Unreal Engine Al and Game Code Overview

Steven Polge
Epic Games
October 16, 2001

PART | - Engine Classes defined in Unreal Script

Actor

Base dassof all gameplay objeds.
A large number of properties, behaviors and interfaces are implemented in the
base Actor class including:
Display
Animation
Physics and world interadion (discussed later)
Making sounds
Networking properties (discussed in networking sesson).
Actor creaion and destruction (discussed later)
Triggering and timers
When an ador with a defined event cdls TriggerEvent() or
UntriggerEvent(), the Trigger() or Untrigger() functioniscdled for
all adorswith the matching tag.
An ador’sevent istriggered for the foll owing events:
Deaoration - when it’ s destroyed.
PlayerStart - when a pawn spawnsin it.
Gamelnfo - when the game ends, it triggers an event named
‘EndGame’.
Mover - when it finisheds opening.
Mover - when it bumps an ador, it triggers its BumpEvent
or PlayerBumpEvent.
Pawn - when it’ s kill ed.
Pickup - when it’s picked up.
Teleporter - when it’ s used.
Trigger - when touched by arelevant ador, or damaged if
it’s adamageable trigger.
PhysicsVolume - when a player enters the volume.
Actor iterator functions
AllActorsis doo0w.
DynamicActors faster, sinceit skips al adorswith bStatic==true
TouchingActors very fast (goes through adors Touching array)
CollidingActorsfast for relatively small radii (uses colli sion hash)
Radiusrelativeto level size- aslong as only a small
percentage of adorswill be mnsidered
Message broadcasting

Tick() and PlayerTick() - cdled every frame
PlayerControll ers get PlayerTick()
Avoid implementing tick() - scripts shoud be event driven to be
efficient

Pawn and Controller

Pawn is physicd representation o players/ NPC Alsin alevel.

Pawn spedfic physics properties (movement speed, etc.)

Al related flags (heaing, seang capabiliti es

Weagpon/Inventory handling functions - adding, removing, finding,

seleding

TakeDamage(), Dying state

NEW animation interfacefor pawns
Animations are generated cli ent-side, reducing network bandwidth
Pawns hande animend(), na their controller (except for
ScriptedControll ers)
Per tick blending changes for smooth movement transitions
Still prototype - will use animation ohed interface

Controllersare nonphysicd adorswhich can be atached to a pawn to control its
adions.
Player Controllers are used by human playersto control pawns
AlControllers are used to implement the atificial intelli gencefor the
pawns they control.
Al Scriptscan be associated with pawns placed in levels to modify
their AlControllers.
ScriptedControllers can be used to make apawn foll ow a scripted
sequence, defined by ScriptedSequence (asubclassof AlScript) adors.
Controll ers use Possesy) and UnPossesy) to take or relinquish control of
apawn.
Controllersrecave natifications for many of the events occurring for the
pawn they are ntrolli ng, giving them the oppatunity to intercept the
event and supercede the Pawn'’ s default behavior.
Player Controller
Player control pre-processed by Playerlnpu objed
PlayerTick() cdled every frame to all ow PlayerControll er to control pawn
based on payer inpus.
Player Movement states (PlayerWalking, PlayerSwimming, etc) for eat
mode that has different control.

Gamel nfo and related classes

Defines the game being played: the game rules, scoring, what adors are dl owed
to exist in this game type, and who may enter the game.
Gamelnfo ador classis determined by (in order) either the DefaultGameType if
spedfied in the Levellnfo, a the DefaultGame entry in the game’s .ini file (in the
Engine.Engine sedion), unlessit’s a network game in which case the
Default ServerGame entry is used
The Gamelnfo’s InitGame() functionis cdled before any other scripts (including
PreBeginPlay()), andis used by the Gamelnfo to initi ali ze parameters and spawn
its helper classes.
Thelogin process
Used even in single player game
In anetwork game, the AccessContr ol classdetermines whether or not
player is alowed to login in PreLogin() function. It also controls whether
aplayer can enter as a participant, a spedator, or agame aministrator.
Ulevel:: SpawnPlayActor() cdls the Gamelnfo Login() function to spawn a
player controll er, then attadhes a Player to the returned PlayerCorntroll er,
then handles traveling inventory and poperties.
The Gamelnfo Login() function
Sets the player team, if relevant (by cdling PickTean() and
ChangeTean())
Finds an appropriate player start (by cadli ng FindPlayerStart())
Initi ali zes the PlayerRepli caionlnfo
Validates the desired pawn class
If not adelayed start, start match or spawn player pawn
immediately, else wait for match to start.
Mutator s alow modificaions to gameplay whil e keging game rulesintad.
Multi ple mutators can be used together. (intended for mod authors)
ModifyLogin() used to modify player login parameters.
ModifyPlayer() used to modify player pawn properties.
GetDefaultWegoon() used to modify the default wegponfor players.
ChedkRelevance() used to modify, replace or remove dl adors. Called
from the PreBeginPlay() function d all adors except those (Decds,
Effeds and Projedil es for performancereasons) which have
bGameRel evant==true.
GameRules spedfy optional modificaions to game rules, such as soring, finding
player starts, and damage modificaion. (intended for mod authors)
BroadcastHandler handes bath text messages (typed by a player) and locdized
messages (which are identified by a LocdMessage dassandid).
Gamelnfos produce locdi zed messages using their DeahMessageClass
and GameMessageClassclasss.

Player Replicationl nfo, GameReplicationl nfo and Teamlnfo

Are dways relevant, and contain repli cated attributes which are important to keep

updated for all clients.
Ead player has an associated PlayerRepli cationinfo, and the Gamelnfo has an
associated GameRepli caioninfo.

Levelnfo

Ead level has one Levellnfo, automaticaly generated by the level editor when the
level is creaed.

Always thefirst ador in the acor list.

Holds properties of global importancein the level, such asthetime
(TimeSewmnds), and the networking mode (NetMode - server or client).

All adorsin the level have accesto the LevelInfo through their Level attribute.
Has areferenceto the level’s Gamelnfo ador through its Game dtribute. While
thereisavalid Levellnfo ador for al serversand clients, only servers and

standal one games have Gamelnfos.

The LevelInfo also contains two spedalized ador lists that are used for fast access
to certain ador types. The ControllerList isalinked list of al controllersin the
level, and the NavigationPointList isalinked list of al NavigationPoints in the
level. Theselistswill probably become obsolete when we dhange the Actor list to
aTMap.

Volume, PhysicsVolume, and BlockingVolume

Used for defining areas with gameplay impli cations.
Touch() and Untouch() natificaions to the volume & adors enter or leave it
ActorEnteredV olume() and ActorLeftVolume() natifications when center of ador
enters the volume
Pawns with bisPlayer==true cause PlayerEnteredVolume() and
PlayerLeftVolume() natificationsinstead.
AssociatedActor also gets touch() and urtouch() natificaions (for example, to
crede noncylindricd triggers).
BlockingVolumes used to provide fast, simple lli sion (aroundstatic meshes for
example). By default, they colli de with nonzero extent traces only.
PhysicsVolumes contain properties which affea physics of adorsin them
(gravity, etc.)
This functionality used to bein Zonelnfo.
Priority attribute determines which PhysicsVolume has precalence
PhysicsVolumes aso have built in suppat for entry and exit
sounds/adors.
PhysicsV olumes can cause reaurring damage to adors in them.

NavigationPoints

Organized into network to provide AlControll ers the caability of determining
paths to arbitrary destinationsin alevel.

Ead NavigationPoint has a PathList of ReadSpecs which describe paths which
can be readed from that nock.

Ead ReahSpec spedfies a destination, and the movement requirements (size,
physics modes, etc.) required to take that path.

NEW UpstreamPathg]] and PrunedPathg]] were removed from the latest code, and
Readtispecs are now Unred Script defined adors. PathList is now adynamic
array.

Speaa NavigationPoint types (doar, ladder, liftcenter and liftexit) used to speafy
navigationin conjunction with movers. Interfacefor telling Al how to use these
paths described | ater.

| nventory, Pickup, and Attachedlnventory

Pickup isthe base dassof adors that when touched by an appropriate pawn, will
crede and dace a Inventory ador in that pawn’s inventory chain.
Has an as2ociated inventory class(its InventoryType).
Placel by level designers.
Can orly interad with pawnswhen in their default Pickup state. Pickups
verify that they can give inventory to a pawn by cdli ng the Gamelnfo’'s
PickupQuery() function. After a pickup spawns an inventory item for a
pawn, it then queries the Gamelnfo by cdli ng the Gamelnfo's
ShoudRespawn() function about whether it shoud remain adive, enter its
Slee state and later beaome adive ajain, o destroy itself.
Has an Al interfaceto alow AlControll ers, such as bats, to assssthe
desireavility of aaquiring that pickup. The BotDesireabilit y() method
returns afloat typicdly between Oand 1 describing how valuable the
pickupisto the AlController. This methodis cdled when an AlController
uses the FindPathToBestInventory() navigationintrinsic.
When navigation peths are built, ead pickup has an InventorySpat (a
subclassof NavigationPoint) placed onit and associated with it (the
Pickup's MyMarker== the InventorySpat, and the InventorySpot’s
markedltem == the pickup).

Inventory isthe parent classof all adorsthat can be caried by other adors.
Placed in the hading ador’ sinventory chain, alinked list of inventory
adors.

Ead inventory classknows what pickup can spawn it (its PickupClass.
When tossed out (using the DropFrom() function), inventory items replace
themselves with an ador of their Pickup class

Most Inventory adors are never rendered. The common exceptionis
Wegponadors. Inventory adors may be rendered in the first person view

of the player halding them, with the Inventory function, wsing the
RenderOverlays() function. The CalcDrawOffset() function determines
where to render the item onthe player's sreen.

Inventory items may also be rendered attached to the player’s mesh, by
spawning an appropriate I nventor yAttachment ador.

Weapon, AttachedWeapon, Projectileand Ammunition

Pawns use wegpors by cdli ng the wegponi sfirg() or atfire() function. Each
pawn hes one arrently adive wegpon (spedfied by its Wegponattribute).

NEW All wegonrs require anmunition. When awegponis given to apawn, it
will spawn the gopropriate Ammunition ador (as determined by the wegori's
AmmoName dtribute) in the pawn’sinventory chain if it does nat exist, or adding
the wegpon s PickupAmmoCourt to the anmunitionif it does. Whenever a
wegponfires, it will first cdl its Ammunition's UseAmmo() function to verify
that ammunitionis avail able, and if so reducethe remaining ammunition.

NEW Ammunitionis now responsible for spawning the gpropriate Projectile or
processng atracehit. Thisallowswegporsto have multiple anmunition types
ead with dfferent behavior (replaces old fire()/altfire() behavior).

NEW wegonfiring code updated - described in detail i n networking sesson.
WeagonAl interfaceused for picking the gppropriate wegpon (the
ReammmendWegon() function, which compares the value of the wegpors

avail able in the inventory chain), and determining the tadicsto use withiit.
RateSelf() spedfies how valuable the wegonisin the cntroller’s current tadica
situation. SuggestAttadkStyle() tell sthe aontroll er whether it shoud be
aggresgve or cautious when using this type of wegpon,while
SuggestDefenseStyle() tell s the controller whether it shoud be aygressve or
cautious when being attadked by an enemy wielding this wegpon. Ammunition
now aso has an Al interface(RateSelf()) because of its expanded role.

M over
Movers are Actors with a StaticM esh that moves between its keyframes when

triggered depending onitsinitial state.
Movers £nd ndificaionsto Alsthat have sent them as their PendingMover.

Trigger

When enabled generates events when triggered by an appropriate ador (usualy by
touching, or by shoding.

Effects

Base dassof al gratuitous gedal effeds.

Generally shoud na be replicaed, bu rather spawned onclient side by other
replicaed adors.

Damagetype

Abstrad classes which are resporsible for spedfiying many damage related
attributes, such asthe dfeds (blood, screen flash, etc.) associated with that
damage, and the string to print to describe deahs by that type of damage.
Passed as a parameter of the at¢or TakeDamage() function.

L ocalM essage

Abstrad classes which contain an array of locdized text .

The PlayerControll er function Recevel ocdi zedMessage() is used to send
messages to a spedfic player by spedfying the LocdMessage dassand index.
This al ows the message to be locdized onthe dient side, and saves network
bandwidth sincethe text is not sent.

HUD and Scoreboard

The HUD isresporsible for drawing any information owerlay.
The locd player dways hasavalid HUD.
The HUD typeis defined by the Gamelnfo ador.
Every frame, the HUD' s postrender functionis cdl ed after the world has
been rendered.
ShowDebug execwill show debug parameters of currently viewed ador
(use ViewClassxxx to change viewed ador).

PART Il - Gamecodein C++

Navigation Al

Readspecs must be built before navigation retwork can be used (in the Unred Ed
build menu).
Controllers can chedk if aneaby paint or ador (lessthan MAXPATHDIST away)
isdiredly reatable using PointReadable() and ActorReadable().
MoveToward() and MoveTo() are latent functions which cause the Controller’s
pawn to move toward the spedfied destination. State mde exeaution continues
when either the destination isreaded, a progressis nolonger possble.
If the move is from one NavigationPoint to ancther, the destination
NavigationPoint’s SuggestMovePreparation() iscdledif it is
implemented, to allow it to dred the pawn to perform some adion first.

The AlController functions WaitForMover() and MoverFinished() provide

an interfacebetween a mover/its navigationpant and the controll er.

If the aurrent pawn’s collision a other properties are not suppated by the

path between the navigation pants, the AlController’ s PrepareForMove()

iscdled (to alow it to crouch, for example).

Whil e the pawn’ s bPreparingM ove==true, the movement is suspended.
For destinations that aren’t diredly reatable, FindPathToward() and FindPathTo
() will return the NavigationPoint to move diredly toward to read that
destination. When the NavigationPoint is readed, cdl FindPathxxx() again to
determine the next path (with any dynamic path network changes considered).

The Controller' s RouteCade|] array containsthefirst 16

NavigationPoints in the best path determined toward the destination.
NodeEvaluator functions can be defined to speafy node desireability for routing
when a spedfic destinationis not spedfied. Path finding code drops out
immediately if result is>=1.0. FindPathTowardNeaest(), FindRandamDest() are
example native script functions which take alvantage of this cgpabilit y.

Actor creation and destruction

Spawn() in script cdls SpawnActor() in C++
For script spawned adors, the spawned ador’ sinstigator is automaticaly
set to bethe instigator of the ador which is cdli ng Spawn().
Actor must fit where it is placel in the world, o it won't be spawned.
After initiali zation (with exceptions noted below), the foll owing ador
events are cdl ed:
Spawned() - C++
PreBeginPlay() - script (handes destructionif not game relevant)
BeginPlay() - script
PostBeginPlay() - script
PostNetBeginPlay() - script (Called after replicated properties of
ador have been updited - note that replicaion at this point isn’t
guaranteed)
If ador has an auto state, its BeginState() is cdled.
Final initidization o the a¢or isdone just before cdli ng PostBeginPlay()
in the foll owing order:
The ador’s Zonelnfo and PhysicsVolume ae set.
Colli sionwith blocking nonworld geometry adorsis resolved
using ador events EncroachingOn() and EncroachedBY().
Touching natifies currently dorit happen when ador is gpawned.
Actor credion at level startup
InitGame s cdled onthe Gamelnfo
Spawned() isnat cdled.
PreBeginPlay() iscdled for al adors
BeginPlay() cdled for al adors
Zonelnfos and Volumes st for all adors

PostBeginPlay() cdled for al adors
PostNetBeginPlay() cdled for al adors
BeginState() is cdled for al adorswith initial state
Actor destruction
Initialy bDeleteMeis st
When 255adors marked for deletion, they are deaned up,with all ador
references to ather adors removed.
Currently, deleted adors may still be visible to script before deanup. Will
be changed in next version - note potential isuesto avoid.

Physics and world interaction

Touch() and Untouch() natifications used for colli sions between adors for whom
collisionis enabled, bu which dorit block ead ather.
Occaurs during one ador’s physics. Avoid infinite loops (singular keyword
is smplefix).
Use PendingTouch ador list for adors which want to add an effed after
the move mmpletes using the PostTouch() natification.
Bump() natification sent when adors which block ead ather colli de.
Occaurs during one ador’s physics. Avoid infinite loops (singular keyword
is smplefix).
Base/Attadched adors
When ador getsits base set, it is added to the base’ s Attached array
Base gets Detach() and Attach()natifications
Actor gets BaseChanged() natification
Base can change when:
Change physics mode
Teleport (lose dtadhed adors)
Pawn walking
SetBase() from script
Spedad caseif AttachmentBone!=None
Actor Physics modes
PHYS Projedile
PHY S Falling:
PHYS Rotating: Rotation, notransation
PHYS Trailer: soon olsolete
PHYS RootMotion: under construction
Rotation
Not updated if PHYS None
If bFixedRotationDir==true, will continue rotating in same
diredion, even after reading DesiredRotation.
If bRotateToDesired==true, will rotate to DesiredRotation and
stop.
Physics natificaions:
Hitwall ()

Landed() (HitNormal.Z > MINFLOORZ)
Pawn physics modes
PHYS Walking
Optional Check for ledges - MayFall() notification
For Al if 'bCanWa kOffLedges, with optional
bAvoidLedges (keep away from them).
MinHitwall to limit Hitwall() notifications
PHYS Falling
PHYS Flying
PHYS Swimming
PHYS Spider
PHYS Ladder
PHY S RootMotion: under construction
Rotation (APawn::PhysicsRotation())
bCrawler to orient in floor direction
No pitching when on ground.
If not bCrawler, roll when angular momentum
Crouching:
Can only crouch if bCanCrouch==true
To request crouch, set bwantsToCrouch
blsCrouched==true while crouched
bTryToUncrouch istrue for Al pawns which automatically
crouched during movement - they continually try to stand up.

