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Abstract 

Turing’s seminal 1951 paper on morphogenesis is widely known. Less well known is 
that he spent the last few years of his life further developing his morphogenetic 
theory and using the new computer to generate solutions to reaction-diffusion 
systems. Among other things, he claimed at one point to be able to explain the 
phenomenon of ‘Fibonacci phyllotaxis’: the appearance of Fibonacci numbers in the 
structures of plants. He never published this work, but did leave a nearly complete 
manuscript on morphogenesis and lattice phyllotaxis, together with more fragmentary 
notes on Fibonacci phyllotaxis. I discuss evidence that he did develop a number of key 
ideas close to modern thinking, and tantalising hints that he came very close to a 
mathematical explanation of how the ‘daisy grows’ into these patterns. 
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1 Introduction: Turing's last, lost work 
Alan Turing is now well known as a pioneer in the logical and technical development of 
the computer. He is also widely recognised in mathematical biology for his discovery of 
the Turing instability, which generates pattern in reaction-diffusion systems.  Less well 
known is that he spent the last few years of his life further developing his 
morphogenetic theory and using the new computer to generate solutions to reaction-
diffusion systems. Some of this biological work was published in his lifetime; some, 
thanks to the editors of his Collected Works, was eventually published posthumously, 
and some has been preserved unpublished, mainly in the archives of King's College 
Cambridge1. The paper published in his lifetime has turned out to be seminal and 
widely cited in the mathematical theory of biological pattern formation, but the rest 
of his researches have remained obscure and ill-understood. It is the purpose of this 
paper to interpret some of this last work of Turing’s. In particular, one of a number of 
problems he was trying to solve was the appearance of Fibonacci numbers in the 
structures of plants, and I will describe this problem and speculate about how far he 
succeeded with it.  
I begin by describing briefly the problem of Fibonacci phyllotaxis, and then Turing's 
basic theory of reaction-diffusion systems. Then I describe Turing's geometrical lattice 
theory, and finally, and more speculatively, his application of reaction-diffusion theory 
to the Fibonacci problem, and the crucial introduction of growth to the analysis. The 
last decade has seen rather successful mathematical explanations of the problem 
Turing was trying to solve, and I will describe these briefly to explore how much Turing 
might have anticipated them.  

2 Fibonacci phyllotaxis 
Phyllotaxis means the arrangement of structures, such as leaves or florets on plants. 
To explain the problem of Fibonacci phyllotaxis, consider the arrangement of side 
branches on the main stems of many plants. A model example is shown in Figure 1, 
which draws 'obvious' spiral or parastichies through adjacent branching points. The 
parastichy number for a spiral counts how many of such spirals fit onto the cylinder, or 
equivalently how many points around the cylinder but not on the spiral have to be 
skipped in the vertical direction between two points of the spiral. Thus one prominent 
parastichy on the left hand slice of the specimen is a 5 parastichy because there are 
four other branching points spread around the cylinder between any two consecutive 
points on the spiral. The parastichy in the other direction is a 3 parastichy and  the 
pair is called a (3,5) parastichy pair. A remarkable fact about the specimen is that, 
although it exhibits a number of different parastichy pairs, each of these pairs consists 
of two adjacent Fibonacci numbers from the sequence 1,1,2,3,5,8,13,21,34,55, ... in 
which each number is the sum of the preceding two. Yet more remarkable is that this 
property can be found in very many examples in many different species of plants. 
Explaining this ubiquity is the problem of Fibonacci phyllotaxis2. Perhaps the most 
striking examples of Fibonacci phyllotaxis of all occur in the sunflower Helianthus 
annus and the daisy Bellis perennis  where the florets of the flowerhead are arranged 
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in spirals, with the number of spirals clockwise and anticlockwise being successive and 
rather large Fibonacci numbers (Figure 2).  
The appearance of these numbers, or variants on them, is intimately related to the 
divergence angle, the difference in angle between successive points on the stem. If 
that angle in a cylindrical lattice is close to a simple function of the Golden Ratio, then 
Fibonacci numbers naturally appear. Moreover the Golden arrangement typically has 
the property of optimal packing. All of these relationships have been closely studied in 
the mathematical phyllotaxis and number theoretic literature (reviewed in Adler et al 
1997; Jean and Barabé (1998)), and each of them has been adduced at one time or 
another as the explanation for Fibonacci phyllotaxis, often with varying degrees of 
mysticism or arguments from evolutionary optimality attached. Turing thought of the 
problem in terms of explaining the Fibonacci numbers of the parastichies, and it is this 
approach I concentrate on  here.  According to Adler et al (1997) the first to explicitly 
recognise that Fibonacci numbers were involved were Schimper (1830) and Braun 
(1831).  
When and where did Turing’s interest in this problem come from? The title of this 
paper comes from a sketch drawn by his mother (reproduced opposite the title page in 
Saunders (1992)) showing a schoolboy paying attention to the daisies rather than a 
hockey game. We know that at school he was well acquainted with D’Arcy Thomson’s 
classic On Growth and Form that discusses it; decades later, Turing is recorded as 
discussing daisies and fir-cones during off-duty periods at Bletchley Park3. We have 
little concrete idea of his thinking on the subject until 1951. When Turing returned to 
Cambridge for a year in 1947-1948 he attended the undergraduate physiology lectures 
of Lord Adrian, and Hodges has plausibly speculated that his prime interest by now was 
the possibility of a logical description of the nervous system4. Indeed it was in a 
correspondence with the zoologist JZ Young, after a discussion on the needs of a 
physiological theory of the brain that he continued: 

‘...my mathematical theory of embryology...is yielding to treatment, and it will 
so far as I can see, give satisfactory explanations of 
(i) gastrulation 
(ii) polygonally symmetrical structures, e.g. starfish, flowers 
(iii) leaf arrangements, in particular the way the Fibonacci series 
(0,1,1,2,3,5,8,13,...) comes to be involved 
(iv) colour patterns on some animals, e.g. stripes, spots and dappling 
(v) pattern on nearly spherical structures such as some Radiolara...’5

Whatever the original trigger, these were strong claims and it is the purpose of this 
paper to examine why Turing felt able to make them and claim (iii) in particular. In 
the same month he also wrote in a letter that 

 ‘Our new machine is to start arriving on Monday. I am hoping to do something 
about ‘chemical embryology’. In particular I think I can account for the 
appearance of Fibonacci numbers in connection with fir-cones’6

He certainly could do something about chemical embryology. By November of that year 
he had submitted a paper to Philosophical Transactions. This paper, The Chemical 
Basis of Morphogenesis, has become celebrated in its own right for introducing what is 
now known as the Turing instability, and provides a framework for understanding 
Turing's later, unfinished work. 
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In 1952 he wrote that he had ‘Had quite a jolly time lecturing on fir cones’7 in 
Cambridge, and in 1953 wrote to HSM Coxeter: 

…During the growth of a plant the various parastichy numbers come into 
prominence at different stages... Church is hopelessly confused about it all, and I 
don’t know any really satisfactory account, though I hope to get myself one in 
about a year’s time.8

Between 1952 and 1954 he drafted parts of a paper on the Morphogen Theory of 
Phyllotaxis. This work was left incomplete, and indeed Gandy wrote, after Turing's 
death, that 

‘When I was staying with Alan the weekend before Whitsun he also told me more 
or less where the computations had got to; but since his methods were so 
individual, he was unmethodical, I imagine it will be almost impossible for anyone 
to go on with the programme where he left off.’9

In fact Nick Hoskin did manage to make some progress with preparing the work for 
publication, and Bernard Richards provided a third section based on the MSc thesis he 
started under Turing. But the resulting typescript was not published until 1992 
(Saunders (1992)) and was recently discussed by Allaerts (2003).  More details of the 
archive papers and their relationship to the published volume can be found at my 
website (Swinton 2003). We will return to their contents after discussing the Turing 
instability. 

3 Where do spots come from? The Turing instability 
This section provides a brief non-technical discussion of the Turing instability 
introduced in Turing (1952). Nanjundiah (2003) gives a good discussion of the impact 
and reception of this paper. Turing provided a hypothesis to explain the generation of 
pattern when smooth sheet of cells develop pattern during development in a wide 
variety of settings including the formation of leaf buds, florets, skin markings, and 
limbs. According to this hypothesis, chemicals called morphogens generate organs 
when present in sufficient density, and the pattern is created through mechanisms of 
reaction and diffusion. The corresponding reaction-diffusion models are by now well 
known to mathematical biologists, and for the mathematically inclined the books by 
Meinhardt (1982) and Murray (1993) can give much more detail.  

3.1 Reaction... 
One way of understanding the reaction-diffusion process is an analogy which Turing 
himself used at least once, in a slightly different model: cannibals and missionaries 
(Figure 3). An island is supposed to be populated by a population of cannibals and 
missionaries. The missionaries are all celibate and thus depend on recruitment from 
the external world to maintain the population as its members gradually die. Cannibals 
also die, but can also reproduce, so that the population naturally increases. However 
when two missionaries meet a cannibal, the cannibal is converted to missionary status. 
(If this seems a politically incorrect island it might be worth pointing out that under a 
commoner interpretation the cannibals are the growth promoters and the missionaries 
are the poison).  This tension between production and transformation means that a 
balance is reached when both populations are mixed together.10 If this balance is 
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disturbed by a small amount of noise, the tension will act to restore the balance: the 
system is stable. 

3.2 ...and diffusion 
Now we imagine that the two populations, instead of mixing completely together, are 
spread out in a thin ring around the rather narrow beach of the island. Now individuals 
react (that is, reproduce or convert) only with their immediate neighbours, but they 
also move around at random in a diffusive way.  Moreover the members of the two 
populations move at different speeds: the missionaries have bicycles and move faster. 
This is enough to destabilize the system. For if there is at any point a small excess of 
cannibals, say, then this will be followed by excess ‘production’ of more cannibals, and 
then of more missionaries (since they have more targets for conversion). Without the 
spatial dimension the extra production of missionaries would in turn reduce the 
cannibal excess and the system would return to balance. But because the missionary 
excess is transported away more quickly, a pattern develops in which there is a near 
excess of cannibals and a far excess of missionaries. Moreover the distance between 
these zones of relative excess is determined by the interaction between the reaction 
and the diffusion: a length scale, which is what is required for the emergence of 
pattern from non-pattern, has emerged from the dynamics. 

3.3 Where did the bicycles come from? 
The key to making this idea work is the missionaries’ bicycles: more technically that 
the inhibitor morphogen has a higher coefficient of diffusivity. Once the reaction-
diffusion system is set up, a simple linear analysis makes this an obvious requirement 
for heterogeneity, but that was an analysis that no one, to Turing’s knowledge, had 
done at that time. We have no record of Turing’s thought process in developing the 
model idea and whether the diffusivity constraint came before or after the reaction-
diffusion model itself. His analysis in Turing (1952) and Turing (1992) in terms of 
Fourier modes would have been second nature to him (for example his pre-war project 
to compute the zeroes of the Riemann zeta function using an analogue computer used 
a similar basic analysis). The formal theory in The Morphogen Theory of Phyllotaxis  
shares some structure with the then new quantum mechanics he had learned as a 
student in Cambridge, but presumably many of the techniques were in the armoury of 
any applied mathematician at the time. As Allaerts (2003) points out,  Jeans’ 1927 
book on Electricity and Magnetism, which Turing cited, is a source for many of the 
techniques, particularly spherical harmonics. But the source of the key scientific 
innovation is harder to pin down. It’s not even obvious that Turing himself appreciated 
it that it was key: it is hardly emphasised in either Turing (1952) or Turing (1992).  
Turing was not alone in arriving at these ideas. Jeans states that similar ones were also 
introduced by Kolmogorov, Petrovski and Piskunov (1937), and Rashevsky (1940), 
although they remained largely unknown in the West for many decades;  Nanjundiah 
(2003) discusses the (lack of) influences in more detail.  
The 1952 paper actually dealt with a number of important and more complex issues 
usually glossed over in the standard undergraduate accounts. Turing also discussed 
tricky issues of mode selection and the effect of noise, and extended the model to two 
dimensions to produce an example of dappling.  
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By the time of the drafting of The Morphogen Theory of Phyllotaxis, the theory had 
been developed yet further, particularly by a representation in terms of spherical 
harmonics, and by an application to the particular case of a sphere, done as an MSc 
project by Richards (Richards 1998). This more general theory, which has been recently 
reviewed by Allaerts (2003), is, though relatively technical, conceptually a fairly 
straightforward development of the original idea. 

3.4 The Turing instability: summary 
In one dimension, then, the Turing instability introduced in the 1952 Transactions 
paper provides a natural mechanism for generating spots. Such patterns emerge from 
the interaction between the length-scale implicit in the reaction-diffusion dynamics 
and the geometry of the arena. This has provided a central paradigm for modern 
morphogenesis, at least from a mathematical perpective. While patterns have been 
seen in real chemical systems, it remains a challenge to explain ‘stripes, spots and 
dappling’. 

4 Lattice generation 
So far, the discussion has been in terms of a one-dimensional pattern wrapped around 
a ring. What happens if we have the same reaction and diffusion mechanism but now 
allow it to act in a two-dimensional arena? In terms of the cannibals and missionaries, 
we might imagine that the beach of the island is now rather wide (relative to the 
length scale defined above). In this case, the Turing instability generically generates 
not a ring of points but a lattice of points11. Might this by itself be enough to explain 
the occurrence of Fibonacci phyllotaxis? With no constraints, (i.e. a cylinder of large 
enough radius, and ignoring the complexities of the inception and quenching of pattern 
formation), the instability typically generates hexagonal lattices (Murray (1993): see an 
example in Figure 4 ) and this class of lattices certainly include some Fibonacci ones. 
But it also includes many that are not Fibonacci.  
Thus by itself it could not explain Fibonacci phyllotaxis, as Turing well understood. For 
when discussing phyllotactic systems defined as solutions to the reaction-diffusion 
model defined without growth constraints, he wrote 

...‘the phyllotactic systems of botany do not arise in this way’.12 
Might it be that there are other constraints acting to select Fibonacci ones? First there 
are the geometrical constraints arising from the particular arena. Patterns on a 
cylinder may be different from those on an infinite plane where the periodicity 
constaint does not apply, and different again from those on a cone, but this does not 
promote any special Fibonacci structure. Then there are the dynamical constraints: the 
pattern does not suddenly appear, but emerges as a result of nonlinear interactions 
between morphogens over time. Finally there are growth constraints: during the 
emergence process, the arena itself may be growing with the plant. More discussion of 
these constraints is put aside until after a discussion of describing the patterns 
themselves. 
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5 Geometrical phyllotaxis 
In this section we put aside the radically new contribution of Turing (a mechanism for 
dynamic production of lattices) to discuss his (slightly) more conventional treatment of 
the static properties of lattices, more commonly called geometrical phyllotaxis. Turing 
consolidated a general theory of lattices on cylinders  

‘expounded...by some previous writers but often in a rather unsatisfactory form, 
and with the emphasis misplaced’13 

which was (mostly) published for the first time in the 1992 Collected Works Turing 
(1992)). This kind of analysis has a long history, at least as far back as the brothers 
Bravais (Figure 5), but Turing’s geometrical theory added several new insights: flow 
matrices, the ‘hypothesis of geometrical phyllotaxis’ discussed below, and the ‘inverse 
lattice’, a Fourier representation of the patterns essential to understanding many of 
the archive pictures though not discussed further here.  

5.1 Turing’s lattice theory 
Part I of the Morphogen Theory of  Phyllotaxis  (from p49 of Turing (1992) is a fairly 
coherent and fully worked out manuscript. Two theorems are of particular relevance 
here. 
For any lattice, such as the one in Figure 5, there are not just two rather obvious 
parastichies (here 2  and 3 are drawn with dashed lines) but a whole series of less 
obvious ones, which can all be defined relative to lines from the origin (i.e. the point 
labelled 0) through the other numbered points. The 1-parastichy is the solid line, and 
the eye can pick out the 4 parastichy by visualising a line through the points numbered 
0 and 4 and 8 and so on. What Turing called the ‘principal parastichies’ were the ones 
in which the nearest points in the parastichy were closest to the origin – in other words 
Figure 5 has principal parastichy (2,3) because the points numbered 2 and 3 are the 
ones closest to the point numbered 0. (The geometrical details are related to but 
different from, say Jean (1994): primarily because Jean also needs to ensure that the 
parastichies wind in opposite directions round the cylinder) .   
A second key theorem is that the third parastichy (in this case 1 since 1 is the next 
closest point) must be the sum or difference of the first two parastichy numbers, a 
theorem Turing proves neatly on p57 of Turing (1992).   

5.2 'Hypothesis of geometrical phyllotaxis’ 
After this theory of lattices on cylinders, Turing went on to consider lattices of more 
variable geometry. This raises the question of what kinds of transformations of 
parastichy numbers are possible when a phyllotactic lattice is deformed. As it is 
deformed, the principal parastichies will in general remain unchanged. They will only 
change when a new lattice point from a different parastichy moves so as to become 
closer to the origin, but generically the point that does so must have previously been 
the third parastichy. Thus one of  the two principal parastichy numbers, together with 
the third parastichy number, will become the new principal parastichy number. 
Turing showed14 that if that third parastichy number (in the example above, 1), never 
lies between first and second parastichy number (here (2,3)  then a Fibonacci 
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property, once begun, would persist. This constraint he named the Hypothesis of 
Geometrical Phyllotaxis.  
It was this insight which was surely the cause of Hoskins’ view, reported in Max 
Newman’s 1955 Royal Society memoir15 that Turing had shown that a Fibonacci 
system, once established, would always remain Fibonacci. But the truth, as Turing 
recognised16, is that this relies on the HGP being true and the theory so far provides no 
reason why it should be. However this idea is still worthwhile: the key insight it 
embodies is that of continuous change. Phyllotactic lattices are not laid down all at 
once on an infinite cylinder: they are produced locally, node by node, and the resulting 
pattern is also deformed by growth.  

6 Dynamic phyllotaxis 
The Turing instability by itself, then, can’t provide an explanation for the generation 
of Fibonacci phyllotaxis, as Turing well understood. For when discussing phyllotactic 
systems defined as solutions to the reaction-diffusion model defined without growth 
constraints, he wrote 

...‘the phyllotactic systems of botany do not arise in this way’.17 
However there are strong indications in Turing’s later manuscripts, particularly the 
fragmentary Outline of the development of the daisy18, that he had conceived an 
additional mechanism to provide that explanation. As hinted above, that mechanism is 
that there is a small arena  in which the Turing instability is at work, laying down spots 
in lattices and then leaving them behind as the arena follows the growth of the plant. 
Moreover that arena itself changes, growing in diameter, providing a continuously 
changing lattice to which the the theories of geometrical phyllotaxis could be applied.  
The first evidence of this is in Morphogen Theory of Phyllotaxis Part I; in section 13 
Turing establishes a formalism of flow matrices for the change in lattice parameters 
with a parameter called time, adding that  

‘a convenient way of picturing flow matrices is to imagine the change in the 
lattice as being due to the leaves being carried over the surface of the lattice by a 
fluid whose velocity is a linear function of position’19 

This was a way of modelling phyllotactic patterns, building on the continuous change 
models of Richards (1948). But this remains an essentially static picture of spots being 
passively transported over a changing geometry. What Turing was able to go on and 
create, with the aid of his new spot-generation model, was a concrete model for 
dynamic phyllotaxis.  
In the later work, Turing typically expressed his reaction diffusion model in operator 
notation, with forms similar to 

2 2

2 2

( )
( )

U U GU HUVt
V U

ϕ
ψ

∂ = ∇ + −∂
= ∇

(*) 

with 
2 2 2 2

2 0( ) (1 / )I kϕ ∇ = +∇ and 2 2 2( ) 1/(1 / )Rψ ∇ = −∇  (cf equation III.1.2 of MTP, p107 of 
Turing (1992)). Here U(x,t) is the morphogen and V(x,t) is the ‘poison’; the ψ function 
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represents the implicit solution of its partial differential equation in terms of the 
slower diffusing morphogen. The H terms represents the effect of the poison on the 
morphogen, the G term the morphogen’s autocatalytic nature, and the ϕ term its 
diffusive nature, parameterised by the natural wavenumber k0.
However in Outline of the Development of the Daisy,  there is a crucial extra 
spatiotemporal term I(x,t)U:

2 2

2 2

( ) ( , )
( )

U U I x t U GU HUVt
V U

ϕ
ψ

∂ = ∇ + + −∂
= ∇

(**) 

(note that the Saunders edition has a typo for the H  and the ψ). An even more 
revealing version of this equation is in AMT/C/27/28 (Figure 6). This additional I term is 
designed to capture the effect of the variation in the geometry of the arena for 
morphogenesis with time due to growth of the underlying tissue: see the picture of a 
growing apical meristem region in Figure 6. 
Turing not only conceived this idea; he clearly made substantial progress with a 
numerical implementation of it. At one point of the Daisy draft (AMT/C/24/12; omitted 
from the Saunders version), he comments on the number of parameters needed, ‘
when actual computations are being carried out the number of quantities to be 
specified is again increased..’ in a manner suggesting that this had been done in 
practice. Moreover one of the subroutines that has survived is labelled KJELL20, and 
AMT/C/27/C25, entitled Kjell theory, works out the algebra in Fourier space of the 
coefficients of an equation such as the daisy one, including the crucial growth term. 
(Figure 7). 
Also in the archives are a number of solution plots (eg  
Figure 8).  Based on their form they are probably solutions of the reaction-diffusion 
equations of forms similar to (*) or (**). Whether they are directly relevant to the 
Fibonacci problem or as more general illustrations of morphogenesis is hard to say. My 
speculation is that they are the former, since there is little evidence of any other 
computationally active project.  

7 Routes to phyllotaxis 
In addition to direct numerical simulation, there is evidence that Turing explored a 
more analytical approach to the problem. The best evidence comes from two sheets 
(Figure 9 and Figure 10) in the National Archive for the History of Computing21. Figure 
9 is a diagram displaying possible parastichy transitions, from the homogenous (Hom) 
state up to 4+7 parastichies. A similar sheet includes the comment 

Probable paths: Hom → (0)R → (0+1) → (1+1) → (1+2) → (2+3) → (3+5)… 22 
The question is what Turing meant by ‘probable’. It might be a simple harking back to 
the hypothesis of geometrical phyllotaxis, but on another sheet (Figure 10: MAN/M/8) 
he classifies a number of possible transitions by more empirically geometric 
observations. 
These kinds of parastichy transitions were not entirely new: van Iterson (1904) studied 
static sphere packings and generated a parameter map of all possible such packings 
(Figure 11). Turing at one point dismisses the ‘touching circles hypothesis’ – that each 
new point is introduced as though it was at the centre of a hard disk of a certain radius 
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– although that he is referring here to the process on a static cylinder: as discussed 
below touching circles is an adequate model provided the cylinder is allowed to grow 
in diamter.  
There is clearly a concern here with the dynamic stability of given phyllotactic 
patterns and their dependence on the rate of growth of the morphogenetic arena. In 
identifying the Fibonacci transitions as the probable ones, he is trying to identify 
reasons why the Hypothesis of Geometrical Phyllotaxis might be true. It may be 
relevant that quite a large number of the archive sheets (unpublished in Saunders 
(1992)) are concerned with the dynamics and the stability of lattices: see Swinton 
(2003) for more details. 

7.1 Turing’s progress 
As the Turing’s theory progresses from reaction-diffusion to lattices and then to 
parastichy transitions, the surviving documents become sparser and less coherent, so 
assessments of his progress between 1951 and his death on June 7th 1954 become 
correspondingly more speculative. There is no concrete archival support for that claim 
in 1951 to explain fir cone patterns. A possible explanation is that Turing saw clearly 
that he had a spot generation mechanism and assumed, incorrectly, that this would be 
sufficient to generate Fibonacci lattices. There is a quote from a Ferranti engineer, 
from before the summer of 1953, that 

...with a random starting disturbance the final configuration was displayed on the 
MkI's monitors. It was always of interest to those of us watching to see what 
Fibonacci configuration would result.23 

Turing was certainly producing spotty patterns by 1953. It seems plausible that what 
the engineer saw was actually more similar to those than to explicitly Fibonacci 
patterns.24. Support from this comes from a letter of Turing’s of  May 1953: 

According to the theory I am working on now there is a continuous advance from 
one pair of parastichy numbers to another, during the growth of a single plant ... 
You will be inclined to ask how one can move continuously from one integer to 
another. The reason is this - on any specimen there are different ways in which 
the parastichy numbers can be reckoned; some are more natural than others. 
During the growth of a plant the various parastichy numbers come into 
prominence at different stages. One can also observe the phenomenon in space 
(instead of in time) on a sunflower. It is natural to count the outermost florets as 
say 21+34, but the inner ones might be counted as 8+13. Church is hopelessly 
confused about it all, and I don’t know any really satisfactory account, though I 
hope to get myself one in about a year’s time.25 

None of the fragmentary material can be reliably dated; some of the probably relevant 
computer printouts are dated26 May 24th, but give no year. In addition several years of 
computing would have generated rather a lot of output, so the fact that all we have is 
a few sheets, and those not obviously archival records, hints that what  we do have is 
the end of a series of ephemeral documents. So a speculation would date the latest  
analysis to within weeks of Turing’s death. It is then likely that this was what Gandy 
was referring to when he wrote of  hearing of Turing’s individual and unmethodical 
computations.  
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In considering Turing’s state of mind at his suicide, Hodges wrote that 
Possibly the morphogenetic work had turned out plodding and laborious. It was 
three years since he had claimed he could account for the fir cone pattern and he 
had still not achieved it when he died27.

The morphogenetic work was not plodding: the bifurcation tree of parastichy numbers 
was new and, as discussed below, on the right lines. The computer simulations, even 
for the author of Computable Numbers (or more relevantly of the first programming 
manual), must though have been  laborious and frustratingly slow to get right. 
Although they were apparently producing at least some meaningful output, Turing 
might have become the first to appreciate the sheer craft needed in computational 
biology. Probably Turing had not, indeed, accounted for Fibonacci phyllotaxis when he 
died, but he had got much further, and in the right direction, than he was in 1951.  

8 Turing and modern approaches to Fibonacci 
phyllotaxis 
At Turing’s death, all of his post 1951 developments remained unpublished. Hoskin, 
Newman and Gandy tried to prepare what could be prepared for publication, but none 
of them had any particular expertise in the problem. Bernard Richards might have 
developed his MSc with Turing (on reaction diffusion systems on a sphere) into this 
broader question, but moved on to other areas (Richards 1998). Unsurprisingly the 
work remained almost unknown. The only citation I’ve found  before 1992 came at one 
of Waddington’s select meetings on theoretical biology held at Lake Como in the late 
1960s, where Scriven described his 

 ‘treatment, developed from Turing's paper on morphogenesis, based on transport 
processes to move things from place to another. (Robin Grands [sic] has a Turing 
manuscript for the nonlinear case treatment)28 

Turing had discussed the morphogenesis work with Wardlaw, who subsequently 
published several papers explaining and discussing the reaction-diffusion hypothesis 
(Wardlaw 1953, 1954). Wardlaw is reported to have maintained a long interest in 
Fibonacci phyllotaxis though it seems to have gone unpublished.29 
Some of the subsequent studies of phyllotaxis30 concentrated on, and gave more 
rigorous mathematical theories of, the ‘static’ phyllotactic problem of the 
classification of lattices, and, for example, the relationship between the divergence 
angle and the visible opposed parastichies (Adler et al (1997), Jean (1994) ).  A second 
strand used numerical approaches based on dynamic models in which the appearance 
of a new point was governed by a rule which was some variant of ‘far away from 
previous points’. Some even used reaction-diffusion equation to do so (Veen and 
Lindenmayer (1977) were the first to do this).  
The earliest, clearest and most undercited explanation for Fibonacci phyllotaxis was 
developed by Mitchison (1977). Writing in Science, Mitchison deftly used the simple 
touching circles hypothesis for new points appearing in the cylindrical region formed by 
the apical meristem, and identified the key parastichies as what Jean would later call 
the visible opposed parastichies, those winding in opposite directions. He then showed 
that as the diameter of that region slowly changed, the bifurcations of parastichy 
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number would, as Turing saw, replace one of the pair (m,n) with m<n by m+n, and 
that as Turing hypothesised but failed to demonstrate, that the new visible opposed 
pair would have to be (n,m+n) effectively because the pair (m,m+n)  would both wind 
in the same direction. This general hypothesis about which of two possible choices will 
be made at each stage, combined with the necessary geometric clarity to see that 
there are only two choices, and a dynamical system which can generate movement 
through the bifurcation diagram, is what is needed to explain Fibonacci phyllotaxis. 
Through the 1990s other workers exhibited lattice Fibonacci structures experimentally 
(eg Douady and Couder 1996I) computationally (eg Douady and Couder 1996II) or 
analytically (eg Kunz and Rothen 1992; Levitov 1991; Atela et al 2002). This new 
generation used a variety of models, but the common feature is that each exhibited a 
bifurcation tree corresponding to all possible parastichy pairs, and showed, by local 
analysis at each bifurcation point, that the single branch traversable by continuous 
variation of a bifurcation parameter was the Fibonacci branch (Figure 12). This local 
constraint is what Turing would have called the Hypothesis of Geometrical Phyllotaxis.  

9 Conclusion 
This paper has concentrated on Turing’s approach to the specific problem of Fibonacci 
phyllotaxis, and left largely undiscussed his wider legacy in mathematical biology. Any 
discussion of that legacy would have to cover the failure of reaction-diffusion models 
to sustain much favour with developmental biologists, combined with a persistent 
ability to remain in mathematical accounts.  Keller (2002)  has recently given a most 
insightful and informed account of this complex story. Yet reaction diffusion models 
only provide one possible mechanism for the spot creation process. It should not be 
thought that a failure to exhibit a morphogen, is a failure for the generic process of 
pattern generation that he was beginning to grasp.  
Despite his confident words in 1951, Turing probably did not have an explanation for 
Fibonacci phyllotaxis either then or later. But he came close. As we have seen, such 
patterns can arise naturally as the product of iterated creation processes with simple 
rules. In his reaction diffusion systems he had the first and one of the most compelling 
models mathematical biology has devised for the creation process. In his formulation of 
the Hypothesis of Geometrical Phyllotaxis, work done by 1954 but not published until 
1992, he expressed simple rules adequate for the appearance of Fibonacci pattern. In 
his last, quite unfinished work he was searching for plausible reasons why those rules 
might hold, and it seems only in this that he did not succeed. It would take half a 
lifetime before others, unaware of his full progress, would retrace his steps and finally 
pass them in pursuit of a rather beautiful theory. 
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12 Figures 
Figure 1 Parastichy systems ranging from (3,5) through (5,8) and (8,13) to (13,26) 
on a single Euphorbia wulfenii stem. From Figure 8 of Church (1904). 
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Figure 2 A sunflower head, with some 
of the florets removed to show the 
(34,55) parastichies. From Figure 15 
of Church (1904).  

Figure 3 From AMT/C27/14. © PN Furbank 
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Figure 5 An early geometrical theory of phyllotaxis, from  Bravais and Bravais 
(1837).  

Figure 4 A hexagonal lattice (AMT/K/3/1). © PN Furbank. 
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Figure 6 A version of the morphogenesis equation allowing for growth in the apical 
meristem region and the possibility of dynamic phyllotaxis. Also (below the first 
line) a list of the numerical parameters which must be specified to allow 
computational solution. From AMT/C/27/28. © PN Furbank. 

Figure 7 KJELL theory. From AMT/C/27/25, beginning a series of developments 
designed to allow the dynamic growth equations of Figure 6 to be calculated by 
computer. © PN Furbank. 



Jonathan Swinton, Turing and Fibonacci Phyllotaxis 19 
DRAFT NOT FOR PUBLICATION   01/06/03 

 

Figure 8 Left: Probable solution of a reaction-diffusion equation of the form (*). 
One of the earliest (1951-1954) known pieces of computer graphics in biology. 
From AMT/K/3/8. Right: Enlargement of AMT/K/3/8 showing individual grid points as 
pairs of base 32 digits  @=0, / =1, …V = 30, £=31), lowest significant digit first, and 
contoured on the basis of the most significant digits. © PN Furbank 
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Figure 9. A bifurcation tree for possible phyllotactic evolutions. From AMT/MAN/4. 
© PN Furbank. 

Figure 10 From AMT/MAN/M/8. Parastichy transitions annotated by Turing with 
likelihood of occuring. © PN Furbank 

(0+2) → (1+2) An unlikely move 
(0+2) → (2+2) Quite possible, with 

[indecipherable] 
(0+2) → (2+3) Quite poss. and favoured 

by a / component (eg some 
zygomorphy) 

(1+1) → (2+2) Almost inevitable 
(2+2) → (2+4) 
(2+2) → (2+3) 

In competition. (2+2) →
(2+3) is favoured by 5 < 6, 
but (2+2) → (2+4) by 
6=2+4. Latter probably 
favoured by fast 
[unreadable] of conc. 

(1+2) → (2+3) Requires a breakdown 
process. Can probably only 
fail by too quick growth, 
leading to stationary 
patterns? 
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Figure 11 Possible sphere packing parameters as a function of  geometry. Detail from Figure 
II of Tafel II of van Iterson (1904). © Kluyver Laboratory for Biotechnology Archives of Delft 
University (www.beijerinck.bt.tudelft.nl); used with permission.  
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Figure 12 All possible parastichy pairs can occur, 
but only one branch is continuously reachable 
from the simplest symmetric case. Thin lines: 
theoretically possible parastichies; triangles: 
observed parastichies found in numerical 
simulations from various starting conditions. 
From Douady and Couder (1996). © Academic 
Press COPYRIGHT NOT CLEARED 
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Endnotes 
 
1 A bibliography of Turing’s work, published and unpublished, is maintained by Andrew 
Hodges at www.turing.org.uk; details on work relevant to morphogenesis including 
sources used in this paper is at www.swintons.net/jonathan/turing.htm; see also the 
Turing Digital Archive http://www.turingarchive.org 
2 The website http://www.math.smith.edu/~phyllo/ is one good starting point for 
more background. 
3 Hodges (1992) pp207-208. 
4 Hodges (1992) p372; Allaerts (2003) is one of the more recent commentators on 
Turing’s more metaphyiscal motivations. 
5 AMT K.1.78; letter to JZ Young 8 Feb 1951 
6 Quoted in Hodges (1992)  p437, letter to M Woodger February 1951. 
7 AMT D.4; letter to R Gandy Nov 23 (prob 1952) 
8 Letter from AM Turing, 28th May 1953, cited in Coxeter (1972). 
9 AMT A.8; letter from R Gandy to MHA Newman. 
10 cf Murray p376-378.  
11 Under suitable boundary conditions, other patterns such as stripes are possible. 
12 AMT/C/24/68. 
13 Turing (1992) p.62. Turing is not the only writer on mathematical phyllotaxis to 
adopt this tone. 
14 Turing (1992) p72 
15 In AMT/A/7 and Newman (1955). 
16 Turing (1992) p72 
17 AMT/C/24/68. 
18 Most of the text of this paper can be found in Turing (1992), pp 119-123. An 
alternative version, closer to the manuscript, can be found at my website. 
19 Turing (1992) p75 
20 This dates it to post summer 1952: see Hodges p476. 
21 At Manchester University  (www.chstm.man.ac.uk/nahc/). Turing papers are in  
NAHC/TUR/C2 and C3.   
22 MAN/M/1. This is my foliation, details at Swinton (2003). 
23 Bennett (1996), p65 
24 There are some simple dappling patterns in the 1952 paper. There are more 
sophisticated computer solutions to the morphogenetic equations in the archive, but 
they do not explicitly demonstrate Fibonacci structure. For more details see Swinton 
(2003). 
25 Letter from AM Turing, 28th May 1953, cited in Coxeter (1972). 
26 Eg MAN/N/7  
27 Hodges (1992) p492. 
28 p321 of Waddington (1970). 
29 Email from Vidyanand Nanjundiah, 20th March 2003; Professor Nanjundiah believes 
Wardlaw talked on this topic at a 1974 Mosbach Colloquium. 
30 The subsequent literature of phyllotaxis is substantial, and I have been primarily 
guided by the various surveys in Jean and Barabe (1998) for this section. 
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