
A Compendium of Formal Techniques for Software Maintenance

Jonathan P. Bowen � Peter T. Breuer y Kevin C. Lano z

Oxford University Computing Laboratory

Programming Research Group

11 Keble Road, Oxford OX1 3QD, UK.

June 1993

Abstract

Software maintenance is an important area in practical software engineering that has been

largely overlooked by many theoretical computer scientists. This paper gives an overview of

some formal techniques that have been developed recently to aid the software maintenance

process, and in particular reverse engineering and re-engineering. In the future, it is suggested

that speci�cations rather than programs should be maintained. The work described provides

a mathematical basis to a large collaborative project that has been investigating many other

aspects of software maintenance as well.

Keywords: Software maintenance, formal methods, reverse engineering, decompilation, re-

engineering, formal speci�cation, Z notation, object-oriented techniques.

To appear in the BCS/IEE Software Engineering Journal.

�Oxford University Computing Laboratory, Programming Research Group, 11 Keble Road, Oxford OX1 3QD,

UK. Email: <Jonathan.Bowen@comlab.ox.ac.uk>.
yEscuela T�ecnica Superior de Ingenieros de Telecomunicaci�on, Universidad Polit�echica de Madrid, Edi�cio B,

Ciudad Universitaria, E{28040 Madrid, Spain. Email: <ptb@dit.upm.es>.
zLloyd's Register of Shipping, 29 Wellesley Road, Croydon CR0 2AJ, UK. Email: <tcskcl@aie.lreg.co.uk>.

i

Contents

1 Introduction 1

2 Overview of Techniques 2

3 De�ning a Semantics for UNIFORM 4

4 Advances in Parser Technology 4

5 The Z++ Speci�cation Language 5

6 Reverse Engineering 6

7 Decompilation 7

8 Validation and Veri�cation 7

9 Veri�cation of Existing Systems 8

10 Generation of Code from Speci�cations 8

11 Generation of Entity Life Histories 9

12 Design Extraction 9

13 Case Studies 10

14 A Rewrite System for Finite Process Descriptions 13

15 Maintenance Models 13

16 A Speci�cation-based Approach to Maintenance 13

17 Conclusion 14

A Project Publications and Reports 15

B Other References 17

ii

1 Introduction

The problem of software maintenance has been recognized as one of the most serious limitations

on the application of computer technology [Fos90]. However, for many years it has been the

ugly duckling of the computer science research community. Until relatively recently, little serious

research has been undertaken in this area, with some notable exceptions (e.g., [Leh80]). For

example, an article for a special section|there were not enough good submissions for a whole

issue, as originally intended|in the IEEE Transactions on Software Engineering as recently as

1987 [Sch87] surveyed the number of articles that had appeared in the past few years, and found

none in the previous 15 months.

The amount of time spent by industry in undertaking software maintenance is di�cult to

assess because companies are often secretive, and perhaps embarrassed, by such statistics; how-

ever, it is generally acknowledged to be up to 80% of e�ort involved with software, and rising

[LPW88], although there are doubters of this view [Fos92]. Indeed, some parts of the computing

industry do not have a great incentive to improve the situation since the bulk of their pro�ts

are gleaned from maintenance, and customers have little choice but to comply with maintenance

contracts. Moreover, in university computer science curricula, there is often little emphasis on

software maintenance and it is not seen as an interesting �eld of study by lecturers and students

alike. It is usually considered more a necessary evil that can be dealt with when the time comes;

and preferably as late as possible!

The support available for software maintenance is often limited in industry. Typically only

simple, non-specialist tools are available, and little or no training is provided to personnel. Com-

panies tend to rely on on-the-job experience or bought-in expertise instead, since the cost of sta�

is high and computing sta� are particularly mobile, their skills being in high demand. Some

toolsets aimed speci�cally at making application code more maintainable are coming onto the

commercial market, but these are very expensive|often tens of thousands of dollars per license|

and are often unsatisfactory in many ways, seemingly providing no mechanism by which users

can store their unfolding understanding of the application as it is gained.

However, the status of research in this area is gradually improving. A quarterly journal specif-

ically aimed at this topic, the Journal of Software Maintenance: Research and Practice has now

been established. The IEEE organize conferences speci�cally on software maintenance. A Euro-

pean Special Interest Group in Software Maintenance has established a newsletter particularly for

practitioners, to cover recent developments (e.g., [Fos92]). A Centre for Software Maintenance

exists at Durham University in the UK; as well as undertaking research, much of it collaborative,

it also organizes annual workshops. Two large collaborative ESPRIT projects, the REDO and

MACS projects [Esp90], have recently acted as a focus of software maintenance research in Eu-

rope. The former has concentrated on reverse engineering, on the principle that applications are

usually unmaintainable in the form in which they are presented for maintenance, and work has

to be done in order to rediscover the required documentation and design information. This paper

presents some of the research results obtained on this project. Information on other important

research in this area may be found in [35].

In the rest of this paper, various facets of our research in the REDO project are sketched. The

focal activity of the project was reverse engineering; the associated activities of decompilation and

re-engineering were also considered. An important consideration is how software maintenance

may be conducted in the future; it is suggested that maintenance should be undertaken at the

speci�cation level rather than the program level, and the two levels should be kept in step.

1

2 Overview of Techniques

The REDO project was established in 1989 to investigate the maintenance, validation and doc-

umentation of software systems [Kat90], with the following primary objectives:

1. develop methods to facilitate the maintenance, restructuring, validation, and transportation

between di�erent environments, of large software systems;

2. develop a comprehensive set of prototype tools for these activities;

3. articulate and develop a theoretical framework which will inuence both the structure of

the toolkit during the project, and the software development community thereafter.

The project has involved collaboration between eleven European industrial and academic part-

ners. The diverse organizations involved have provided a wide range of talents and experience to

the project. A compendium of the results of the project has been produced as a book [vanZ92],

and constitutes the project's response to objective 3 above.

The Programming Research Group at Oxford University has been particularly involved in

providing a formal foundation for the work of the project [6]. As well as providing mathematical

underpinning for the techniques proposed by the project, we have also produced some proto-

type tools for the software maintenance process. The work has covered the areas of reverse

engineering: decompilation, redocumentation and re-engineering; validation: post-hoc veri�ca-

tion and generation of correct code from speci�cations; maintenance: new languages and meth-

ods to support maintenance, including new code generation techniques using our own advanced

compiler-compiler technologies.

Work within the REDO project identi�ed methodologies and techniques which seem to o�er

signi�cant improvements in the maintenance of present and future applications. These techniques

are based on a combination of formal methods, particularly high-level speci�cation languages such

as Z [Spi92], and on object-oriented design. Figure 1 gives an overview of the place of formal

methods in our approach to reverse engineering.

Ultimately, the use of formal methods allows a better understanding of the meaning of existing

code. Our activities have been directed towards making code maintainable, and we believe that

this involves providing comprehensible and useful descriptions of modules, functions and data;

`useful' in the sense that they form a basis for further formally based transformations and re-use,

correction, improvement or adaptation. The activity of maintenance then becomes a process of

deriving, adjusting, and implementing speci�cations. Our tools provide the means to extract a

speci�cation from a section of code, deducing its form automatically where possible and providing

support otherwise, and then aid the re�nement of these speci�cations back to code. They also

(and primarily) provide a means of reshaping speci�cations.

An initial loading and parsing stage involves the representation of procedural languages in

a repository of semantic information (although purely syntactic information may be discarded).

Further abstraction into a generic intermediate language, UNIFORM, can then be performed.

This language supports the restructuring of control ow, such as the elimination of PERFORM

THROUGH and GOTO constructs. From this representation, and derived information, an outline

object-oriented design in the Z++ speci�cation language (an object-oriented extension of Z) [26],

can be extracted, possibly deliberately introducing abstraction away from the algorithmic detail

and the structure of data. This design is then elaborated by further information derived from

the code and existing documentation, to include the speci�cation of methods acting on the data

encapsulated in the class, and invariants capturing domain information regarding this data.

2

SSADM /

OOA

Z++

Design refinement

Design

abstraction

independent
metrics

Language

UNIFORM

Schema

Control /
Data flow
analysis

Language translation

Language

specific metrics

FORTRAN

Schema

Language
specific
schemas ...

Loading

Other

sources ...
FORTRANCOBOL

COBOL

Schema

Figure 1: Process Model for Reverse Engineering

3

We support re-engineering at both the level of code and the level of speci�cation. It is possible

to abstract the functionality of a code fragment, to transform this speci�cation into a simpler

form, and then regenerate code from this speci�cation, without detailed design analysis. This is

feasible since close associations are maintained between the source code elements and their ab-

stractions, so that only those parts of the source text which must change as a result of the changed

speci�cation are modi�ed in the new code, with the remainder being retained. Alternatively, de-

tailed design analysis and transformation could be performed, involving the incorporation of

functional abstractions of code fragments into object classes as method speci�cations.

We believe that understanding of a complex program cannot come from the presentation

of information without considerable human involvement [15]. Our methods and tools engage

the maintenance engineer in an active dialogue with the program, involving, for example, the

assertion of statements about the code and their subsequent validation or contradiction, and

throughout the conversation, a speci�cation level analogue of the code is being constructed that

expresses what the code does and how it is organized, and how the speci�cation relates to the

parts of the code. The outcome is not merely a maintainable package, but understanding of that

package by the maintenance engineer.

3 De�ning a Semantics for UNIFORM

A key component of the REDO project has been the development of an intermediate language.

Rather than handling COBOL, the major existing language for which a serious software main-

tenance problem exists, it was decided to use a simpler, more easily understandable notation

with a well-understood semantics. COBOL itself has never been formalized in its entirety due

to its complexity. However, by providing a translation to a formalized intermediate language, a

formal semantics is then automatically obtained for the constructs that are translated. The se-

mantics is not deterministic|many variants of COBOL will satisfy the semantics reected by the

translation|but reverse engineering tools can use the logic provided by the common abstraction.

In support of this methodology, a semantics for the intermediate language UNIFORM was

developed, and provides a precise basis for veri�cation and code transformation activities. A low-

level denotational semantics was initially provided [20], and was the basis of a simple UNIFORM

interpreter. An axiomatic semantics, more closely related to the predicate transformer semantics

for programming languages which formed the basis for our veri�cation method, was also produced

[17, 23, 27]. Finally, a transformational semantics, by reduction of UNIFORM to Z++, was

produced [39, Chapter 5], [19], based on this axiomatic semantics, and formed the basis for the

reverse engineering of COBOL via transformation to UNIFORM and speci�cations.

4 Advances in Parser Technology

In order to implement the �rst prototype version of the UNIFORM language, the experimental

compiler-compiler tool precc was used [7, 10, 11]. This tool produces ansi compliant C code for

parsers with potentially in�nite lookahead and backtracking and therefore is ideal for the rapid

prototyping of language designs. Although the project as a whole decided to implement parsers

for COBOL and UNIFORM using the standard yacc and lex utilities [JL78], the e�ort involved

many man-years and almost the whole life-time of the project, whereas precc obtained a working

parser for UNIFORM within a few man-days of e�ort by a single person. As it turned out,

UNIFORM had to be redesigned to permit an implementation using yacc, in that extra keywords

4

had to be added which distinguished the beginnings and endings of di�erent scopes from one

another, and none of this was necessary for precc.

The precc compiler-compiler tool has latterly been enhanced, allowing the use of parameters

to grammatical descriptions, and the integrated use of meta-parameters in generic constructions.

Parsers for the whole of ansi COBOL 74, and a demonstration parser for occam 2 [4] have now

been constructed. These parsers are much faster than their equivalents in yacc would be (and yacc

may not be able to handle all the features of the language conveniently and unaided); they are

also highly maintainable because of the meta-grammatical constructs and modular construction.

Grammar de�nition scripts for precc are conventionally split into di�erent modules corresponding

to the di�erent parts of a language (simple statements, compound statements, declarations,

processes, tokens, and so on) and compiled separately, which makes the turn-round time in

maintenance activities very short, as only local changes in one or two modules may be required,

or a module can be taken out of service while another is substituted in its place.

All these features make precc an attractive tool for producing maintainable front-ends to

languages, and work on the utility continues. The tool is based on a well-understood higher-order

theory and implements a precise speci�cation, with which is associated an axiomatic semantics

that supports formal proofs of what is or is not a properly phrased input to a parser. Yacc

speci�cations are not easily amenable to such treatments because individual de�nitions in the

script take their meaning from the context of the rest of the script.

5 The Z++ Speci�cation Language

The concept of a `process' in UNIFORM was recognized as being equivalent to the concept of an

`object' or instance of a `class' under the object-oriented paradigm. This led to the development of

the Z++ language as a uni�ed abstract representation framework for expressing the functionality

and design of applications, together with environment systems [12, 14, 29], and also led to tools

for generating UNIFORM procedural code from Z++ speci�cations [16].

This language has been developed in concert with a precise de�nition of its axiomatic and

model-based semantics. Only a brief description will be given here. An overview is given in [26],

and [32, 30] provide details of the semantics. Methods of re�nement and reasoning about Z++

speci�cations are given in [34], and application examples may be found in [12, 14, 29, 36], [37,

Chapter 7].

The general layout of a Z++ speci�cation is as follows:

De�nitions of global types

De�nitions of object classes

STATE

Variables used in every operation

Global invariants on these variables

Initial

STATE 0

Initial values of variables

5

. . .

De�nitions of operations

That is, a speci�cation is a sequence of paragraphs of formal text (ideally interspersed, as in Z,

with informal explanatory text paragraphs), which are either Z paragraphs in which class names

are used as types, and class operations in method calls, or are class de�nitions. Full syntactic

details of these de�nitions are given in [37, Chapter 2], [28].

6 Reverse Engineering

Early in the life of the project, the partners as a whole agreed to concentrate on reverse engi-

neering as the fulcrum for their e�orts. Exploratory research during the �rst year established

that understanding an application was the major obstacle in rendering it maintainable.

The Oxford tools support reverse engineering as their primary aim. The principal process

is that of transformation through a series of successively higher level languages, beginning with

UNIFORM and culminating in a structured Z++ speci�cation. Incoming COBOL code is �rst

cleaned, and transformed to the equivalent UNIFORM code. During this process, certain details

of the data representation may be lost, such as whether integers were stored as 16 or 32 bits, but

all the essential functionality for understanding is retained.

The UNIFORM code is then abstracted to a �rst order functional language, in which details of

the algorithms used are lost in favour of implicit representations of functionality. The functional

language is then transformed to a representation in Z, during which more implementational de-

tails are lost, and used to populate the interiors of object designs which have been culled from the

data-ow analysis at the UNIFORM and �rst order functional language levels (sections of UNI-

FORM code between I/O operations are candidates for analysis as individual units, and only the

externally communicating variables in these units remain visible in the functional representation).

The process of transformation and code comprehension that we have developed can be sum-

marized as follows (following the terminology of [12]):

Stage 1: Sanitize. The COBOL program is translated into the intermediate language UNI-

FORM, and redundant control structures are eliminated. MOVE X TO Y statements become

assignments involving a format conversion, or cast: Y := [FX!FY](X) where FX is the de-

clared format of X, FY of Y, and [FX!FY] is the casting function. The relationships between

data are translated into logical invariants of the program.

Stage 2: Specify. Using data-ow diagrams, we group together associated variables to create

outline objects. The code is split into phases, single input-output functions. We abstract

the functions associated with these phases, GO TOs and other unstructured code constructs

are eliminated, using user-guided transformation of functional abstractions or equivalent

control-ow graphs.

Stage 3: Simplify. Simplifying transforms are applied to the abstracted functional descriptions,

and to the derived object class hierarchy. The functions are incorporated into the object

classes, as the de�nitions of the operations of these objects. A Z or Z++ description can be

created from this object-oriented abstraction, together with other documentation, such as

SSADM Entity Life Histories.

6

7 Decompilation

Decompilation from object code to source code may be considered part of the reverse engineering

process, particularly if only the object code for a program is available. The project investigated

two approaches to this problem. The �rst arose from research on the ESPRIT ProCoS project

into proving compiling speci�cations correct [HHBP90]. The speci�cations turned out to be in

the form of Horn clauses in general and thus could be coded conveniently and directly in a logic

programming language like Prolog [1]. With some care, such programs may be formulated to act

as either compilers, or decompilers, or even both, because of the relational rather than functional

nature of logic programs [3].

An alternative, less direct but more e�cient approach, resulted from attempting to cast

the above technique in a functional programming setting, using a decompiler-compiler style of

formulation. The techniques are compared in [5, 8, 9].

8 Validation and Veri�cation

This area of research can be broken down into two main components:

� the veri�cation of existing systems;

� the generation of validated code from formal speci�cations.

Prototype tools, which operated on the UNIFORM and Z languages, were developed for both

of these areas. There is a close connection between reverse engineering of a piece of software,

and validation of that software. Both can be seen as a process of obtaining information and

understanding about the application. Validation means making sure that the application satis�es

its requirements, which may be informal, or even the nebulous `satis�es the customer'. Veri�cation

is de�ned to be a form of validation in which formal mathematical properties of the software are

derived or proved, in particular, in which the functionality of the program is compared with a

mathematical speci�cation of its behaviour.

As a general observation, understanding of an application arises from the interaction of a

user with the code through a toolset, and only a limited gain in understanding is to be expected

from the presentation of information about the application alone, whether it be in the form of

an abstract formalism or in the form of a diagram like a control-ow graph. The prototype tools

attempt to engage the reverse engineer in an endeavour which increases comprehension of the

logic of the application by involvement in its abstraction. In that sense, the logical formalisms

which become attached to the application code serve as markers along a road to understanding,

although they can be an end in themselves.

In general, reverse engineering e�orts have not achieved the extraction of information at

this level, being concerned more with overall design and graphical aids to code comprehension

[Loo92]. However situations arise in practice in which detailed functionality is essential to the

understanding and re-engineering of the code, and graphs do not help. This arose even in the

case study of a library database system, described in Section 13, which was an almost entirely

non-mathematical program, and these properties are clearly relevant in numerical processing or

real-time domains. Our reverse engineering system can also be applied to tasks of veri�cation.

The documents [18, 24, 25, 33] contain more details of the tools.

7

9 Veri�cation of Existing Systems

The problem addressed through this research is the support of formal veri�cation activities on

procedural (UNIFORM) source code, as de�ned above. One approach taken for the veri�cation

in practice of existing applications is based on the classical method of Floyd/Hoare assertions and

Dijkstra's weakest preconditions [Hoa69], with additional elements for handling the concurrent

programming constructs of UNIFORM. This was also the approach taken by the ESPRIT project

ATES [CP90].

The innovative aspects of our work are in the use of heuristics to generate plausible loop-

invariants and intermediate assertions [27], and the utilization of logic programming as a sub-

strate, so that it becomes possible to manipulate incomplete assertions which become more fully

established as work progresses. The tools are designed to support interaction with the user at

those points where full automation is not possible, thus enabling the programmer's intuitions

about procedural code to be used. A limited theorem-proving and algebraic simpli�cation capac-

ity is built into the system, using a decision procedure for Presburger arithmetic [Sho77].

In slightly more detail, Floyd/Hoare assertions are of the form

fPg cmd fQg

asserting pre-condition P and post-condition Q for the code cmd in context. In terms of the

weakest pre-condition semantics, the assertion is that P is strong enough to force wp(cmd ; Q),

the weakest pre-condition which will ensure that the condition Q holds after cmd terminates. The

conditions in braces become inserted into the code at appropriate points during the veri�cation

process, and the validative aspect of this work lies with the con�rmation or refutation of more

informal claims or guesses about the functionality. A limited amount of non-functional behaviour

is also ascertainable in this way, since operations in the code may be assigned a time increment,

or loading factor, and assertions about these parameters included in the conditions P and Q .

The method in practice involves splitting the code into subsections, asserting a desired post-

condition Q for a given subsection cmd of a program, and using the tool to generate successive

pre-conditions, working in reverse execution order through code statements until a pre-condition

P for cmd with respect to Q is obtained. If cmd contains loops, then further proof conditions

will be generated as a result of hypothesising loop invariants. The result is a logically consistent

set of logical assertions, embedded in the code (these assertions are often su�cient as logic

programming code in their own right, constituting an executable abstraction of the application

in a higher level language). The logical programming substrate of the tool allows the post-

condition and intermediate assertions to be initially unspeci�ed, and re�ned automatically as the

veri�cation proceeds. This is an advantage in comparison with the similar tools from [CP90], for

example.

Message passing constructs are handled as in Gypsy [Goo84], by regarding potential blockage

at a RECEIVE or SEND communication statement as another form of process exit, and simultane-

ously deriving preconditions for required conditions to hold at these exit points, in addition to

the exit at the logical end of a process. Thus even perpetual processes can be validated.

10 Generation of Code from Speci�cations

An area which has had a considerable amount of research and work devoted to it, and in which

signi�cant tools and systems already exist, is the automatic generation of procedural code from

abstract (non-executable) speci�cations. Some systems, such as CIP [Bau85], use an interactive

8

transformational approach; others, like the B-tool [Abr92], use an automatic non-interactive

approach. All are necessarily processes of re�nement { from the abstract speci�cation to the

implementable pseudo-code. We have chosen the B-tool style of approach, as it reduces the work

required by the user, while not substantially decreasing the power of the re�nements.

A large example of application of our system, to a radar track-former, is given in [16]. At

present the system would be useful for rapid prototyping, for executing proposed speci�cations in

an exploratory way to ascertain their `correctness' or credibility, rather than �nal development.

The limits of validation for real systems have been pointed out in [Coh89]; we can never in

fact completely formalize the design intention nor the actual executable code or device, so that

any formal `proof of correctness' is relative to a given set of simplifying assumptions or models.

Therefore exploratory investigation is of de�nite value in certifying that the formal model does

conform to the intentions, which may be unformalized and partial.

11 Generation of Entity Life Histories

From the object-oriented abstractions we can generate SSADM data-ow diagrams and entity life

histories [AG90], where we equate entities to sets of variables. The user selects the variables to

be examined, and the slice of the functional abstraction on these variables is calculated (so that

some functions which do not a�ect the variables are discarded). The entity life history diagram

for this variable group is then calculated from the normalized functional abstraction [33].

12 Design Extraction

Object-oriented designs are natural within the data-processing domain at least, where it is often

the case that systems are implemented as layers of applications, with a higher level module of a

system using a module from a lower level by means of its operations, but not having detailed access

or knowledge of its internal functioning. Within the REDO project, object-oriented speci�cations

were chosen as the most e�ective way of representing large application systems together with their

environments, such as CICS or TOTAL. Abstract speci�cations of these systems, their available

operations and the side-e�ects of these operations, are essential in fully capturing the functionality

of an application. [21] gives a speci�cation of parts of the CICS API in this style. The COBOL

language itself has aspects, such as �les, indexed arrays, subprograms, and the report writer,

which can be directly represented as parameterized object classes [19]. The design which is

abstracted from the code is built on top of these basic classes, and the reverse engineer should

not normally need to examine the internal details of these.

Global invariants of the program are captured in the invariants of the abstracted object

classes, the key functions of the code are captured as methods of the classes, and relationships

of data-dependency and conceptual connection between variables can also be expressed in the

invariants of these classes. Thus key aspects of an application can be expressed in a clear and

comprehensible way in the formalism. Functional abstraction, while a useful tool in itself, needs

to be used in an intelligent way, to avoid producing monolithic and incomprehensibly complex

abstractions from raw source code. The application of abstraction only to code sections identi�ed

as housing meaningful operations at the global level is an e�ective way to break up the abstraction

task.

9

13 Case Studies

During the REDO project one large data processing system was processed by our system. This

is a suite of programs from the early 1970's [Peg91], which implemented a library database. It

consisted of some 30,000 lines of code in total, although functional abstraction was restricted

to smaller sections of code, with manual application in some places. The original code had the

following aws:

� Non-meaningful paragraph names;

� Unstructured control ow;

� No explicit invariant giving the logical relationship Inv Library between the library data-

base �les;

� No parameterization of operations.

The improvements made in the restructured version were:

� Improved partitioning of paragraphs;

� Better names for paragraphs;

� Recognition of object-oriented design;

� Use of structured constructs and elimination of unstructured GO TO's;

� Parameterization of operations.

Classes associated with each of the three main database �les BOOK-FILE, COPY-FILE and

TITLE-STACK-FILE are recognized. Then, we merge these three classes into a single class (in

theoretical terms, this is the co-product of classes), with the invariant Inv Library expressing

the connection between these �les precisely given. This invariant was formalized from the doc-

umentation, and was veri�ed using transformations on abstractions. Thus, we have the outline

class:

CLASS Library Database

OWNS

BOOK-FILE : x13 7! ddata � f`0'; `1'g;

COPY-FILE : x13 � 0 . . 99 7! cdata � f`0'; `1'g;

TITLE-STACK-FILE : x50 � 0 . . 999 7! x13 � f`0'; `1'g

OPERATIONS

DROP : CARD ! ;

CREATE : seq CARD !

INVARIANT

Inv Library

END CLASS

The type x13 is the set of sequences of 13 characters, and in the above, variables of this type

hold ISBN numbers. The type x50 will hold book titles. The display formats have been retained

in this case, due to their general signi�cance for COBOL applications, although these can be

abstracted if required.

10

In addition, there are two other classes, a Card File Class for the input stream and an

Error Class which handles the exception conditions.

As a small example of the abstraction process for program functionality, we can abstract the

control ow graph / functional abstraction:

250 �!

c6 �! a15 �! 300

j

j�! 350

300 �!

c5 �! 600

j

j�! AUX-PARA-8

350 �! a42 �!

c3 �! 300

j

j�! a27 �! 250

from the source code section:

250.

IF (ISBN-COPY NOT = ISBN-TITLE)

DISPLAY BLANK-LINE UPON CONSOLE

GO TO 300.

GO TO 350.

*

300.

IF (NCOPIES = 0)

GO TO 600.

READ TITLE-STACK-FILE NEXT

AT END GO TO 400.

GO TO 150.

*

350.

MOVE ISBN-COPY TO ISBN-O.

MOVE NUM-COPY TO COPY-O.

MOVE LOCAT-COPY TO LOCAT-O.

MOVE STAT-COPY TO STAT-O.

ADD 1 TO NCOPIES.

DISPLAY OUTPUT-LINE6 UPON CONSOLE.

READ COPY-FILE NEXT

AT END GO TO 300.

GO TO 250.

Labelled branches ai stand for segments of straight line code, with no control ow branching.

The user can then rewrite the graph to the form:

250 �!

11

c6 �! a15 �! 300

j

j�!

c3(a42()) �! a42 �! 300

j

j�! a42 �! a27 �! 250

Automatic regeneration of code can be performed, to produce the COBOL '85 code fragment:

250.

MOVE 'F' TO VBL3.

PERFORM UNTIL (VBL3 = 'T')

IF (ISBN-COPY NOT = ISBN-TITLE)

DISPLAY BLANK-LINE

MOVE 'T' TO VBL3

ELSE

MOVE ISBN-COPY TO ISBN-O

MOVE NUM-COPY TO COPY-O

MOVE LOCAT-COPY TO LOCAT-O

MOVE STAT-COPY TO STAT-O

ADD 1 TO NCOPIES

DISPLAY OUTPUT-LINE6

READ COPY-FILE NEXT

AT END

MOVE 'T' TO VBL3

END-READ

END-IF

END-PERFORM.

PERFORM 300.

VBL3 can be replaced with a more meaningful name, such as EOF-COPY-FILE, and the code

fragment incorporated into the Library Database class (or, in fact, into the COPY -FILEclass

which is an ancestor of this class). Inputs and outputs which are not local variables of the class

become declared parameters of a method whose semantics is de�ned by the function corresponding

to the abstraction of the paragraph:

SHOW -ALL-COPIES-OF-TITLE ISBN-TITLE |

NCOPIES ==>

250(ISBN-TITLE ;NCOPIES)

The restructured version of the program was determined to be much easier to understand

by the user organization, and tests devised for the software could not distinguish between the

functionalities of the two versions.

The techniques used are supported by tools which are based on the use of the programmers

intuition about program semantics, and on abstraction transformations based on this understand-

ing (selected from a menu). They do not require great familiarity with mathematical proof or

logic.

Work is continuing to adapt these techniques to other languages, particularly FORTRAN 77

and C.

12

14 A Rewrite System for Finite Process Descriptions

Work was also carried out in the area of re-engineering concurrent systems, de�ned in a language

such as CSP [Hoa85]. A set of transformations and rewrite rules were developed and implemented

[22], which removed all occurrences of the concurrent execution operator (jj).

15 Maintenance Models

As part of the formal methods underpinnings for the REDO project, industrial collaboration with

Computer Technologies Co. in Greece on the design and prototype implementation of a model

of the software maintenance process was undertaken [40]. This model expresses the concepts

embodied in the software maintenance department of a medium sized software house in terms of

synchronized Predicate Nets, and was easily implemented in Prolog.

The prototype implementation of the model is able to predict the e�ectiveness of various

management strategies that might be employed by the department `against' a stream of incom-

ing maintenance projects. Both the characteristics of the incoming stream and the characteristics

of the model maintenance department can be customized to reect the real situation fairly ac-

curately, which makes the implementation a useful commercial tool, and it is being pursued as

such by CTC. The prototype also allows the use of `real' incoming jobs|suitably coded|and

the ability to run various allocations of personnel and other resources in order to evaluate the

best real-life options.

16 A Speci�cation-based Approach to Maintenance

In this part of our research, we used the language Z++, and a method based upon this language,

to support the use of formal methods in software maintenance. The method is centered on the

maintenance of the speci�cations and the development record, not upon source code or Structured

Methodology documentation. It is proposed as a practical approach for software in the medium

term future, allowing the mass of programming detail that makes the code maintenance problem

so expensive to be ignored. Therefore changes and extensions to application systems can be

made more rapidly. We describe the language and give details of the speci�cation and re�nement

system, together with a description of the current state of the implementation of this system in

[31].

The components of the method are:

� a standard speci�cation style for systems;

� exact semantic correspondences between code and speci�cation forms [27];

� a systematic process of implementing changes to systems by changing the speci�cation and

updating all documentation in line with this change.

In other words we intend to maintain the development record, the entire structure of re�nement

steps and documentation encompassing the derivation of code from speci�cations, as opposed

to just maintaining the code. Because of the considerable investment already by some parts

of industry in using and learning Z (e.g., [Phi90]), we felt such a formalism should be chosen,

especially as it is widely regarded as one of the best or most usable formal speci�cation languages,

and much information and experience is increasingly available about the language [2].

13

The signi�cant di�erence between our language and Z is in the ability to de�ne object classes,

templates for objects which encapsulate a state, invariant properties of that state, and operations,

owned by the object, using this state. We also adopt a wide-spectrum approach; the use of

code constructs of UNIFORM, such as DO WHILE and RECEIVE / SEND, which have a precise

mathematical meaning [17].

Theoretical background for the approach, as applied with Z and the B Abstract Machine

Notation, is described in [38]. An important consideration in the approach is the need to ensure

that transformations upon a system as a result of a required maintenance change are re�nements,

and that the speci�cation constructs preserve re�nement.

17 Conclusion

This paper has outlined a number of techniques which could be used in the software maintenance

process, and for the reverse engineering of existing programs in particular. Research at Oxford

University has concentrated on the formal aspects of work undertaken on the collaborative REDO

project. In addition, we have produced a number of prototype tools, mostly using Prolog [13].

These have been integrated around a common database with the other tools produced on the

project. The overall toolset, or one similar to it, could eventually form the basis of a software

maintainer's workbench. Industrial partners on the REDO project have integrated a considerable

number of software maintenance tools onto a common platform (including those described in this

paper). A signi�cant number of publications have resulted directly from the work on the project

and the most important of these are listed at the end of this paper.

Reverse engineering is essentially a human process requiring air and skill [15]; tools can

only aid the maintainer to gain an understanding of the code more quickly, not fully automate

the generation of a speci�cation from an existing program. Once a speci�cation is obtained, a

new program may be re-engineered from it using one of the more standard and well understood

development techniques.

Having a speci�cation of a program introduces the problem of maintaining the speci�cation

and keeping it in step with the program. This paper has presented a technique, based on an

object-oriented version of the formal Z notation, known as Z++, that could be used to aid the

maintenance of programs. It is to be hoped that an increasing amount of software will be well

speci�ed in the future to allow such an approach to be adopted.

REDO tools and methods have been further developed by the industrial partners of the

consortium, particularly the University of Limerick, via their campus company, Piercom, and by

Lloyd's Register. Further projects, the DTI SREDM project, and the REM Eureka project, are

extending the REDO methods.

Acknowledgements

We thank our colleagues on the ESPRIT II REDO project (no. 2487) for a stimulating and varied

three years on the project. In particular, Howard Haughton of Lloyd's Register (London, UK),

and Giorgos Papapanagiotakis, formally at CTC (Athens, Greece), have co-authored a number

of reports and publications. The research was undertaken in the main whilst the authors were

at the Oxford University Computing Laboratory. Peter Breuer and Kevin Lano were funded by

the REDO project. Jonathan Bowen was funded by the UK Science and Engineering Research

Council (SERC).

14

Bibliographies

Please note that copies of REDO project documents and PRG Technical Reports and Monographs

are available from the Librarian at the Oxford University Computing Laboratory.

A Project Publications and Reports

[1] J.P. Bowen. From programs to object code using logic and logic programming. In

R. Giegerich and S.L. Graham, editors, Code Generation { Concepts, Tools, Techniques,

Workshops in Computing, pages 173{192. Springer-Verlag, 1992. Proc. International Work-

shop on Code Generation, Dagstuhl, Germany, 20{24 May 1991.

[2] J.P. Bowen. Select Z bibliography. In J.P. Bowen and J.E. Nicholls, editors, Z User Work-

shop, London 1992, Workshops in Computing, pages 309{341. Springer-Verlag, 1993.

[3] J.P. Bowen. From programs to object code and back again using logic programming: Com-

pilation and decompilation. Journal of Software Maintenance: Research and Practice, to

appear.

[4] J.P. Bowen and P.T. Breuer. Occam's razor: The cutting edge for parser technology. In

TOULOUSE 92: Fifth International Conference on Software Engineering and its Applica-

tions, EC2, 269 rue de la Garenne, 92024 Nanterre Cedex, France, 7{11 December 1992.

[5] J.P. Bowen and P.T. Breuer. Decompilation. In H. van Zuylen, editor, The REDO Com-

pendium: Reverse Engineering for Software Maintenance, chapter 9, pages 131{138. John

Wiley, 1993.

[6] J.P. Bowen, P.T. Breuer, and K.C. Lano. The REDO project: Final report. Technical

Report PRG-TR-23-91, Oxford University Computing Laboratory, 11 Keble Road, Oxford,

UK, December 1991.

[7] P.T. Breuer. A PREttier Compiler Compiler: higher order programming in C. In

TOULOUSE 92: Fifth International Conference on Software Engineering and its Appli-

cations, EC2, 269 rue de la Garenne, 92024 Nanterre Cedex, France, 7{11 December 1992.

[8] P.T. Breuer and J.P. Bowen. Decompilation is the e�cient enumeration of types. In M. Bil-

laud et al., editors, Journ�ees de Travail WSA'92 Analyse Statique, volume BIGRE 81{82,

pages 255{273, F-35042 Rennes cedex, France, 1992. IRISA-Campus de Beaulieu.

[9] P.T. Breuer and J.P. Bowen. Decompilation: the enumeration of types and grammars.

Technical Report PRG-TR-11-92, Oxford University Computing Laboratory, 11 Keble Road,

Oxford, UK, May 1992. Provisionally accepted by ACM Transactions on Programming

Languages and Systems (TOPLAS).

[10] P.T. Breuer and J.P. Bowen. A PREttier Compiler-Compiler: Generating higher order

parsers in C. Technical Report PRG-TR-20-92, Oxford University Computing Laboratory,

11 Keble Road, Oxford, UK, November 1992. Submitted for publication.

[11] P.T. Breuer and J.P. Bowen. The PRECC compiler-compiler. In E. Davies and A. Findlay,

editors, Proc. UKUUG/SUKUG Joint New Year 1993 Conference, pages 167{182, Owles

Hall, Buntingford, Herts SG9 9PL, UK, 1993. UK Unix Users Group / Sun UK Users Group,

UKUUG/SUKUG Secretariat.

15

[12] P.T. Breuer and K.C. Lano. Creating speci�cations from code: Reverse engineering tech-

niques. Journal of Software Maintenance: Research and Practice, 3:145{162, 1991.

[13] P.T. Breuer and K.C. Lano. Using Prolog for reverse-engineering and validation. In Logic

Programming Summer School (LPSS '92), Zurich, Lecture Notes in Arti�cial Intelligence.

Springer-Verlag, 1992.

[14] P.T. Breuer and K.C. Lano. Reverse engineering COBOL via formal methods. Journal of

Software Maintenance: Research and Practice, 5, March 1993.

[15] P.T. Breuer, K.C. Lano, and J.P. Bowen. Understanding programs through formal meth-

ods. In H. van Zuylen, editor, The REDO Compendium: Reverse Engineering for Software

Maintenance, chapter 15, pages 195{223. John Wiley, 1993.

[16] K.C. Lano. Validation through re�nement and execution of speci�cations. REDO project

document 2487-TN-PRG-1041, Oxford University, UK, August 1990.

[17] K.C. Lano. An axiomatic semantics of UNIFORM. REDO project document 2487-TN-PRG-

1011, Oxford University, UK, December 1991.

[18] K.C. Lano. The design of the veri�cation toolset. REDO project document 2487-TN-PRG-

1068, Oxford University, UK, August 1991.

[19] K.C. Lano. Expressing the semantics of COBOL in Z. REDO project document 2487-TN-

PRG-1055, Oxford University, UK, November 1991.

[20] K.C. Lano. An operational semantics for UNIFORM. REDO project document 2487-TN-

PRG-1005, Oxford University, UK, December 1991.

[21] K.C. Lano. An outline speci�cation of the CICS API. REDO project document 2487-TN-

PRG-1025, Oxford University, UK, December 1991.

[22] K.C. Lano. A rewrite system for �nite process descriptions. REDO project document 2487-

TN-PRG-1082, Oxford University, UK, November 1991.

[23] K.C. Lano. Simple concurrent reasoning. REDO project document 2487-TN-PRG-1019,

Oxford University, UK, December 1991.

[24] K.C. Lano. Test results for the veri�cation tool set. REDO project document 2487-TN-

PRG-1069, Oxford University, UK, August 1991.

[25] K.C. Lano. Veri�cation using formal techniques. REDO project document 2487-TN-PRG-

1066, Oxford University, UK, August 1991.

[26] K.C. Lano. Z++, an object-orientated extension to Z. In J.E. Nicholls, editor, Z User

Workshop, Oxford 1990, Workshops in Computing, pages 151{172. Springer-Verlag, 1991.

[27] K.C. Lano and P.T. Breuer. From programs to Z speci�cations. In J.E. Nicholls, editor,

Z User Workshop, Oxford 1989, Workshops in Computing, pages 46{70. Springer-Verlag,

1990.

[28] K.C. Lano, P.T. Breuer, and H.P. Haughton. Using object-oriented extensions of Z for

maintenance and reverse-engineering. Technical Report PRG-TR-22-91, Oxford University

Computing Laboratory, 11 Keble Road, Oxford, UK, December 1991.

16

[29] K.C. Lano, P.T. Breuer, and H.P. Haughton. Reverse engineering COBOL via formal meth-

ods. In H. van Zuylen, editor, The REDO Compendium: Reverse Engineering for Software

Maintenance, chapter 16, pages 225{248. John Wiley, 1993.

[30] K.C. Lano and H.P. Haughton. Axiomatic semantics for object-orientated speci�cation

languages. In ZOOM Workshop, Oxford University, 11 Keble Road, Oxford, UK, August

1991. Preprint.

[31] K.C. Lano and H.P. Haughton. A speci�cation-based approach to maintenance. Journal of

Software Maintenance: Research and Practice, 3:193{214, December 1991.

[32] K.C. Lano and H.P. Haughton. An algebraic semantics for the speci�cation language Z++. In

Proc. Algebraic Methodology and Software Technology Conference (AMAST '91). Springer-

Verlag, 1992.

[33] K.C. Lano and H.P. Haughton. Extracting functionality and design from COBOL. In Proc.

CASE'92. IEEE Press, 1992.

[34] K.C. Lano and H.P. Haughton. Reasoning and re�nement in object-oriented speci�cation

languages. In O.L. Madsen, editor, ECOOP '92: European Conference on Object-Oriented

Programming, volume 615 of Lecture Notes in Computer Science, pages 78{97. Springer-

Verlag, 1992.

[35] K.C. Lano and H.P. Haughton. Software maintenance research and applications. In J. Lep-

oniemi, editor, Proc. NordDATA '92. Pitky, 1992.

[36] K.C. Lano and H.P. Haughton. Integrating formal and structured methods in reverse engi-

neering. In Working Conference in Reverse Engineering. IEEE Press, May 1993.

[37] K.C. Lano and H.P. Haughton. Object Oriented Speci�cation Case Studies. Prentice Hall,

1993. To appear.

[38] K.C. Lano and H.P. Haughton. Reuse and adaptation of Z speci�cations. In J.P. Bowen

and J.E. Nicholls, editors, Z User Workshop, London 1992, Workshops in Computing, pages

62{90. Springer-Verlag, 1993.

[39] K.C. Lano and H.P. Haughton. Reverse Engineering and Software Maintenance: A Practical

Approach. International Series in Software Engineering. McGraw Hill, 1993. To appear.

[40] G. Papapanagiotakis and P.T. Breuer. A software maintenance management model based

on queuing networks. Journal of Software Maintenance: Research and Practice, 4, 1992.

B Other References

[Abr92] Abrial J.-R., Assigning Programs to Meaning, Prentice Hall 1993, to appear.

[AG90] Ashworth C., Goodland M., SSADM: A Practical Approach, McGraw Hill Interna-

tional Series in Software Engineering, 1990.

[Bau85] Bauer F.L., The Munich project CIP. Volume 1: the wide spectrum language CIP-L,

Springer-Verlag, Lecture Notes in Computer Science, 183, 1985.

17

[Coh89] Cohn A., Comments on the formal proof of the VIPER microprocessor, International

Journal of Automated Reasoning, 5 2, 1989.

[CP90] Couturier P., Puccetti A., ATES: An integrated system for software development and

validation, ESPRIT '90 Conference Proceedings, Kluwer Academic Publishers, 1990,

242{263.

[Esp90] ESPRIT Directorate General XIII, Synopses of Information Processing Systems, ES-

PRIT II Projects and Exploratory Actions, Volume 4 of a series of 8, Commission of

the European Communities, September 1990.

[Fos90] Foster J., Those maintenance statistics, Software Maintenance Workshop, Centre for

Software Maintenance, Durham University, September 1990.

[Fos92] Foster J., Survey report, European Special Interest Group in Software Maintenance,

Newsletter Issue 3, June 1992, 5{7.

[Goo84] Good D.I., Mechanical proofs about computer programs, Phil. Trans. Royal Society,

London, A 312, 1984, 389{409.

[JL78] Johnson S.C., Lesk M.E., Language development tools, The Bell System Technical

Journal, 57 6, part 2, July/August 1978, 2155{2175.

[Hoa69] Hoare C.A.R., An axiomatic approach to computer programming, Communications

of the ACM, 12, October 1969.

[Hoa85] Hoare C.A.R., Communicating Sequential Processes, Prentice Hall International Se-

ries in Computer Science, 1985.

[HHBP90] Hoare C.A.R., He Jifeng, Bowen J.P., Pandya P.K., An algebraic approach to ver-

i�able compiling speci�cation and prototyping of the ProCoS level 0 programming

language, in Directorate-General of the Commission of the European Communities

(eds), ESPRIT '90 Conference Proceedings, Kluwer Academic Publishers, 1990, 804{

818.

[Kat90] Katsoulakos P.S., REDO, in Norman R.J., Ghent R.V. (eds), CASE '90: Fourth

International Workshop on Computer-Aided Software Engineering, IEEE Computer

Society Press, 1990.

[Leh80] Lehman M.M., Programs, life cycles, and laws of software evolution, Proc. IEEE, 68

9, 1980, 1060{1076.

[LPW88] Leonard J., Pardoe J., Wade S., Software maintenance { Cinderella is still not get-

ting to the Ball, in Proc. Second IEE/BCS Conference: Software Engineering 88,

Conference Publication No. 290, 1988, 104{106.

[Loo92] Loosley, C., CASE Tools and Repositories: The Challenge of Integration, NordDATA

'92, DataBase Associates, 1992.

[Peg91] Pegueroles J.M., T5310 Final Information Package, Centrisa, Barcelona, Spain, 1991.

[Phi90] Phillips M., CICS/ESA 3.1 experience, in Nicholls J. (ed), Z User Workshop, Oxford

1989, Springer-Verlag, Workshops in Computing, 1990, 179{185.

18

[Sch87] Schneidewind N.F., The state of software maintenance, IEEE Transactions on Soft-

ware Engineering, SE-13 3, March 1987, 303{310.

[Sho77] Shostak R., The Sup-Inf method for proving Presburger formulae, Journal of the

ACM, 24 4, October 1977, 529{543.

[Spi92] Spivey J.M., The Z Notation: A Reference Manual, 2nd edition, Prentice Hall Inter-

national Series in Computer Science, 1992.

[vanZ92] van Zuylen H. (ed), The REDO Compendium: Reverse Engineering for Software

Maintenance, John Wiley, 1993.

19

