
Unreal Engine AI and Game Code Overview

Steven Polge
Epic Games 
October 16, 2001

PART I - Engine Classes defined in UnrealScript

Actor

Base class of all gameplay objects.  
A large number of properties, behaviors and interfaces are implemented in the 
base Actor class, including: 

Display
Animation
Physics and world interaction (discussed later)
Making sounds
Networking properties (discussed in networking session).
Actor creation and destruction (discussed later)
Triggering and timers

When an actor with a defined event calls TriggerEvent() or 
UntriggerEvent(), the Trigger() or Untrigger() function is called for 
all actors with the matching tag.
An actor’s event is triggered for the following events:

Decoration - when it’s destroyed.
PlayerStart - when a pawn spawns in it.
GameInfo - when the game ends, it triggers an event named 
‘EndGame’ .
Mover - when it finisheds opening.
Mover - when it bumps an actor, it triggers its BumpEvent 
or PlayerBumpEvent.
Pawn - when it’s kill ed.
Pickup - when it’s picked up.
Teleporter - when it’s used.
Trigger - when touched by a relevant actor, or damaged if 
it’s a damageable trigger.
PhysicsVolume - when a player enters the volume.

Actor iterator functions
AllActors is slooow.
DynamicActors faster, since it skips all actors with bStatic==true
TouchingActors very fast (goes through actors Touching array)
Colli dingActors fast for relatively small radii  (uses colli sion hash)

Radius relative to level size - as long as only a small 
percentage of actors will be considered

Message broadcasting



Tick() and PlayerTick() - called every frame
PlayerControllers get PlayerTick()
Avoid implementing tick() - scripts should be event driven to be 
eff icient

Pawn and Controller

Pawn is physical representation of players/ NPC AIs in a level.
Pawn specific physics properties (movement speed, etc.)
AI related flags (hearing, seeing capabiliti es
Weapon/Inventory handling functions - adding, removing, finding, 
selecting
TakeDamage(), Dying state
NEW animation interface for pawns

Animations are generated client-side, reducing network bandwidth
Pawns handle animend(), not their controller (except for 
ScriptedControllers)
Per tick blending changes for smooth movement transitions
Still prototype - will use animation object interface

Controllers are non-physical actors which can be attached to a pawn to control its 
actions.

PlayerControllers are used by human players to control pawns
AIControllers are used to implement the artificial intelli gence for the 
pawns they control.

AIScripts can be associated with pawns placed in levels to modify 
their AIControllers.

ScriptedControllers can be used to make a pawn follow a scripted 
sequence, defined by ScriptedSequence ( a subclass of  AIScript) actors.
Controllers use Possess() and UnPossess() to take or relinquish control of 
a pawn.
Controllers receive notifications for many of the events occurring for the 
pawn they are controlli ng, giving them the opportunity to intercept the 
event and supercede the Pawn’s default behavior.  

PlayerController
Player control pre-processed by PlayerInput object
PlayerTick() called every frame to allow PlayerController to control pawn 
based on player inputs. 
Player Movement states (PlayerWalking, PlayerSwimming, etc) for each 
mode that has different control.

GameInfo and related classes



Defines the game being played: the game rules, scoring, what actors are allowed 
to exist in this game type, and who may enter the game.
GameInfo actor class is determined by (in order) either the DefaultGameType if 
specified in the LevelInfo, or the DefaultGame entry in the game’s .ini file (in the 
Engine.Engine section), unless it’s a network game in which case the 
DefaultServerGame entry is used
The GameInfo’s InitGame() function is called before any other scripts (including 
PreBeginPlay() ), and is used by the GameInfo to initialize parameters and spawn 
its helper classes.
The login process

Used even in single player game
In a network game, the AccessControl class determines whether or not 
player is allowed to login in PreLogin() function.  It also controls whether 
a player can enter as a participant, a spectator, or a game administrator.
Ulevel::SpawnPlayActor() calls the GameInfo Login() function to spawn a 
player controller, then attaches a Player to the returned PlayerController, 
then handles traveling inventory and properties.
The GameInfo Login() function

Sets the player team, if relevant (by calli ng PickTeam() and 
ChangeTeam())
Finds an appropriate player start (by calli ng FindPlayerStart() )
Initializes the PlayerReplicationInfo
Validates the desired pawn class.
If not a delayed start, start match or spawn player pawn 
immediately, else wait for match to start.

Mutators allow modifications to gameplay while keeping game rules intact.  
Multiple mutators can be used together. (intended for mod authors)

ModifyLogin() used to modify player login parameters.
ModifyPlayer() used to modify player pawn properties.
GetDefaultWeapon() used to modify the default weapon for players.
CheckRelevance() used to modify, replace, or remove all actors.  Called 
from the PreBeginPlay() function of all actors except those (Decals, 
Effects and Projectiles for performance reasons) which have 
bGameRelevant==true. 

GameRules specify optional modifications to game rules, such as scoring, finding 
player starts, and damage modification. (intended for mod authors)
BroadcastHandler handles both text messages (typed by a player) and localized 
messages (which are identified by a LocalMessage class and id).  

GameInfos produce localized messages using their DeathMessageClass 
and GameMessageClass classes.

PlayerReplicationInfo, GameReplicationInfo and TeamInfo

Are always relevant, and contain replicated attributes which are important to keep 



updated for all clients.
Each player has an associated PlayerReplicationInfo, and the GameInfo has an 
associated GameReplicationInfo.

LevelInfo

Each level has one LevelInfo, automatically generated by the level editor when the 
level is created.  
Always the first actor in the actor li st.  
Holds properties of global importance in the level, such as the time 
(TimeSeconds), and the networking mode (NetMode - server or client).  
All actors in the level have access to the LevelInfo through their Level attribute. 
Has a reference to the level’s GameInfo actor through its Game attribute.  While 
there is a valid LevelInfo actor for all servers and clients, only servers and 
standalone games have GameInfos.
The LevelInfo also contains two specialized actor li sts that are used for fast access 
to certain actor types.  The ControllerList is a linked list of all controllers in the 
level, and the NavigationPointList is a linked list of all NavigationPoints in the 
level.  These lists will probably become obsolete when we change the Actor li st to 
a TMap.

Volume, PhysicsVolume, and BlockingVolume

Used for defining areas with gameplay implications.
Touch() and Untouch() notifications to the volume as actors enter or leave it
ActorEnteredVolume() and ActorLeftVolume() notifications when center of actor 
enters the volume
Pawns with bIsPlayer==true  cause PlayerEnteredVolume() and 
PlayerLeftVolume() notifications instead.
AssociatedActor also gets touch() and untouch() notifications (for example, to 
create non-cylindrical triggers).
BlockingVolumes used to provide fast, simple colli sion (around static meshes for 
example).  By default, they colli de with non-zero extent traces only.
PhysicsVolumes contain properties which affect physics of actors in them 
(gravity, etc.)

This functionality used to be in ZoneInfo.
Priority attribute determines which PhysicsVolume has precedence.
PhysicsVolumes also have built i n support for entry and exit 
sounds/actors. 
PhysicsVolumes can cause recurring damage to actors in them.

NavigationPoints



Organized into network to provide AIControllers the capabilit y of determining 
paths to arbitrary destinations in a level.  
Each NavigationPoint has a PathList of ReachSpecs which describe paths which 
can be reached from that node.
Each ReachSpec specifies a destination, and the movement requirements (size, 
physics modes, etc.) required to take that path.
NEW  UpstreamPaths[] and PrunedPaths[] were removed from the latest code, and 
Reachspecs are now UnrealScript defined actors.  PathList is now a dynamic 
array.
Special NavigationPoint types (door, ladder, li ftcenter and li ftexit) used to specify 
navigation in conjunction with movers.  Interface for telli ng AI how to use these 
paths described later.

Inventory, Pickup, and AttachedInventory

Pickup is the base class of actors that when touched by an appropriate pawn, will 
create and place an Inventory actor in that pawn’s inventory chain.  

Has an associated inventory class (its InventoryType).  
Placed by level designers.  
Can only interact with pawns when in their default Pickup state.  Pickups 
verify that they can give inventory to a pawn by calli ng the GameInfo’s 
PickupQuery() function.  After a pickup spawns an inventory item for a 
pawn, it then queries the GameInfo by calli ng the GameInfo’s 
ShouldRespawn() function about whether it should remain active, enter its 
Sleep state and later become active again, or destroy itself.
Has an AI interface to allow AIControllers, such as bots, to assess the 
desireabilit y of acquiring that pickup.  The BotDesireabilit y() method 
returns a float typically between 0 and 1 describing how valuable the 
pickup is to the AIController.  This method is called when an AIController 
uses the FindPathToBestInventory() navigation intrinsic.
When navigation paths are built , each pickup has an InventorySpot (a 
subclass of NavigationPoint) placed on it and associated with it (the 
Pickup’s MyMarker== the InventorySpot, and the InventorySpot’s 
markedItem == the pickup).     

Inventory is the parent class of all actors that can be carried by other actors. 
Placed in the holding actor’s inventory chain, a linked list of inventory 
actors.  
Each inventory class knows what pickup can spawn it (its PickupClass).  
When tossed out (using the DropFrom() function), inventory items replace 
themselves with an actor of their Pickup class.
Most Inventory actors are never rendered.  The common exception is 
Weapon actors.  Inventory actors may be rendered in the first person view 



of the player holding them, with the Inventory function, using the 
RenderOverlays() function.  The CalcDrawOffset() function determines 
where to render the item on the player’s screen.  
Inventory items may also be rendered attached to the player’s mesh, by 
spawning an appropriate InventoryAttachment actor.

Weapon, AttachedWeapon, Projectile and Ammunition

Pawns use weapons by calli ng the weapon’s fire() or altfire() function.  Each 
pawn has one currently active weapon (specified by its Weapon attribute).
NEW  All weapons require ammunition.  When a weapon is given to a pawn, it 
will spawn the appropriate Ammunition actor (as determined by the weapon’s 
AmmoName attribute) in the pawn’s inventory chain if it does not exist, or adding 
the weapon’s PickupAmmoCount to the ammunition if it does.  Whenever a 
weapon fires, it will first call it s Ammunition’s UseAmmo() function to verify 
that ammunition is available, and if so reduce the remaining ammunition.
NEW  Ammunition is now responsible for spawning the appropriate Projectile or 
processing a trace hit.  This allows weapons to have multiple ammunition types 
each with different behavior (replaces old fire()/altfire() behavior).
NEW  weapon firing code updated - described in detail i n networking session.
Weapon AI interface used for picking the appropriate weapon (the 
RecommendWeapon() function, which compares the value of the weapons 
available in the inventory chain), and determining the tactics to use with it.  
RateSelf() specifies how valuable the weapon is in the controller’s current tactical 
situation.  SuggestAttackStyle() tells the controller whether it should be 
aggressive or cautious when using this type of weapon, while 
SuggestDefenseStyle() tells the controller whether it should be aggressive or 
cautious when being attacked by an enemy wielding this weapon.  Ammunition 
now also has an AI interface ( RateSelf() ) because of its expanded role. 

Mover

Movers are Actors with a StaticMesh that moves between its keyframes when 
triggered depending on its initial state.  
Movers send notifications to AIs that have sent them as their PendingMover.

Trigger

When enabled generates events when triggered by an appropriate actor (usually by 
touching, or by shooting.

Effects



Base class of all gratuitous special effects.  
Generally should not be replicated, but rather spawned on client side by other 
replicated actors.

Damagetype

Abstract classes which are responsible for specifiying many damage related 
attributes, such as the effects (blood, screen flash, etc.) associated with that 
damage, and the string to print to describe deaths by that type of damage.  
Passed as a parameter of the actor TakeDamage() function.

LocalMessage

Abstract classes which contain an array of localized text .  
The PlayerController function ReceiveLocalizedMessage() is used to send 
messages to a specific player by specifying the LocalMessage class and index.  
This allows the message to be localized on the client side, and saves network 
bandwidth since the text is not sent.  

HUD and Scoreboard

The HUD is responsible for drawing any information overlay.
The local player always has a valid HUD.
The HUD type is defined by the GameInfo actor.
Every frame, the HUD’s postrender function is called after the world has 
been rendered.
ShowDebug exec will show debug parameters of currently viewed actor 
(use ViewClass xxx to change viewed actor).

PART II - Game code in C++

Navigation AI

Reachspecs must be built before navigation network can be used (in the UnrealEd 
build menu).
Controllers can check if a nearby point or actor (less than MAXPATHDIST away) 
is directly reachable using PointReachable() and  ActorReachable().
MoveToward() and MoveTo() are latent functions which cause the Controller’s 
pawn to move toward the specified destination.  State code execution continues 
when either the destination is reached, or progress is no longer possible.

If the move is from one NavigationPoint to another, the destination 
NavigationPoint’s SuggestMovePreparation() is called if it is 
implemented, to allow it to direct the pawn to perform some action first.  



The AIController functions WaitForMover() and MoverFinished() provide 
an interface between a mover/its navigationpoint and the controller.
If the current pawn’s colli sion or other properties are not supported by the 
path between the navigation points, the AIController’s PrepareForMove() 
is called (to allow it to crouch, for example).
While the pawn’s bPreparingMove== true, the movement is suspended.

For destinations that aren’ t directly reachable, FindPathToward() and FindPathTo
() will return the NavigationPoint to move directly toward to reach that 
destination.  When the NavigationPoint is reached, call FindPathxxx() again to 
determine the next path (with any dynamic path network changes considered).

The Controller’s RouteCache[] array contains the first 16 
NavigationPoints in the best path determined toward the destination.

NodeEvaluator functions can be defined to specify node desireabilit y for routing 
when a specific destination is not specified.  Path finding code drops out 
immediately if result is >= 1.0.  FindPathTowardNearest(), FindRandomDest() are 
example native script functions which take advantage of this capabilit y.

Actor creation and destruction

Spawn() in script calls SpawnActor() in C++
For script spawned actors, the spawned actor’s instigator is automatically 
set to be the instigator of the actor which is calli ng Spawn().
Actor must fit where it is placed in the world, or it won’ t be spawned.
After initialization (with exceptions noted below), the following actor 
events are called:

Spawned()  - C++
PreBeginPlay() - script (handles destruction if not game relevant)
BeginPlay() - script
PostBeginPlay() - script
PostNetBeginPlay() - script (Called after replicated properties of 
actor have been updated - note that replication at this point isn’ t 
guaranteed)
If actor has an auto state, its BeginState() is called.

Final initialization of the actor is done just before calli ng PostBeginPlay() 
in the following order:

The actor’s ZoneInfo and PhysicsVolume are set.
Colli sion with blocking non-world geometry actors is resolved 
using actor events EncroachingOn() and EncroachedBy().

Touching notifies currently don’ t happen when actor is spawned.
Actor creation at level startup

InitGame is called on the GameInfo
Spawned() is not called.
PreBeginPlay() is called for all actors
BeginPlay() called for all actors
ZoneInfos and Volumes set for all actors



PostBeginPlay() called for all actors
PostNetBeginPlay() called for all actors
BeginState() is called for all actors with initial state

Actor destruction
Initially bDeleteMe is set
When 255 actors marked for deletion, they are cleaned up, with all actor 
references to other actors removed.
Currently, deleted actors may still be visible to script before cleanup.  Will 
be changed in next version - note potential issues to avoid.

Physics and world interaction

Touch() and Untouch() notifications used for colli sions between actors for whom 
colli sion is enabled, but which don’ t block each other.

Occurs during one actor’s physics.  Avoid infinite loops (singular keyword 
is simple fix).
Use PendingTouch actor li st for actors which want to add an effect after 
the move completes using the PostTouch() notification.

Bump() notification sent when actors which block each other colli de.
Occurs during one actor’s physics.  Avoid infinite loops (singular keyword 
is simple fix).

Base/Attached actors
When actor gets its base set, it is added to the base’s Attached array
Base gets Detach() and Attach()notifications
Actor gets BaseChanged() notification
Base can change when:

Change physics mode
Teleport (lose attached actors)
Pawn walking
SetBase() from script

Special case if AttachmentBone!=None
Actor Physics modes

PHYS_Projectile
PHYS_Falli ng:
PHYS_Rotating:  Rotation, no translation
PHYS_Trailer:  soon obsolete
PHYS_RootMotion: under construction
Rotation 

Not updated if PHYS_None
If bFixedRotationDir==true, will continue rotating in same 
direction, even after reaching DesiredRotation.
If bRotateToDesired==true, will rotate to DesiredRotation and 
stop.

Physics notifications:
HitWall ()



Landed() (HitNormal.Z > MINFLOORZ)
Pawn physics modes

PHYS_Walking
Optional Check for ledges - MayFall() notification

For AI if !bCanWalkOffLedges, with optional 
bAvoidLedges (keep away from them).

MinHitWall to limit HitWall() notifications
PHYS_Falling
PHYS_Flying
PHYS_Swimming
PHYS_Spider
PHYS_Ladder
PHYS_RootMotion:  under construction
Rotation ( APawn::PhysicsRotation() )

bCrawler to orient in floor direction
No pitching when on ground.
If not bCrawler, roll when angular momentum

Crouching:
Can only crouch if bCanCrouch==true
To request crouch, set bWantsToCrouch
bIsCrouched==true while crouched
bTryToUncrouch is true for AI pawns which automatically 
crouched during movement - they continually try to stand up.


