classesare generally usedto defineand query information relevant to the
classlevel. The paperfirst analyzesthe more generalterm metaandgives
someexamples of its usein various application domains. Then,it focuses
on the description of metaclasses.To help betterunderstandmetaclasses,
the papersuggestsa setof criteria accounting for the variety of metaclass
definitionsexisting in the literature. Thepaper finally presents theusageof
metaclassesanddiscussessomequestions raisedaboutthem.

1 Intr oduction

Commonobject models(and languages and databasesystems based on them)
modelreal-world applicationsasacollection of objectsandclasses.Objectsmodel
real-world entitieswhile classesrepresentsetsof similarobjects.A classdescribes
structural (attributes) andbehavioral (methods) properties of their instances.The
attribute valuesrepresentthe object’s status. This status is accessedor modified
by sending messagesto theobjectsto invoke thecorresponding methods. In such
models, thereareonly two abstractionlevels: classlevel composedof classesthat
maybeorganizedinto hierarchiesalonginheritance(i.e., isA) mechanism,andin-
stancelevel composed of individual objectsthatareinstancesof theclassesin the
class level.

�
In H.C.Mayr, J.Lazansky, G. Quirchmayr, andP. Vogel, editors,Proc.of the12thInt. Conf. on

DatabaseandExpertSystemsApplications,DEXA’01, LNCS2113, pages32-41,Munich,Germany,
2001. Springer-Verlag

†MohamedDahchour and Alain Pirotte are with the Universit́e catholiquede Louvain, IAG
Schoolof Management,InformationSystemsUnit, 1 PlacedesDoyens,B-1348Louvain-la-Neuve,
Belgium,e-mail:dahchour@isys.ucl.ac.be,pirotte@info.ucl.ac.be.EstebanZimányi iswith theUni-
versit́eLibre deBruxelles,Facultyof Engineering,CP165/15,50Av. F. Roosevelt,B-1050Brussels,
Belgium,e-mail: ezimanyi@ulb.ac.be

1

However, beyondtheneed for manipulating individualobjects,thereis alsothe
needto deal with classesthemselvesregardlessof their instances.For example,it
should be possible to querya class about its name,list of its attributesandmeth-
ods, list of its ancestors anddescendents, etc. To be ableto do this, someobject
models (e.g.,Smalltalk [11], ConceptBase[16], CLOS [18]) allow to treatclasses
themselvesasobjects that areinstancesof the so-called metaclasses. With meta-
classes,theuser is able to express thestructureandbehavior of classes,in sucha
way thatmessagescanbesentto classesin thesameway thatmessagesaresentto
individualobjectsin usualobject models.Systemssupportingmetaclassesallow to
organizedatainto anarchitectureof several abstractionlevels.Eachlevel describes
andcontrols thelower one.

Existing work (e.g.,[11, 16, 18, 19,26, 10, 21]) only dealwith particular defi-
nitionsof metaclassesrelatedto specific systems.Thiswork dealswith metaclasses
in general. More precisely, theobjectivesof thepaper are:

� clarify theconceptof metaclassesoften confusedwith ordinary classes;

� defineasetof criteriacharacterizing a largevariety of metaclassdefinitions;

� present someuses of metaclasses;

� discuss someproblemsaboutmetaclassesraisedin theliterature.

The rest of the paper is organizedas foll ows. Section2 analyzesthe more
generaltermmetaandgivessomeexamplesof its usebeyond theobjectorientation.
Section 3 definesthe concept of metaclasses.Section4 presentsa setof criteria
accounting for thevariety of metaclassdefinitionsfound in theliterature.Section5
describes the mechanism of method invocation related to metaclasses.Section6
presentstheusageof metaclassesandSection7 analyzessomeof their drawbacks.
Section 8 summarizes andconcludesthepaper.

2 Meta Concepts

The word metacomesfrom Greek. According to [29], metameans“occurring
later thanor in successionto; situatedbehind or beyond; morehighly organized;
changeandtransformation; morecomprehensive”. Metais usually used asaprefix
of another word. In the scientific vocabulary, metaexpressesthe ideaof change
(e.g.,metamorphosis,metabolism)while in thephilosophical vocabulary, metaex-
pressesan ideaof a higher level of generality andabstractness(e.g.,metaphysics,
metalanguage). In thecomputing field metahasthelatter senseandit is explicitly
definedasbeinga “prefix meaningonelevel of description higher. If X is some

2

concept thenmeta-Xis dataabout, or processesoperating on, X” [15]. Hereare
someexamples of useof metain computing:

� Metaheuristic. It is anheuristic about heuristics. In gametheory andexpert
systems,metaheuristics areused to give advice about when,how, andwhy
to combine or favor oneheuristic over another.

� Metarule. It is a rule that describeshow ordinary rules should be usedor
modified.More generally, it is a rule about rules. Thefollowing is anexam-
ple of metarule:

“If therule basecontainstwo rules R1 andR2 suchthat:
R1

� A
�

B � C
R2

� A
�

not B � C
thenthe expressionB is not necessaryin the two rules; we can
replace thetwo rulesby R3 suchthatR3

� A � C”

Metarules canbe usedduring problem solving to select anappropriate rule
whenconflicts occur within a setof applicablerules.

Meta-heuristics andmeta-rulesareknown in knowledge-basedsystemsun-
dera moregeneric term,metaknowledge.

� Metaknowledge. It is the knowledge that a system hasabout how it rea-
sons,operates,or usesdomain knowledge.An exampleof metaknowledge
is shown below.

“If morethanonerule applies to the situation at hand, thenuse
rulessupplied by experts before rules supplied by novices”

� Metalanguage. It is a language which describes syntax and semantics
of a given language. For instance, in a metalanguage for C++, the
(meta)instruction � variable � “=” � expression � “;” describes assignment state-
mentin C++,of which “x=3;” is aninstance.

� Metadata. In databases,metadata meansdataabout dataandrefer to things
suchasa datadictionary, a repository, or otherdescriptions of the contents
andstructureof a datasource[22].

� Metamodel. It is a modelrepresentinga model.Metamodels aim at clarify-
ing the semantics of the modeling constructsusedin a modeling language.
For instancea metamodel for OML relationships is proposedin [14]. Fig-
ure1 shows a metamodel for thewell-knownERmodel.

3

Role
(1,1)

Relationship
(1,1)

Cardinality

(1,1)

(1,n)
has

has

Entity Type

(1,n)

Attribute

(1,1)

Identifier

has

(1,n)
plays

composed-of

(1,n) (0,1)

(1,n)

(1,1)

has

(2,n)

Figure1: Metamodel of theERmodel.

The basic conceptsof the ER model are the foll owing: entity types, rela-
tionships associating entity types, roles playedby participating entity types,
attributescharacterizing entity typesor relationshipsthemselves,identifica-
tion structuresidentifying in auniquemanner theentity types, andcardinal-
ities relatedto theroles. Eachof theseconceptappearsasa metatype in the
metamodelshownin Figure1.

3 The MetaclassConcept

In a system with metaclasses,a class canalsobe seenasan object. Two-faceted
constructsmake thatdouble role explicit. Eachtwo-facetedconstruct is acompos-
ite structurecomprisinganobject, called theobject facet, andanassociatedclass,
called theclass facet. To underline their double role, we draw a two-facetedcon-
struct asanobject box adjacentto a classbox. Like classes,class facets aredrawn
asrectangularboxeswhile objects(and object facets) appear asrectangularboxes
with roundedcornersasin Figure2.

MC is a metaclasswith attribute A andmethod M1(..). Object I MC is an in-
stance of MC, with a0 asvaluefor attribute A. I MC is the object facetof a two-
faceted construct with C asclassfacet. A is an instanceattribute of MC (i.e., it
receivesa value for eachinstanceof MC) anda classattributeof C (i.e., its value
is the samefor all instancesof C). For instancesI1 C and I2 C of C, attribute A
is either inapplicable (e.g.,an aggregatevalueon all instances) or constant, i.e.,
an instanceattributewith thesamevalue for all instances.In addition to theclass
attributeA, C definesattributeB andmethodM2(..). Thefigureshowsthatmethods
like M1(..) can be invoked on instancesof MC (e.g., I MC), while methods like
M2(..) canbeinvokedon instancesof C (e.g.,I1 C andI2 C).

Notethatthetwo-facetedconstructabove is useful only to illustratethedouble
facet of a classthat is alsoan objectof a metaclass. Otherwise,in practice, both

4

A = a0

I2_C

Attr BA = a0

B = b0 B = b1

MC

...

Meth M2(..)

M2(..)M2(..)

M1(..)

: is-of

: method invocation

a two-faceted construct

Instance level

Class level

C

Metaclass level

I1_C

I_MC

Attr A
Meth M1(..)

Figure2: Class/metaclass correspondence.

the object facetI MC andits associatedclassfacet C (seeFigure2) arethe same
thing, say, I MC C definedasshown in Figure3.

Metaclass MC
Attributes

A:AType

Methods
M1(..)

End

Class I MC C instanceOf MC
Values

A=a0

Attributes
B:BType

Methods
M2(..)

End

Figure3: Definition of class I MC C asaninstanceof metaclassMC.

Systemswith metaclassescomprise at leastthreelevels: token(uninstantiable
object), class,andmetaclass,asshown in Figure4. Additional levels, like Meta-
class in Figure4, canbeprovidedasroot for thecommonstructureandbehavior of
all metaclasses. Thenumber of levels of suchhierarchies varies from onesystem
to another.

4 Various MetaclassDefinitions

Substantial differencesappear in theliteratureabouttheconcept of metaclass.We
suggestthefollowing criteria to account for thevariety of definitions.

� Explicitness: the ability for programmersto explicitly declare a metaclass
like they do for ordinary classes.Explicit metaclassesaresupportedby sev-
eralsemantic models(e.g.,TAXIS [23], SHM [2]), objectmodelsandsys-

5

Class level

Metaclass level

Meta2class level
 Metaclass

 Entity

 Person

Token level John

: is-of link

Figure4: Levelsof systemswith a metaclassconcept.

tems(e.g.,VODAK [19], ADAM [26], OSCAR [10], ConceptBase [16]),
knowledge representation languages (e.g., LOOPS [1], KEE [9], PRO-
TEUS [28], SHOOD [25], Telos[24]), andprogramminglanguages(e.g.,
CLASSTALK [21], CLOS[18]). Onthecontrary, Smalltalk[11] andGem-
stone[3], for example, only support implicit system-managed metaclasses.
Of course, explicit metaclassesare more flexible [21]. They can, for ex-
ample,be specializedinto othermetaclassesin the sameway that ordinary
classes can.

� Uniformity: the ability to treat an instanceof a metaclasslike an instance
of an application class. More generally, for a system supporting instantia-
tion treesof arbitrary depth, uniformity meansthatanobject at level i (i � 2),
instanceof a (meta)classat level i+1, canbeviewedandtreated like anob-
ject at level i-1, instanceof a (meta)classat level i. Thus, for example, in
Figure4, to create theEntity metaclass,messagenew is sentto Metaclass; to
createthePerson class, themessagenew is sentto theEntity metaclass;and,
again,to createtheterminalobject John, messagenew is sentto thePerson
class.While mostmetaclass systemssupport uniformity, Smalltalk-80 and
Loops,for example, do not.

� Depth of instantiation: the number of levels for the hierarchy of classes
andmetaclasses.While, for example, Smalltalk hasa limited depthin its
hierarchy of metaclasses,VODAK andCLOS allow for anarbitrary depth.

� Cir cularit y: theability to usemetaclassesin asystemfor auniformdescrip-
tion of the system itself. To ensure finitenessof the depthof instantiation
tree,somemetaclass concepts have to be instancesof themselves. CLOS
andConceptBase,for example,offer thatability. Smalltalkdoes not.

� Shareability: the ability for more than one classto share the sameuser-
definedmetaclass. Most systemssupporting explicit metaclassesprovide
shareability.

6

� Applicabili ty: whethermetaclassescandescribe classes only (the general
case)or other conceptsalso. For example, TAXIS extends the use of
metaclassesto proceduresandexceptions,while ConceptBaseusesattribute
metaclassesto representthecommonpropertiesof a collectionof attributes.

� Expressiveness: the expressive power madeavailable by metaclasses. In
mostsystems,metaclassesrepresentthe structure andbehavior of their in-
stancesonly asshown in Figure2. In somesystemslike VODAK [19], meta-
classes areableto describeboth their direct instances(that areclasses)and
instancesof thoseclasses.Themetaformulasof TelosandConceptBasecan
alsospecify thebehavior of theinstancesof ametaclassandof theinstances
of its instances.

� Multiple classification: the ability for an object (resp., class) to be an in-
stanceof several classes (resp., metaclasses)not related, directly or indi-
rectly, by the generalization link. At our knowledge,only TelosandCon-
ceptBasesupport this facility.

Note that this list of characteristics hasbeenidentified by carefully analyzing
a largesetof systemssupporting metaclasses.Wecannot,however, claim their ex-
haustiveness. Thelist remainsopen to othercharacteristicsthat couldbeidentified
by exploring other systems. Notealsothatthesecriteria areveryuseful in thatthey
muchhelpdesignersto select themoresuitablesystem(with metaclasses)to define
their specificneeds.

5 Method Invocation

In systemswith metaclasses, messagescanbesentto classesin thesameway that
messagesaresent to individualobjects in usual object models. To avoid ambiguity,
we show below how messagesare invoked at eachlevel of abstraction andhow
objects are created. Henceforth, the term object will denote tokens, classes,or
metaclasses.Two rulesspecify themethod-invocation mechanism1.

Rule1. Whenmessage Msg is sentto object o, method Meth which responds
to Msg mustbeavailable(directly or indirectly by inheritance) in theclassof o.

Rule2. An objecto is createdby sending a message,saynew(), to theclassof
o. Consequently, according to Rule1, new() mustbe availablein the classof o’s
class.

1Theserulesassumethatthetargetobjectsystemrepresentsobjectbehavior with methods. Sys-
temslike ConceptBasethat representobjectbehavior usingconstraintsanddeductive rulesarenot
concernedwith message-passingrules.

7

Thefollowing messagesillustratethetwo rulesabove. They manipulateobjects
of Figure4.

� John 	 increaseSalary($1000). In this message, increaseSalary is sent to
objectJohn to increasethevalueof salary by $1000. MethodincreaseSalary
is assumed to beavailable in theclassof John, i.e.,Person.

� John := Person 	 new(). In this message, new is sent to object Person in
orderto create object John asan instanceof Person. According to Rule1,
methodnew mustbeavailablein theclass of Person, i.e.,Entity.

Most object systemsprovide for built-in primitivesandappropriate syntax to
defineclasses(e.g.,Person), their attributes(e.g.,salary), andmethods(e.g., in-
creaseSalary). However, to illustratehow metaclassesaffectclasses,justasclasses
affect tokens, we showin the foll owing how messagescanbe sent to the Entity
metaclassto build classes andtheir features.

� Person := Entity 	 new(). In this message, Person is created asan instance
of Entity. Onceagain,this assumesthat methodnew is available in Entity’s
class,i.e.,Metaclass.

� Entity 	 addAttributes(Person,
 [attrName:name, attrDomain: String]; [attr-
Name:salary, attrDomain: Real] �). This messageaddsattributesname and
salary to thenewly createdobject Person. Similarly, a messagecanbesent
to object Entity to adda new methodto object Person.

6 Usageof Metaclasses

Various reasonswarrantametaclassmechanismin amodelor asystem. Typically,
metaclassesextend the system kernel, blurring the boundary between usersand
implementors.Explicit metaclassescanspecify knowledgeto:

� Represent group information, thatconcernsa setof objectsasa whole. For
example,the average ageof employeesis naturally attached to an Employ-
eeClass metalevel.

� Represent classproperties unrelatedto the semantics of instances,like the
fact that a class is concreteor abstract2, hasa singleor multiple instances,
hasa singlesuperclass or multiple superclasses.

2Here,an abstractclass,in the usualsenseof objectmodels,is an incompletelydefinedclass
without directinstances,whosecompletedefinitionis deferredto subclasses.

8

� Customizethecreation andtheinitialization of new instancesof aclass. The
messagenew which is sentto aclassto createnew instancescanincorporate
additionalargumentsto initialize theinstancevariablesof thenewly created
instance. Furthermore,eachclasscanhave its own overloadednew method
for creating andinitializing instances.

� Enhancetheextensibility andtheflexibil ity of models,andthusallow easy
customization. For example,the semantics of generic relationships canbe
definedonceandfor all in a structureof metaclassesthatprovidesfor defin-
ing andquerying the relationships at the class level, creating anddeleting
instancesof participating classes,andsoon (seee.g.,[13, 19, 5, 7, 20, 6]).

� Extendthe basic object model to support new categories of objects (e.g.,
remoteobjectsor persistentobjects)andnew needssuchastheauthorization
mechanism.Thiskind of extension requirestheability to modify somebasic
behavioral aspects of thesystem(objectcreation, messagepassing), andhas
oftenbeenfacedby allowing theseaspects to bemanipulatedin a metaclass
level.

� Defineanexisting formalism or adevelopmentmethodwithin asystemsup-
porting metaclasses. This definition roughly consists in representing the
modeling constructs involved in that formalism or method(i.e., its ontol-
ogy) with asetof metaclassesof thetargetsystem. For example,Fusion[4],
anobject developmentmethod, waspartially integratedin ConceptBase[12]
usingmetaclasses.

� Integrate heterogeneousmodeling languageswithin thesamesound formal-
ism. For example, a framework combining several formalisms for the re-
quirement engineering of discretemanufacturing systemswasdefinedalong
thelines of ConceptBasein [27]. Thecombinedformalismsare:CIMOSA
(for the purposeof eliciting requirements), i� (for the purposeof enterprise
modeling), andthe Albert II language(for thepurposeof modeling system
requirements).

7 Problemswith Metaclasses

Someauthors(e.g.,[17]) havepointedoutsomeproblemswith metaclasses.These
problemshave beenanalyzedin part in [8]. Wesummarize themainissues.

� Metaclassesmakethesystemmoredifficult to understand. Weagreewith [8]
that,onceprogrammersarefamiliarwith metaclasses,having asinglemech-

9

anismfor bothdataandmetadatahelpsthemprogressfrom object design to
objectsystemdesign.

� By themselves,metaclassesdo not provide mechanisms to handle all the
run-timeconsequencesof extending the data model. This is true for most
systems.However, somesystemslike ADAM [8] andConceptBaseintro-
ducethe notion of active rules to enforce someconstraints in order to keep
thedatabasein a consistentstate.

� Metaclassesdo not facilitate low-level extensions. For mostsystemsthis is
truesincemetaclassesdescribe themodelor classlevel, abovethestructures
thatspecify storagemanagement,concurrency, andaccesscontrol. Thus,in
suchsystems, metaclassesdonot let applicationsdefinepoliciesatall levels.
However, this is not a general rule. In fact, systemssuchasConceptBase
andVODAK provide for a mechanism of metaclassthat allowsto describe
boththeclassandinstancelevel in a coordinatedmanner.

� With metaclasses,programmers mustcopewith threelevelsof objects: in-
stances, classes,and metaclasses. We agree that it canbe difficult at the
beginning to play with thethree levels.

After presenting theseproblems,the authors conclude that the metaclassap-
proachis not satisfactory. We agreewith [8] that this conclusion maybebevalid
when talking aboutprogramminglanguages, but we believe that explicit meta-
classesareapowerful mechanismfor enhancingdatabaseextensibility , uniformity,
andaccessibility by addressingtheseissuesat theclass level (seee.g.,[6]).

8 Conclusion

Metaclassesdefinethe structure andbehavior of classobjects, just asclassesde-
fine thestructureandbehavior of instanceobjects. In systemswith metaclasses,a
class canalsobe seenasan object. We usedthe two-facetedconstructs to make
that double role explicit. Substantial differencesappear in the literatureabout the
conceptof metaclass. We suggesteda setof criteria to account for the variety of
definitions,namely, uniformity, depth of instantiation, circularity, shareability, ap-
plicability, andexpressiveness. We thenpresentedthe method-invocation mecha-
nismbetweenobjectsatvariouslevelsof abstraction. Wealsopresentedsomeuses
of metaclassesandanalyzedsomeof their drawbacks pointedout in theliterature.

10

References

[1] D.G.Bobrow andM.J.Stefik. TheLOOPSManual. Xerox Corp.,1983.

[2] M.L. BrodieandD. Ridjanovic. On thedesign andspecificationof database
transactions. In M. L. Brodie,J.Mylopoulos,andJ.W. Schmidt,editors,On
Conceptual Modelling. Springer-Verlag, 1984.

[3] P. Butterworth, A. Ottis, andJ.Stein. TheGemstoneDatabaseManagement
System.Communicationsof theACM, 34(10):64–77,1991.

[4] D. Coleman,P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, and
P. Jeremaes. Object-Oriented Development: TheFusionMethod. Prentice
Hall, 1994.

[5] M. Dahchour. Formalizing materialization using a metaclassapproach. In
B. PerniciandC. Thanos, editors, Proc. of the 10th Int. Conf. on Advanced
Information SystemsEngineering, CAiSE’98, LNCS 1413, pages401–421,
Pisa,Italy, June 1998. Springer-Verlag.

[6] M. Dahchour. Integrating GenericRelationships into ObjectModelsUsing
Metaclasses. PhDthesis, Département d’ingénierie informatique,Universit́e
catholique deLouvain, Belgium, March2001.

[7] M. Dahchour, A. Pirotte,andE. Zimányi. Materialization andits metaclass
implementation. To be publishedin IEEE Transactionson Knowledgeand
DataEngineering.

[8] O. Dı́az and N.W. Paton. Extending ODBMSs using metaclasses. IEEE
Software, pages40–47,May 1994.

[9] R. FikesandJ.Kehler. Therole of frame-basedrepresentation in reasoning.
Communicationsof theACM, 28(9), September 1985.

[10] J.GöersandA. Heuer. Definitionandapplication of metaclassesin anobject-
orienteddatabasemodel. In Proc.of the9th Int. Conf. on Data Engineering,
ICDE’93, pages 373–380,Vienna,Austria,1993. IEEEComputerSociety.

[11] A. GoldbergandD. Robson. Smalltalk-80: TheLanguage andits Implemen-
tation. Addison-Wesley, 1983.

[12] E.V. Hahn.Metamodeling in ConceptBase- demonstratedonFUSION. Mas-
ter’s thesis,Facultyof CS,Section IV, Technical University of München,Ger-
many, October 1996.

11

[13] M. Halper, J. Geller, andY. Perl. An OODB part-whole model: Semantics,
notation, andimplementation. Data& KnowledgeEngineering, 27(1):59–95,
May 1998.

[14] B. Henderson-Sellers,D.G. Firesmith,andI.M. Graham.OML metamodel:
Relationshipsandstatemodeling. Journal of Object-Oriented Programming,
10(1):47–51,March1997.

[15] D. Howe. TheFreeOn-lineDictionary of Computing. 1999.

[16] M. Jarke, R. Gallersd̈orfer, M.A. Jeusfeld, and M. Staudt. ConceptBase:
A deductive object basefor metadatamanagement. Journal of Intelligent
InformationSystems, 4(2):167–192,1995.

[17] S.N.KhoshafianandR.Abnous,editors.ObjectOrientation: Concepts,Lan-
guages,Databases,UserInterfaces. JohnWiley & Sons,New York, 1990.

[18] G. Kiczales, J.desRivières,andD. Bobrow. TheArt of theMetaobject Pro-
tocol. MIT Press,1991.

[19] W. Klas and M. Schrefl. Metaclassesand their application. LNCS 943.
Springer-Verlag, 1995.

[20] M. Kolp. A MetaobjectProtocol for Integrating Full-FledgedRelationships
into Reflective Systems. PhD thesis, INFODOC, Universit́e Libre de Brux-
elles, Belgium, October1999.

[21] T. Ledouxand P. Cointe. Explicit metaclassesas a tool for improving the
design of class libraries. In Proc. of the Int. Symp.on ObjectTechnologies
for Advanced Software, ISOTAS’96, LNCS 1049, pages 38–55, Kanazawa,
Japan, 1996.Springer-Verlag.

[22] L. Mark and N. Roussopoulos. Metadata management. IEEE Computer,
19(12):26–36,December1986.

[23] J.Mylopoulos,P. Bernstein,andH. Wong. A languagefacility for designing
interactive, database-intensive applications. ACM Trans.on DatabaseSys-
tems, 5(2), 1980.

[24] J.Mylopoulos,A. Borgida,M. Jarke,andM. Koubarakis. Telos:Represent-
ing knowledgeaboutinformationssystems. ACM Trans.on Office Informa-
tion Systems, 8(4):325–362,1990.

[25] G.T. NguyenandD. Rieu. SHOOD: A desing objectmodel. In Proc. of the
2ndInt. Conf. on Artificial Intelligencein Design, Pittsburgh,USA, 1992.

12

[26] N. Paton and O. Diaz. Metaclassesin object oriented databases. In R.A.
Meersman, W. Kent,andS. Khosla, editors, Proc. of the 4th IFIP Conf. on
Object-Oriented Databases:Analysis, design andconstruction, DS-4, pages
331–347,Windermere,UK, 1991. North-Holland.

[27] M. Petit andE. Dubois. Defining an ontology for the formal requirements
engineering of manufacturing systems. In K. Kosanke andJ.G.Nell, editors,
Proc. of the Int. Conf. on Enterprise Integration an Modeling Technology,
ICEIMT’97, Torino, Italy, 1997.Springer-Verlag.

[28] D.M. Russinof. Proteus:A frame-basednonmonotonic inferencesystem. In
W. Kim andF.H. Lochovsky, editors, Object-Oriented Concepts, Databases
andApplications, pages127–150.ACM Press,1989.

[29] M. Webster. TheWWWebsterDictionary. 2000.

13

