
Hot Chips VIII 1

Wabi Cpu Emulation

Paul Hohensee
Mat Myszewski
David Reese

Sun Microsysytems

Hot Chips VIII 2

Overview

❶ Wabi design

❷ Cpu emulation issues

❸ Hardware/software tradeoffs

❹ Emulator design

❺ Interpreter design

❻ Translator design

❼ Translator improvements

❽ Memory management issues

❾ x86 emulation statistics

❿ Performance data

Hot Chips VIII 3

Wabi:
A personal productivity

environment for the UNIX user

● Runs MS-Windows personal productivity applications
– E.g. Microsoft Office, Lotus SmartSuite, Lotus

Notes, CorelDraw, WordPerfect, Quattro Pro
● Integrates PC applications into the UNIX/X-Windows

environment
● Runs on Intel and non-Intel systems
● Offers the benefits of two platforms in a single desktop

Hot Chips VIII 4

Translation vs Emulation

Application

 DOS

PC HW emulation

MS-Windows

Solaris

Hardware

Wabi

Translation

Emulation

Hot Chips VIII 5

Wabi Architecture

WINDOWS
APPLICATION
SPACE

WABI
APPLICATION

UNIX WORKSTATION HARDWARE AND OS

SINGLE UNIX TASK

APPLICATION
DLLs WINDOWS

APP #1
WINDOWS
APP #2

WINDOWS API INTERFACE
USER.DLL

TRANSLATION
GDI.DLL

TRANSLATION
KERNEL.DLL

TRANSLATION

XT INTRINSICS

XLIB CLIB

 WINDOWS
DLLs

Wabi Data Space

Wabi Code Space

Intel 80486
CPU

Translation*

PSCRIPT.DRV

* Risc Wabi Only

Hot Chips VIII 6

Emulator Goals

● Run correct Windows applications on multiple RISC platforms

– as fast as possible

– in as small a footprint as possible

● Favor speed over space, within reason

● x86 memory little-endian regardless of host

– simplifies external interfacing

● Emulate 80486 ring 3 protected mode ISA, including the fpu
(using 64, not 80-bit numbers) and the single-step (trace) trap

● Maintainable and portable

Hot Chips VIII 7

Emulator Non-Goals

● No GDT or IDT management (this is ring 3)

● No TSS or task support

● No real or v86 mode

● No mmu or paging

● Relaxed protection checking

– No limit checking on data accesses

– No read-only checking

● No debug register support

● Simple user code and data selector types only (e.g., no call gates)

Hot Chips VIII 8

Emulation Design Issues

● Interface: Hardware simulator - non-reentrant,
execute until an exception and exit

● Always translate on first code reference
 - no hybrid execution model to switch between
 interpretation and translation

● Internal memory management subsystem for
temporary space, auxiliary data and host code buffers

● Testing and fault isolation must be designed in

– single instruction and per interval step functions

– in-vitro tracing

● Support for asynchronous interrupts

Hot Chips VIII 9

Static vs Dynamic
● Given that a static translator, e.g. DEC’s FX!32, requires a

dynamic component, why not go all the way?

● Advantages:

– No extra disk space (3x expansion in FX!32)

– Retranslate efficiently when guard predicates fail

– Dynamically generated app code, e.g. video, optimized

– Adaptive optimization can exceed static quality

● Disadvantages:

– Limited time to generate code

– Overhead varies with execution frequency

Hot Chips VIII 10

Desirable Hardware
● Want software equivalent of the P6 hardware interpreter

– access control on 4Kb pages

– load/store swapped on big-endian systems

– load/store misaligned

– ALU and register resources of the P6 core
(mmu emulation) (flat register model)

– 16-bit literal instruction operands

– sub-register moves, e.g. PA-RISC & PowerPC

– integer divide overflow trap

– 80-bit floating point

Hot Chips VIII 11

Floating Point

● Mapping x87 stack to host fp registers

– guard code checks potential stack over/underflow and height

– ABI must support at least 8 callee-saved registers

● Denorm operand trap and inexact roundup (C1) require hardware

● 80-bit precision quagmire, most cpu emulators use 64-bit

● x87 delayed exception model

– requires user-settable traps or checks in generated code

Hot Chips VIII 12

Emulator History & Definitions
● Four emulators: three interpreters and one dynamic translator

– 1992: 286 ring 3 protected mode interpreter

– 1993: 486 ring 3 protected mode interpreter

– 1994: 486 ring 3 protected mode dynamic translator

● Interpreter

– Execute one (sometimes two) x86 instructions per dispatch

– Emulate each x86 instruction via ‘microcode’ routine

– Cache only ‘microcode’ routine addresses

● Translator

– Execute many x86 instructions per dispatch

– Generate and execute SPARC code on-the-fly

– Cache SPARC code for later reuse

Hot Chips VIII 13

gcc
● High-Level Assembler

– seven uses of ‘asm’ in the interpreter

● Standard source language across all platforms

– IBM is a particular offender

● Compiler source availability

– Independent of other group’s resources and schedules

– Flow analyzer and register allocator now handle very large
routines: 1000’s of BB’s, > 65k temporaries

● Performance-critical language extensions

– First-class labels enable threaded interpreter implementation

● Generally excellent generated code as of late 1992

Hot Chips VIII 14

Interpreter Overview

● Relatively small working set, though image is large

● Instruction Execution

– Pure threaded interpreter

– Delayed x86 ICC materialization

– Host registers used for x86 machine state, visible and hidden

– Instruction overrides handled by duplicated prefix code and
base+index jump in dispatch

● Instruction Decode

– 16 bits at a time

– High frequency combinations directly executed, others dispatch
to slower generic versions

Hot Chips VIII 15

Interpreter Internals

● Enormous C function - 116K SPARC instructions

● Callouts for:

– 64-bit arithmetic

– libm fp functions

– code and data segment management

● Use gcc as a high-level assembler for

– global register assignment

– internal routines via label variables

– a few assembly language macros

Hot Chips VIII 16

Interpreter Instruction
Dispatch

● 16 + 2 bit initial dispatch

– Simple indexed jump on 16 bits of x86 opcode plus 2 bits for
data/address size:

10 SPARC instructions

– 1Mb dispatch vector, dcache pig, thus...

● Thereafter, dispatch on low bits of mapped x86 instruction pointer

– Save addresses of SPARC code corresponding to decoded x86
instructions in per-code-segment dispatch vector:

6 SPARC instructions

Hot Chips VIII 17

Translator Overview

l Dynamic compiler

– Always compile, fast and dumb, per interval

– Interval: “augmented” basic block of x86 instructions that
may include simple loops and multiple terminating
conditional branches

mov eax, [bp+12]
1$ push eax

call near foo
jeq 1$
jc 2$

Hot Chips VIII 18

Translator Overview
● Code Cache

– 1 - 64Mb, default = (physical memory / 4 + 8 Mb)

– Allocation per code selector: generated code, etc.

– Oldest generated code discarded when full

● Microcoded x86 FPU (in gcc, via internal routines)

● Overhead

200% low reuse => app launch

< 1% cpu intensive => spreadsheet recalc

< 10% typical => slide show

Hot Chips VIII 19

Translator Design

L

OPT

CG

VF

BLDadd ax, ss:[bp+4]
jnz 1$

add ebp, 4, %o0
andn %o0, FFFF0000, %o1
add ss_base, %o1, %o2
ldsb [%o2+1], %o4
ldub [%o2], %o3
shl %o4, 8, %o4
or %o4, %o3, %o4
add eax, %o4, eax
andncc eax, FFFF0000, %g0
bne,a 1$
<...>

xi’s

xi’s

Hot Chips VIII 20

Translator Advantages

● x86 instructions decoded once, barring invalidation

● All x86 registers mapped to SPARC registers

● No instruction dispatch overhead except for indirect
control transfers (mostly subroutine returns)

– SPARC code for contiguous intervals is jammed

– Indirect transfers use hash table

● Unnecessary x86 ICC computation reduced

– Most x86 instructions write ICC’s, almost all are dead

– Most that aren’t are read-next, so kept in SPARC ICC’s

Hot Chips VIII 21

Translator Advantages

● Most dead x86 register high halves detected
andn src, <register containing 0xFFFF0000>, tmp
and dst, <register containing 0xFFFF0000>, dst => mov src, dst
or dst, tmp, dst

– 10-20% performance boost in 16-bit x86 code

● x86 instruction peepholes
 xor ax, ax => clr ax # write zero, don’t xor

 or ax, ax => tst ax # don’t write ax

 jcc 1$ => revjcc 2$ # reverse conditional branch
 jmp 2$
1$

● Code and data selector TLB’s reduce far control transfer and
segment register load overhead
– ~8% of all instructions in x86 code using 16-bit addressing

– ~20% performance improvement

– Data segment register load: same = 4 SPARC instructions, hit = 22, miss > 100

Hot Chips VIII 22

Translator Enhancements
● Reduce ICC materialization by

– implementing a demand-driven delayed ICC model

– doing ICC lookahead through 2 levels

– using larger (multiple BB) intervals

● Extensive x86 instruction sequence idiom recognition

● Inline small functions, especially far ones

● Maximize host register utilization within intervals

● Reallocate x86 memory data to SPARC registers/memory

● Use adaptive optimization to regenerate code for high
frequency intervals

Hot Chips VIII 23

ICC Optimization
● Interpreter uses delayed ICC evaluation

– only ALU instructions delay all ICCs

– others delay “result” ICCs (ZF,SF,PF)

● Initial translator algorithm computes all live ICCs using
lookahead to minimize live sets

– lookahead is restricted to a single interval

– indirect control transfers are problematic

● New translator algorithm uses a hybrid algorithm

– All ICC’s needed within an interval are computed

– ICC’s live out of an interval are delayed

– Delayed state can encode 2 computations

Hot Chips VIII 24

Adaptive Optimization
● Based on techniques from OO systems and profile-guided

feedback

● Insert counters to trigger reoptimization when execution
frequency exceeds threshold

● Mathematical model based on Excel 5 benchmark trace

 Parameters:

● Speedup: 1.55

host cpi 1
translator cycles per x86 1015
optimizer cycles per x86 3045
logging cycles per interval 20
unopt to opt host code ratio 0.5
trigger frequency 90

Hot Chips VIII 25

-

100,000,000

200,000,000

300,000,000

400,000,000

500,000,000

600,000,000

1 3 5 7 9 14 22 35 57 89 14
2

22
2

34
9

56
2

90
3

1,
41

6

2,
24

9

3,
53

2

5,
68

0

8,
96

4

13
,9

84

22
,6

36

35
,6

81

55
,9

55

92
,3

90

13
5,

54
0

23
0,

34
2

34
6,

43
8

58
2,

12
3

92
0,

31
7

Execution frequency

H
os

t i
ns

tr
uc

tio
n

cy
cl

es

TranslateCy LoggingCy OptimizeCy
PreOptExecuteCy PostOptExecuteCy UnoptCy

Adaptive Optimization

Unoptimized vs Optimized cycles

Hot Chips VIII 26

Translator Example

 ld [esp+4], ebx
 ldsb [ds_base+ebx], t
 cmp t, 0A
 be 1$
 ...
1$ add ebx, 1, eax
 ld [esp], t
 call hash_dispatch
 add esp, 8, esp

 pushr ebp
 mov ebp, esp
 mov ebx, [ebp+8]
 cmpb ds:[ebx], 0A
 jz.b 1$
 ...
1$ lea eax, ds:[ebx+1]
 leave
 ret near 4

Hot Chips VIII 27

Emulation Performance Limits

● Detecting and reporting x86 exceptions is expensive

– limits optimization and instruction scheduling

– requires additional memory to recover state information

– fpu implementation requires checks in generated code

● Self-modifying code forces retranslation

– detection via page protection and checksum

● Shortage of host registers for x86 and emulator state

● Shortage of host machine cycles

Hot Chips VIII 28

Dispatch Table Management

● First version used dispatch table with one entry per byte in
code segment or fixed size hash table with collision chaining

– sparse tables (number of entries independent of code size)

– large contiguous allocation => fragmentation

● New algorithm uses dynamic size hash table with linear
collision resolution

– tables start small and grow based on loading factor

– up to 3x faster on small (32Mb) systems

Hot Chips VIII 29

Code Buffer Management

● First version used whole code segment as unit of allocation

– works with many small code segments

– persistent dead code wastes cache space

– useless in Win95 memory environment

● New version uses software paging

– works just as well with large and small code segments

– old code discarded: most is dead, what isn’t is retranslated,
minimizing internal fragmentation

– better space utilization compensates for extra bookkeeping

– can still invalidate entire code segments

Hot Chips VIII 30

x86 Memory Accesses

● 16-bit code statistics

– 50% of x86 instructions reference memory

– 90% of memory references are non-byte width

– 5% of the memory references are misaligned

– 16-bit operands: 34% theoretical speedup

– 7 vs 3 instructions on SPARC V8 vs V9

– 32-bit operands: 41% theoretical speedup

– 13 vs 3 instructions on SPARC V8 vs V9

● Misaligned access exception handling and fixups halve
theoretical speedups

Hot Chips VIII 31

x86 Memory Accesses

● 32-bit code statistics

– % of x86 instructions reference memory

– % of memory references are non-byte width

– % of the memory references are misaligned

– 16-bit operands: % theoretical speedup

– 6 vs 2 instructions on SPARC V8 vs V9

– 32-bit operands: % theoretical speedup

– 12 vs 2 instructions on SPARC V8 vs V9

Hot Chips VIII 32

Interval and Instruction Sizes

S ta tic C ou nt E xecu ted
x86 S P AR C R a tio x86 S P AR C R a tio

In s truc tion s pe r In te rva l 5 .6 48 .6 8 .7 5 .0 40 .7 8 .1
B y tes p er In te rva l 15 .6 19 4.4 12 .5 13 .6 16 2.7 11 .9
In s truc tion L en gth 2 .8 4 .0 1 .4 2 .7 4 .0 1 .5

Excel 5 Benchmark (Win 3.1)

Hot Chips VIII 33

Module, Segment, Procedure,
and Interval Sizes

Number Seg-
ments

Proce-
dures

Inter-
vals

x86
Instrs

Host
Instrs

x86
Bytes

Host
Bytes

Module 153 12.7 204.0 1966.2 10977.5 95572.5 30664 382290
Segment 1937 16.1 155.3 867.1 7549.1 2422 30196
Procedure 31213 9.6 53.8 468.5 150 1874
Interval 300829 5.6 48.6 15.6 194

Excel 5 Benchmark (Win 3.1)

Hot Chips VIII 34

0

10000

20000

30000

40000

50000

60000

70000

3 10 17 24 31 38 45 52 59 66 73 80 87 94 10
1

10
8

11
5

12
2

Number of SPARC Instructions in Basic Block

N
um

be
r

of
 S

P
A

R
C

 In
st

ru
ct

io
ns

Number of SPARC Instructions in
Basic Blocks of Given Size

2:45 ratio

Hot Chips VIII 35

Excel Benchmark Performance

0.0

100.0

200.0

300.0

400.0

500.0

600.0

32
110
SS5

64
75

SS20-71

64
167

Ultra-1

S
ec

on
ds

SoftWindows 2.0 SunPC 4.1 Wabi 2.1 Wabi 2.2

Windows 3.11
Pentium 90

MB
MHz
System

Hot Chips VIII 36

Wabi Performance
(Excel Benchmark)

3.35

2.28

1.58

1.00

1.50

2.00

2.50

3.00

3.50

1.1 2.0 2.1 2.2

Wabi version

 R
el

at
iv

e
S

pe
ed

1.58x
faster

1.44x
faster

1.47x
faster

Hot Chips VIII 37

Conclusions

● Performance must be comparable or better than
volume shipping PC running MS-Windows

● Intel to RISC performance ratio is < 2x today
● We expect to achieve a 3 to 1 ratio of generated

SPARC to x86 instructions on V9 systems
● Working set size will be larger than an x86

based solution
● Challenges

– exception handling

– startup costs

– reoptimization heuristics

