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This paper describesxvpodh a visualization tool developed to support the analysis of optimizations
performed by the vpo optimizer. The tool is a graphical optimization viewer that can display the
state of the program representation before and after sequences of changes, referred to as transforma-
tions, that results in semantically equivalent (and usually improved) code. The information and
insight such visualization provides can simplify the debugging of problems with the optimizer.
Unique features ofxvpodbinclude reverse viewing (or undoing) of transformations and the ability to
stop at breakpoints associated with the generated instructions. The viewer facilitates the retargeting
of vpoto a hew machine, supports experimentation with new optimizations, and has been used as a
teaching aid in compiler classes.
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1. Introduction

To increase portability compilers are often split into two parts, a front end and a back end. The front
end processes a high-level language program and emits intermediate code. The back end processes the
intermediate code and generates assembly instructions for the target machine architecture. Thus, the front
end is dependent on the source language and the back end is dependent on the instruction set for the target
machine. Retargeting such a compiler for a new machine requires the creation of a new back end. While
the time and effort required to retarget a back end of a compiler to a new machine has decreased over the
years, performing this task in an expeditious manner still remains a problem. One reason is that the rate at
which new machines are being introduced has increased. Also, there is an increasing reliance on compilers
to perform highly sophisticated optimizations that exploit architectural features. Usually these optimiza-

tions can be applied most effectively in the back ends of compilers [1].

"A preliminary version of the optimization viewer was describeBroceedings of the ACM SIGPLAN '93 Conference on Program-

ming Language Design and Implementatiomer the title "Isolation and Analysis of Optimization Errors." A demonstration version

of the viewer is currently available for perusal. The files (which includes documentation, input data, and executablestioof vari
machines) are available via anonymous ftp from ftp.cs.fsu.edu (128.186.121.27) in the /pub/whalley/xvpodb directory. Readers int
ested in this research are encouraged to obtain these files and experiment with this demonstration version. As is coms®nly the ca
with graphical applicationvpodbhas many characteristics that are difficult to describe in prose, but trivial to understand when seen
and used.



Much of the effort required to retarget a back end occurs during testing. Long periods of time are
often spent attempting to determine why incorrect code is generated or why specific optimizations cannot
be applied. A significant portion of this effort is due to the inherent nature of optimizing compilers and the
inadequate debugging facilities of conventional source-level symbolic debuggers. There are many features

that a compiler writer would find useful when diagnosing problems in a optimizing compiler.

(1) Ideally, the program representation should appear in a easily readable display that is automatically
updated each time the data structure is changed.

The representation of a program being optimized is often stored in an encoded internal format. While the
compiler writer may have access to a function that will dump the contents of the data structure containing

this encoded information, repeatedly invoking this function is a tedious task.

(2) Itwould be desirable to have a tool that can indicate the exact portions of the representation that were
altered during a transformation.

An optimizer performs a series of transformations on the representation of a program. Each transformation
consists of a serial sequence of changes that results in semantically equivalent (and usually improved) code.
A compiler writer may wish to see the set of changes associated with a particular transformation. Even if
the compiler writer has the ability to dump the program representation in a readable format before and

after the transformation occurred, the actual differences may be difficult to detect.

(3) Programmers in general and compiler writers in particular would use data breakpoints more fre-
quently if they were efficient and could be easily specified.

Data breakpoints are often available with source-level debuggers. Unfortunately, executing a debugger
while data breakpoints are set can result in prohibitively slow execution. Data breakpoints are also difficult
to set when dealing with dynamically allocated data structures (i.e. a traversal through the structure may be
required to specify the desired portion). Unlike many other types of applications, a large portion of the data
in compilers is dynamically allocated to hold the representation of the program being compiled.

(4) The ideal approach for discovering why an invalid instruction(s) was generated is to set a data break-

point on the specific invalid instruction(s) and view the transformations in reverse until the invalid
instruction(s) is discovered.



When diagnosing an error, a compiler writer may determine that a specific instruction (or set of instruc-
tions) caused the execution of the compiled program to produce incorrect output. The compiler writer
needs to know why the optimizer generated the incorrect instruction(s). Unfortunately, it is difficult to

reach the point that the invalid instruction(s) was generated during the comﬁilation.

A graphical optimization viewer, callexpodb(X-windows VPO DeBugger), has been developed
that allows the programmer to view each optimization performed by the optimizer. One could obtain the
same information using a conventional source-level symbolic debugger to examine internal data structures.
However, this process is often slow, labor intensive, and prone to human error. The abstract, yet precise
way the transformations are presented by the viewer allows the compiler writer to see an application-
oriented view of the program representation, rather than struggling with inadequate debugging tools to

inspect the data structures.

The viewer,xvpodh also recognizes the temporal aspect of a compilation. vpb@ptimizer can
iteratively apply optimization phases many times during the optimization of a function. The viewer identi-
fies not only what changes occurred, but also when they occurred during the compilation (relative to other
changes). Conveying this temporal information to the compiler writer can simplify the eradication of bugs
that only manifest when a certain cascading set of optimization phases are applied to a specific function.
Selective viewing of the transformations performed/pgis accomplished using breakpoints. The break-
point paradigm used xvpodbis simple and efficient. It allows the compiler writer to quickly focus on the
desired portion of the compilation. The optimization viewer also has a feature that prevents a common
frustration that occurs with conventional source-level symbolic debuggers. The viewer has the ability to
reverse the effects of any or all transformations performed in the order in which they were applied during
the compilation of a function. With this feature the compiler writer need not be concerned about executing

the optimizer "one step too far" and being forced to reexecute.

! While data breakpoints are available (and inefficient) with some source-level debuggers, no current source-level debuggers
support unlimited reverse execution.



This paper is structured as follows. Section 2 describes the compiler that is viewed byvpentiy
Section 3 depicts an overview of the functionality of the viewer. Section 4 illustrates some examples of
using the tool. Section 5 provides details about the implementatiorpotib Section 6 discusses porting
the viewer to other machines and compilers. Section 7 gives insight about the viewer's performance effi-

ciency. Section 8 describes related work and Section 9 summarizes the contributions of the paper.

2. Overview of the Compiler

The optimization viewer described in this paper supports the compiler technology knayo as
(Very Portable Optimizer) [2], [3], [1]. The optimizespa replaces the traditional code generator used in
many compilers and has been used to build C, Pascal, and Ada compilers. The back end is retargeted by
supplying a description of the target machine. Using the diagrammatic notation of Wulf [4], Figure 1
shows the overall structure of a set of compilers constructed ysing/ertical columns within a box rep-
resent logical phases which operate serially. Columns divided horizontally into rows indicate that the sub-
phases of the column may be executed in an arbitrary order. IL is the Intermediate Language generated by
a front end. Register transfer lists (RTLs) describe the effects of machine instructions and have the form of
conventional expressions and assignments over the hardware’s storage cells. For example, the RTL

r[1] = r[1] + r[2]; cc =r[1] + r[2] ? O;

represents a register-to-register integer add on many machines. While any particular RTL is machine-

specific, the form of the RTL is machine-independent.

All phases of the optimizer manipulate RTLs. The RTLs are stored in a data structure that also con-
tains information about the order and control flow of the RTLs within a function. One advantage of using
RTLs as the sole intermediate representation is that many phase ordering problems are eliminated. In con-
trast, a more conventional compiler system will perform optimizations on various different representations.
For instance, machine-independent transformations are often performed on intermediate code and machine-
dependent transformations, such as peephole optimizations, are often performed on assembly code. In
addition, local transformations (within a basic block) are often performeDA@h representations and

global transformations (across basic blocks) are often performed on three-address codes. Due to the
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overhead involved, translating from one representation to another is only typically done once. Thus, the

order in which optimizations are performed is fixed. By only using RTLs, most optimizations can be
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Figure 1: Compiler Structure

invoked in any order and allowed to iterate until no further improvements can be found.

Another advantage is that since each RTL represents a legal machine instruction, the effect of a modi-
fication to the set of RTLs comprising a function is relatively simple to grasp. In contrast, most conven-
tional compiler systems generate code after optimizations. Thus, the optimizations are actually performed
on intermediate code. Since there is typically not a one-to-one mapping between an intermediate code

operation and a machine instruction, the effect of a modification on the final code that will be generated

may not be obvious in these systems.



3. Functional Description of XYPODB

The xvpodbviewer is a separate program that can execute concurrently witpdloptimizer. Fig-
ure 2 depicts how viewing optimizations is typically accomplished. The circles represent processes and the
arrows show communication channels between the processes. The optimizer is executed within a source-
level debugger, which allows the compiler writer to control the execution of the compiler and inspect inter-
nal data structures. Information is passed figato xvpodbabout the compilation of a source file. The
message passing paradigm chosen provides the user with the option of exgouingxvpodbon two
different machines. Due to the use of X Windows, the user also has the option to view the output windows
of these two process groups on yet another machine. This allows the user to use the resources of up to three

machines, thus speeding up the debugging cycle.

The vpo optimizer will first pass a set of messages that describes the initial state of all RTLs in the
function currently being compiled before performing optimizations. After receiving these messages,

xvpodbwill display this initial set to the user. Subsequently, messages containing descriptions of all

XVPODB

X-Window Server

Figure 2: Typical Use of XVPODB



changes to the RTLs as they occur will be passesigodh which stores them for later interpretation at the

request of the user. If a new file is compiled, then both the optimizer and xvpodb have to be reinitialized.

The viewer does not have to be executed concurrently with the compiler. A separate program was
developed to receive the messages from the compiler and store them in a file. Another simple program was
implemented to read the messages from a file and send thewpddb Thus,vpds message sending
paradigm can be simulated without the overhead of performing the actual compilation. This feature is very

useful when usingvpodbas a teaching aid.

Perhaps the best analogy fwpodbwould be a video editing machine. The changes described in the
messages sent by the compiler are analogous to the individual frames of a movie. The sequential sets of
changes that represent transformations are comparable to scenes in the moxepodiheiewer can be
thought of as a video editing machine that has the ability to show scenes in forward or reverse, to quickly
locate any scene or set of scenes in the movie, and to show as much or as little detail (individual frames)
about any scene in the movie as desired. Tkyodbcan show a compiler writer exactly what happened
to the program representation during any portion of the optimization process. If one wishes to study a par-
ticular optimization phase, thewpodbcan depict only the transformations performed by that phase. If one
desires to examine a particular instruction, tkepodbcan isolate only those transformations that directly
affected that instruction. These breakpoint criteria can be combined. For exawgadbcan show any
changes to a selected instruction that occurred in a specified optimization phase during the entire optimiza-

tion process. All of these operations can be performed in both forward and reverse directions.

3.1. Main Window

Figure 3 depicts the main window gfpodb This window consists of three sections. The large
middle section of the window displays a portion of the RTL structure at a given point during the compila-
tion of one of the function&The RTLs are shown contained in rectangles, which represent basic blocks.

The basic blocks are shown in the order in which they will appear when generated as assembly instructions.

2The RTLs in Figure 3 describe SPARC instructions in the funatilimewithin the UNIX utility banner
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Figure 3: Main Window for XVPODB




The RTLs themselves are displayed in human readable form (not the encoded internal formavpged by
The highlighted RTLs are those that are affected by the transformation being viewed. The scrollbar to the

left of the display area can be used to view any part of the current set of RTLs.

Transfers of control between basic blocks are depicted using arcs (the arrowheads on the arcs indicate
direction of transfer). Short arcs with double arrows were used to represent arcs that are longer than two
screen lengths since long arcs are difficult to trace by a user and often resulted in a cluttered display.
Instead, the user can use the right mouse button to automatically follow the control flow between blocks.
The RTL display will be centered on the target block of a branch or jump by clicking the right mouse but-
ton on the header of the basic block containing the transfer of control. If the user clicks the right mouse
button while holding down the shift key in a basic block header, then the RTL display will be centered on

the basic block that branches or jumps to the specified Block.

In the top section of the window are a set of labels that provide information to the user. These labels
indicate the name of the function being examined, the optimization phase in which the current transforma-
tion is performed, the number of the current transformation, and the total number of transformations that
have been received for this function. Also shown is the current state of the transformation. A BEFORE
state indicates that the current transformation has not yet been applied to the RTLs displayed. If an RTL is
highlighted in a BEFORE state, then the RTL will be deleted or modified in some manner. An AFTER
state indicates that the current transformation has been applied. Highlighted RTLs in an AFTER state were
either inserted or altered. In addition, a label is displayed that shows the number of highlighted RTLs. A

user may find this number useful since all highlighted lines may not fit on the screen at one time.

The bottom section of the main window contains buttons that represent the different options available
to the user via mouse clicks. Four of these buttons resemble the controls on an audio cassette player
(including audio reverse). When ti&tep Forward (>) and Step Backward (<) buttons are clicked,

xvpodbdisplays the next or previous transformation, respectively. The user can view a full transformation

3 If there is more than one branch or jump to the specified block, then a list of the blocks containing these transfers of control
will be displayed.



with two clicks of the mouse. For instance, assume the viewer is displaying the BEFORE state of a trans-
formation (as in Figure 3). With one mouse click onHmutton the AFTER state of the same transforma-

tion will be shown. Selecting again will result in the BEFORE state of the next transformation being dis-
played. The< button works similarly, except that the user either proceeds from the AFTER state to the
BEFORE state of the same transformation or from the BEFORE state to the AFTER state of the previous
transformation. Th&€ontinue Forward (>>) andContinue Backward (<<) buttons are similar to and

<, except the viewer continues to apply transformations until either a breakpoint is reached or the end or
beginning of the transformation list is encountered. Breakpoints can be set, listed, and deleted by selecting
the Set/List/Delete Breakpointsbutton and using its associated windows. Managing breakpoints is dis-

cussed in the following section.

The user can view the transformations serially or at specified breakpoints, either in the forward
(showing the transformations being applied) or reverse (showing them being undone) direction. In other
words, the user does not need to reexecute anything to view a previously applied transformation. The user
can reverse the effects of any or all transformations with a few mouse clicks. This process does not affect
the ability to interpret transformations in the forward direction. Thus, the user can view a transformation or
set of transformations being applied and reversed as many times and in as many areas of the compilation as
desired, which is very useful for comprehending the full effect of complicated transformations. Also, the
programmer need not compile the entire function to be able to view transformations. The viewer will allow
the user to see any transformations that have already been receivegproirhe programmer can step
vpo using a source-level debugger through its optimization of a function one transformation at a time.
Thus, at any given point one can both view the graphical representation of the RTLs and study the actual

data structures and source code in the optimizer that produced it.

3.2. Managing Breakpoints

There are three types of breakpointswpodb The simplest is ransformation numbebreakpoint.
The user enters a transformation number or humberscgatibwill break at the BEFORE or AFTER

state of these transformations (depending on the direction of viewing). \Biodeows the number of
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each transformation it sendsxepodh this provides a convenient way to coordinate breakpoints in both the

compiler and the viewd.

The user selects a set of optimization phases to cre@ptanization Phasereakpoint. After click-
ing on a continue button, the viewer will stop whenever one of these phases is encountered. The first or last

transformation in the phase will be displayed, depending on whether thre<< button was selected.

The final type is aRTLbreakpoint. The user can choose a set of RTLs to be associated with a set of
optimization phases selected. The viewer will stop whenever any of the selected RTLs is changed in any
way during any of the selected phases for that breakpoint. Figure 4 shows several of the menus used to set

this type of breakpoint.
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Figure 4: Setting Breakpoints in XVPODB

4 Thetransformation numbebreakpoints also allow a user to quickly view an invalid transformation identified by the error iso-
lation tool calledvpoiso[5].
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The user also has the option to list and delete the existing breakpoints. The user can simply list the
transformation numbers associated with the curramisformation numbebreakpoints and click on the
numbers to be deleted. More information is provided foRfie breakpoint, as shown in Figure 5. How-
ever, these breakpoints are associated with actual instructions that may have been altered since the break-
point was set. The user needs information to remember the reason for setting the breakpoint. Therefore,
the user is also shown the transformation number and the text of each RTL in the breakpoint when the

breakpoint was set.
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Figure 5: Listing and Deleting Breakpoints in XVYPODB

3.3. Other Options

Selection of théptionsbutton in the bottom section of the main window pops up a menu of buttons
that implement less commonly used features of the viewer. This menu is shown in Figure 6. The options

were placed in a separate menu to reduce screen clutter and provide a convenient place for future
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Figure 6: Options Window

developers to add minor features to the viewer. Pleeeed to Next Functiobutton is used to instruct
xvpodbto discard the current function data and interpret the next function that was compile@.o Tloe

Initial Setbutton allows the user to undo all transformations for the current function. Thus, a view of the
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initial set of RTLs for the current function will be displayed. Apmply All Transformationbutton is used
to display the completely optimized set of generated instructions by applying all the transformations that

have been received for the current function. Both of these features skip all breakpoints.

Clicking theDump RTLdutton pops up a window that can be used to dump the current set of RTLs
displayed. As shown in Figure 7, the alternatives include dumping the RTLs to stderr, a file, or to a
printer.5 In addition, the user can select the range of blocks to be dumped. This feature is useful for analyz-

ing the BEFORE and AFTER states of a particular transformation.
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Figure 7: Dump RTLs Window

The user can select tienter Screebutton to quickly center any section of the RTL structure on the
screen. As illustrated in Figure 8, the user can either specify a block number or the hex address of a pointer
to a block or RTL. The hex address is the same as the addrgsssipointer to that structure. This fea-
ture is very useful while viewing the RTLs witlrpodband controlling the execution apowith a source-
level debugger since the user can easily locate a structywpaabusing the actual pointer address within

the compiler.

5 The term stderr refers to the standard error file associated with C programs. When xvpodb is invoked from a shell script, this
output can be captured in a diagnostic window as shown in Figure 10.
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Figure 8: Center Screen Window

Measurements about the current display of RTLs can be obtained by selectBigtihdvieasure-
mentsbutton. Figure 9 shows the window that pops up containing a scrollable display of information. The
set of natural loops with the humber of instructions and memory references at each loop nesting level is
shown. A user can quickly grasp the benefit of the optimizations performed on a function by viewing these

measurements at the initial set of RTLs and after all transformations have been applied.

Fraceed o o
e Lo Ind Static Heaszurements

Hpply BLL fra

Hatural Loopz

nest level loop head other blocks

1 15 16, 17, 18, 19, 20, 21
1 9 10
2 19 20
2 16 17

Frequency Infornation

loop nesting level instructions  nenory references
108
1 q7 q

Figure 9: Static Measurements Window

Clicking theHide Controlflow Arcdoggle allows the user to turn off (or back on) the drawing of arcs

that represent the control flow between basic blocks. Arcs will be drawn by default. This feature is
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convenient when using a very slow X server or if the RTLs are being displayed over a long haul network.

Sometimes it may not be clear to a usexwgfodbexactly what changes occurred duringpatrans-
formation. By selecting thBhow Transformation Detaiteggle, the user will be shown information about
every change message sentvpyp for a transformation. This information is displayed whenever the user
advances to the BEFORE state of a transformation. For instance, Figure 10 shows the details of the trans-

formation illustrated in Figure 3.
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Port number 3613

CHANGE INFORMATION FOR TRANSFORMATION: 87
MODIFY RTL (00229%ee8) in block 21 (00Z229760)

01ld RTL text = *IC=r[d40]?r[39];°
New BTL text = *IC=r[40]7%;"

DELETE RTL (00229448) in block 21 (00229760)
01ld RTL text = "pr[39]=9;"

MODIFY DE2DS (0022%=e8) in block 21 (00229760)
BETL asscc with deads = fIC=r[40]7r[39];"

01d deads = *r[39]r[40]*", New deads = "r[d40]"

Figure 10: Transformation Details

3.4. Obtaining Information on RTLs or Basic Blocks

Information is provided byvpodbthat allows the user to easily locate the desired portiorpds$
internal data structure. For example, the programmer can find the pointer addresswxsdibgny RTL
or basic block simply by clicking on it kvpodb The user can use this pointer address in the source-level

debugger to access that actual portion of the data structype. in

If the user clicks the middle mouse button on an RTL in the main RTL display, then a window will
appear showing extended information about the RTL. This information includes separate lines for the text
of the RTL and its dead register list and side effects. This popup window is typically wide enough to com-

pletely display all of these fields.

Similarly, the user can click the middle mouse button on a basic block header to obtain extended
information about that basic block. This information, which is illustrated in Figure 11, includes the pointer

addresses of the block, its predecessors, and its successors. Some commonly used data and control flow
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information is also calculated and displayed.

[®] ¥PO Optimization Viewer
Function | nkline() | [ BEFORE | Trans Hunber 187
Opt Phase | Connon Subexpr Elinination | El Highlighted Total 231

7 L4l

IC=r[131&r[11170;

FC=IC:0,142;

8

r[81=b[121{24:
r[81=r[81324:
IC=r[8170: rl8]
FC=IC:0, 144

Pr=Ld3;
10 [ Ldd R
rI81={BIAT11-114243 3241
11 ] 145
Pr=Ld3;
12 [ L42 R
r[81=32;
Options
Set/List/Delete . - , My,
Break
T34« BASIC BLOCK 8 (00226238) INFORMATION +

|: Successors: Blocks 9 {002268803, 10 {002267f8)
Predecessors:  Blocks 7 (00225428}
Hunber RTLs: 4
Live Ins: bL121r[11r[21r 31 [41r[S1rI6]r (1010 [111r[13]
Live Duts: bL121r[11r[21r[31r[41r[51r[61r[101r[111r[13]
Doninators: i, 2, 3. 6, 7, 8, 18, 19

Figure 11: Detailed Basic Block Information Window

4. Examples of Using the Viewer

To illustrate the power ofvpodh the process of using the viewer to diagnose an error and to under-
stand how a particular RTL was generated is described.
4.1. Diagnosing an Error

One of the major benefits afvpodbis to assist a compiler writer when diagnosing optimization

errors. To illustrate the use afvpodbin this process, the authors modified the code withinvibe
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optimizer to erroneously perform induction variable elimination. The modification was to comment out the
code that checks if the induction variable was live after exiting theeltﬁiwre 12 shows the BEFORE

and AFTER states of the invalid transformat{oFhe instruction incrementing induction variafl€0] is

deleted as a result of the transformation. ry&d] is used after the loop as an argumerpriotf | as
depicted in the last RTL of block 6. Detecting that the RTL that incremftfs  should not have been
deleted is easily accomplished by being able to view the BEFORE and AFTER states of the transformation.
In addition, the compiler writer can reexecwj@ within a source-level debugger and stop at the point
before the transformation was performed to discover why the transformation occurred. This point in the
execution can easily be reached simpealso counts the number of transformations performed during the

optimization of a function. A simple conditional breakpoint on the transformation counter will suffice.

[¢] ¥PO Optimization Viewer [¢] ¥PO Optimization Viewer
Function | nain{} | [ BEFORE | Trans Hunber [ 761: | Function | nain(} ] [_RFTER Trans Hunber
Opt Phase [ Tnduction Var Elinination | [ 1] Highlighted Total 83]: | Opt Phase [ Induction Var Elinination ] [ 0] Hishlishted Total

z]L13 3| L1
rI8IRIA(31]: r[BI=RLAL311:
PLLLI=r[111+008]: L8] PLLLI=r[111+r08]; L8]
[eTus | [eTus |
| FLE1=r314 | | risrerizie: |
5| LB
5| Li8 IC=r[31%r(9];
16=r[3170191; PL=10<0,L13;
PL=10<0,1L13; L
1 6] L7
6| L17 rI81=HIL22]:
rL8I=HIIL22]: PL8I=rIB1ALO0L22];
rL81=r81+L00L22]; JRCAEEE PR FEN
rI91=rl140;: PL111 ST=HIC_printf1+L00_printf1,80,3; =r(101;=r(3]
ST=HIL_printf1+LO[_printfl1,80,33 =r[101:=r[3] l
1 [7]us |
I 1
COetions ] [ Options ]
Set/List/Delete Set/List/Delete
Help Help

Figure 12: Inspecting the BEFORE and AFTER States of an Invalid Transformation

5 We had to manufacture an error to illustrate usivigpdbto find an optimizer problem since we currently don’t know of any
errors in thespocompiler.

” Note that the BEFORE and AFTER states of a transformation cannot both be displayed at the samxepdb iDisplay-
ing both simultaneously was deemed to require too much space on a screen since a user will typically have another wiridgw display
the compiler being executed within a source-level debugger at the same time. Besides being able to rapidly flip between the BEFORE
and AFTER states of a transformation using *hend < buttons, the user can dump the BEFORE and AFTER states of the basic
blocks involved in the transformation to a file or a printer, as shown in Figure 7. In addition, the user can obtain detits sg@ut
cific set of changes that comprise a transformation, as shown in Figure 10.
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4.2. Understanding How an Instruction Was Generated

Another benefit okvpodbis to allow a compiler writer to quickly understand how a particular RTL

was generated. Initially, the user directs the optimization viewer to reach a point when the particular RTL

has been produced. This is easily accomplished by selectingpibig All Transformations button

(located in the options menu), which causes the viewer to display the completely optimized set of RTLs.

For instance, Figure 13 shows the RTLs of a function after all optimizations have been applied. It may not

be obvious to a user how the fifth instruction in block 12, a left shift operation, was generated. Next, the

[#] VPO Optimization Viewer

Function |

Opt Phase|

cal(} | | AFTER | Trans Humber
Fill Delay Slots |

[ 2] Highlighted

Total

276
276

10 | L1oo
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11 | L1z

IC=r[1217[131;
PC=1C<40,L103:
r[81={Blr[1211{24}}24:

4

12 | L1ot

r[91=7:
r[81=UCL,rem,r[8]1,0[911: r[3]
r[81=r[161: r[1R]
r[191=r[3]1:
r[81=r[81{2:
r[81=-[81-r[191
r[161=r[221+r[8]:
rl20]=1r
r[81=HI[_monl:
r[81=r[81+L0L _monl:
r[81={Blr[241+r[A11{24 3324
IC=r[251M (812

PC=IC>0,L93:

r[81r[22]

13 | Loot

r[221=HI[ _monl:

Options

Set/List/Delete
Breakpoints

Help

<«<| < | >

Figure 13: After All Optimizations
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user sets aRTL breakpoint to cause the viewer to stop on any change to the desired RTL. At this point the

user can view each transformation involving this RTL being undone by successively cfieking

Figures 14 and 15 shows the AFTER and BEFORE states of the previous transformation involving

the left shift instruction. The transformation can be analyzed by clickiaigd> as many times as neces-

sary. By stepping backwards with tkebutton, the user is able to determine that the left shift was gener-

ated by applying strength reduction on a multiply operation, as shown in Figure 15. The user can click

[¢] ¥PO Optimization Viewer

|

Function

Opt Phase

cal{} |
Strength Reduction |

[ 3] Highlighted

Total

| AFTER | Trans Hunber

276

9 L100
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10 | Lin2
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r[81=r[161: rl1E]

r[3]

r[81=UCT rem, r[81,r[91]:
r[191=r[81:
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r[81=HI[_mor1:
r[81=r[81+L00_monl:
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<<

>

> >

Figure 14: After State of the Last Transformation Affecting the Instruction
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until the transformations that produced the particular RTL are understood. If desired, the user could click

>>to view each transformation being reapplied to the BTL.

[#] VPO Optimization Viewer E]

Function | cal{} | | BEFORE | Trans Hunber

Opt Phase | Strength Reduction | Highlighted Total 276

g L1o0
rl101=rl101+1s

10 | Lio2
IC=r[101%r[181:
PC=IC<0,L103;

11 | Liot

r[91=7:

r[81=r[1E1: rl1E]
r[81=UCL.rem, (81,0911 r[9]
r[191=r[81:
r[8l=r 3
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r[171=1:

r[81=HI[ _monl:

r[81=r[831+L00 _man]:
r[81=tBlr[18]+r[811{243324;
IC=r[171%[81:
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1)
12 | Logt
r[221=HIL _monl:
1)
JJ 13| L8 |
Options
Set/List/Delet
“Breakpoints || Q& < > > >
@iD[  telp ]

Figure 15: Before State of the Last Transformation Affecting the Instruction

5. Implementing XVPODB

The implementation okvpodbrequired obtaining information fromapo about the compilation,

retaining this information, and interacting with the user.

81f an invalid instruction has been identified and a toolVigeiso[5] is unavailable, then this technique can also be used to vi-
sually isolate the incorrect transformation.
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5.1. Obtaining Information from the Compiler

Thevpooptimizer was modified to send information about the optimization of a féegindb This
information was communicated via messages using UNIX sockets, but could easily be redone using remote
procedure calls (RPCs). Internet stream sockets were used to guarantee reliable communications and allow
long haul operation of the viewer. Most of the types of messages sentfimio xvpodbare shown in
Table 1. The first set of messages in the table are used to indicateottbwhen the changes occurred
during the compilation. The second set of messages describe the actual changes to the program representa-

tion.

Coordination Messages

machine dependent information
begin function

end function

begin optimization phase

end optimization phase

begin transformation

end transformation

end compilation

Change Messages

create new basic block

free up basic block

modify basic block label

modify control flow successor of block
modify output position successor of block
insert new RTL

delete RTL

move RTL

modify RTL

modify RTL dead register list
modify RTL side effect list

Table 1: Message Types frorpoto xvpodb

The sequence of messages is described by the following BNF grammar.
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<compilation> ;= MACHINE_DEPENDENT_MSG
<function>*
END_COMPILATION_MSG

<function> == BEGIN_FUNC_MSG
<phase>*
END_FUNC_MSG

<phase> '= BEGIN_PHASE_MSG

<transformation>+

END_PHASE_MSG
<transformation> ::= BEGIN_TRANS_ MSG

<change>+

END_TRANS_MSG
<change> u= a specific change message

The <compilation> of a file produces a machine dependent information message, information about
zero or more functions, and a message indicating the end of the compilation of the file. The machine
dependent message contains information that abeywedbto properly recognize a memory reference and

a register for the target architecture. Eadbnction>  consists of zero or more optimization phases
enclosed by messages that indicate the beginning and end of the function. Each optirytetsar

consists of begin and end phase messages that bracket one or more transformationsariséoh

mation> consists of one or morechange> s and is surrounded by messages indicating the beginning

and end of the transformation.

Functions that construct phase and transformation messages were invgbedtithe points that an
optimization phase or transformation could potentially begin and end. However, a begin transformation
message was not sent until it was determined that the transformation contained at least one change. If the
begin transformation message was the last message to be sent before an end transformation message was
constructed, then both messages were aborted. Likewise, a begin phase message was not sent until it was
determined that the phase contained at least one nonempty transformation. Avoiding the transmission of
empty phases and transformations reduced the socket traffic betp@and xvpodband eliminated the

viewing of empty transformations by the user.

5.2. Main Data Structures

There are two main data structurescipodh the Optimization Listand theScreen List These data

structures are depicted in Figure 16. Tgtimization Lists a doubly linked list of nodes. Each of these
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Figure 16: Main Data Structures in XVPODB

nodes represent a decoded message. This list is descended when performing forward transformations and
ascended when reversing transformations. A single pointer to this list represents the point during the com-
pilation that is currently being displayed kypodb The act of stepping or continuing moves this pointer

in the appropriate direction. All transformationabthe pointer and none below will have been applied

to the initial set of RTLs. Any information needed to reverse a change is stored in the node associated with
the change message when the transformation is applied. This information is used to restore the screen rep-
resentation of the RTL or basic block to its previous state while ascending the list (undoing transforma-

tions).

The screen listis a singly linked list of nodes, each node containing (among other things) one small
section of the main RTL viewing area. These nodes represent the current state of all RTLs and basic
blocks. Nodes are modified as transformations are applied or reversed. A simple routine copies all of the
small screen sections to an area of memory that will be displayed after performing a step or continue opera-

tion. Thescreen lisnodes are created, modified, or deleted as change messages are processed.
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To illustrate how these data structures are manipulated, a description of the processing of change
messages in both directions is given. Figure 10 shows the information represented by the three change
messages that comprise the transformation illustrated in Figure 3. The forward processingadityhe
RTL message requires storing a copy of the old RTL text irDmization Lishode associated with this
change message. After copying the old RTL text, the actual modification is applied to RTL text field in
both theOptimization Listand Screen Lisnodes. A similar process will occur for theodify RTL dead
register listmessage, except the dead register list is copied and then updated. The forward processing of a
delete RTLchange requires saving the previous RTL's ID (saving the location at which it can be reinserted
in preparation for reverse viewing) in t@ptimization Lisnode associated with this change message. In
addition, the character strings representing the RTL, the dead register list, and the side effect from the
Screen Lishode are copied into th@ptimization Lisinode. After copying this information, ti&creen List

node associated with the RTL is deleted.

The information saved during the forward processing of a transformation will be used when a trans-
formation is reversed. The backward processing ofntbdify RTLchange simply requires copying the
character string stored in the old RTL text field of @pmimization Listhode during the forward processing
of this change message to the RTL text field of bottOypimization LisandScreen Lishodes. A similar
process will occur for thenodify RTL dead register lishessage, except the dead register list is restored.
Reversing thalelete RTLmessage requires creatingsareen Lishode and using the saved RTL's ID to
place it in its former location in th®8creen List Next, the saved character strings in @gtimization List
node representing the RTL, dead register list, and side effect will be copied to their counterpart fields in the

Screen Lishode.

The exclusive use of RTLs as the intermediate representatiqmo greatly simplified the design and
implementation okvpodb Because there is only one type of data structure for the program representation,
only one algorithm had to be developed to process change messages and produce a view of the data struc-

ture.

-25-



5.3. Diagnosing Consistency Errors between the Compiler and the Viewer

One of the most challenging problems during the developmewpofibwas to ensure that the RTLs
displayed byxvpodbexactly matched the information in the data structuregpaf Thevpooptimizer is a
large program consisting of about 25,000 lines of source code. The optimizer had to be updated to accu-
rately report all changes associated with the RTbs/pwdb Specific changes could easily be overlooked
or reported inaccurately. In addition, a consistency error could occur if a transformation was applied or
reversed incorrectly irvpodb If an inconsistency between the structurespoandxvpodbwas detected,

then the exact point po or xvpodbthat caused the inconsistency had to be found.

A method for performing a sanity check was developed to ease the diagnosis of consistency errors
between the compiler and the viewer. A programmer can issue a function callwpittah any point dur-
ing the compilation that will send tavpodba set of messages that describe the current state of the RTLs in
Vp0.9 The viewer compares this information to its internal representation of RTLs and will report any differ-
ences between the two structures. Thagodbcan be instructed to check itself for consistency, which

greatly simplified the debugging of both the viewer and the modificatiormoto

6. Portability Issues

The optimization viewer is quite easy to retarget to versiongoffor other architecture¥ The
code comprisingkvpodbitself is machine-independent. The messages passedvitorto xvpodbare
accomplished via system calls using UNIX sockets. The UNIX operating system has been retargeted to a
greater number of different machines than any other operating system. The optimization viewer was devel-
oped in X-Windows. As UNIX has become the most popular and portable operating system, X-Windows
appears to be achieving the same goals as a graphical environment. A final feature that enhances portability
is that the general form of RTLs is machine-independent. This allows algorithms that perform transforma-

tions on the RTLs to be implemented in machine-independent code. Since most of the transformations on

% This sanity check function reuses the same set of utility functions that send the initial set of messagelb to

10 Currently,xvpodbcan display the effects of optimizations for versionsms that have been retargeted to the SPARC and
Motorola 680x0 architectures.
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RTLs invpoare accomplished in a machine-independent fashion, there are few additional changes required

due to the addition ofvpodbwhen retargetingpoto a new machine.

One machine-dependent issue is haygodbcan recognize registers and memory references since
the form may vary with versions epo retargeted to different machines. The viewer needs to recognize
memory references to accurately show information about the current display of RTLs wB¢stith®ea-
surement®ption is selected. Similarly, registers have to be recognized to calculate the live registers enter-
ing and exiting a basic block when the middle mouse button is used to obtain the live register information
on a basic block. As mentioned previously, the first message senvfroto xvpodbcontains machine-
dependent information for the target architecture. This information includes a set of two character
sequences that are associated with memory references. For instance, a integer memory reference in a
SPARC RTL has the forR[ addr] , where theaddris the particular addressing mode used in the memory
reference. Thus, there is a memory reference whenevB([ as encountered in a SPARC RTL. Other
information includes the characters preceding a left bracket that represent a register, the number of each
type of register, and the registers that should not be displayed in the live register information (e.g. the stack

and frame pointers).

The viewer could be adapted to display transformations in many other optimizing compilers without
an excessive amount of effort. The information about RTLs, dead register lists, and side effects were
decoded into character strings before being sent in messaggsottbh Many other optimizers maintain
the program representation in a single format comparable to thatoife.g. basic blocks, etc.). The
changes to the program representation during transformations in these other optimizers will also be compa-
rable (e.g. deletions, insertions, modifications, etc.). For instance, modifying the viewer to display transfor-

mations for agcccompiler would not be too difficult.

7. Performance Efficiency

There are three aspects of performance efficiency that should be considered. The first performance

issue is the overhead placed on the compiler. The second issue is the storage requirements for the viewer.
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The final issue is the viewer response time to user selections.

It has been found that tlvpo optimizer executes a little over two times slower on a SPARC 10 when
it has to send messagesxtgpodb Most of this time is due to interfacing with the operating system by
sending the messages via sockets. Initially, the authors considered mgiiappart of the same process
as the optimizer. This idea was rejected due to concerns about the total memory requirements of such a
process and the flexibility that separating the viewer into a separate process would provide. For instance,
the authors have implemented a simple program to receive messages from the compiler and store them into
a file and a simple program to read these messages from the file and send them to the viewer. Thus, the
viewer can be executed without the compiler, which is quite useful for providing demonstrations to students

in a compiler class. At this point, the authors have found the optimizer overhead acceptable.

The amount of memory required Rypodbcan be quite large depending upon the size of the source
file and the number of RTLs in a function. Whenever the viewer receives a message from the compiler, it
appends the message to @gtimization List Messages are only deleted from @gtimization Liswhen
the user selects to proceed to the next function. If the source file being compiled contains many functions,
then there may be many messages servpodb To avoid having to save an excessive number of mes-
sages in th®ptimization Listat any one time, the compiler writer can invoke the optimizer from a source-

level debugger and not optimize a succeeding function until having completed viewing the current function.

The amount of memory needed to display the RTLs is dependent on the size of the current function.
First, the viewer must save information about each of the current RTLs being displaye&aénetre List
Information from theScreen Lists copied to an area of memory that will be displayed each time a step or
continue operation is performed. The authors found that functions containing a very large number of RTLs
will cause the viewer to abort due to allocating too much memory to represent the pixels in the display,
which was apparently a limitation imposed by X-Windows. Thereforppdbwas modified to limit the
maximum number of RTLs that could be displayed at any one time. When the limit is exceeded, only a
portion of the RTLs are displayed and the user is informed that the display is incomplete. This limit is large

enough that most compiled functions can be entirely viewed.
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The viewer response time to user selections is very fast once the compiler stops sending messages to
xvpodb Stepping forward or backwards is usually accomplished in less than one second. The response
time from continuing forward or backwards depends on the number of transformations to process, but typi-
cally can be accomplished in only a few seconds. The response time to events that cause the RTL display
to be redrawn is also dependent on the number of RTLs that are currently being displayed. However, the
authors have found the response time acceptable even for functions that approach the maximum limit of

displayable RTLs.

8. Related Work

There have been several systems that provide some visualization support for the parallelization of
programs. These systems include pia¢toolkit [6], the parafrase-2environment [7], the/spsystem [8],
and a visualization system developed at the University of Pittsburgh [9]. All of these systems provide sup-
port for a programmer by illustrating the dependencies that may prevent parallelizing transformations from
occurring. A user can inspect these dependencies and assist the system by verifying whether a dependency

is valid or can be removed.

The UW lllustrated Compiler [10], also known i@emp has been used by undergraduate compiler
classes to illustrate the compilation process. i€henpcompiler graphically displays its control and data
structures during the compilation of a program. A feature called hookpoints is used to specify points in the
compiler to update the windows that have changed since the last hookpoint was executed. By specifying
hookpoints and breakpoints in the compiler a user can control the rate at which views are displayed during

a compilation.

There are many differences between the parallelization sysimnyg) andxvpodb The main pur-
pose for developing the parallelization systems was to allow a programmer to assist in the process of paral-
lelizing code. The purpose for developing tbempcompiler was for use as a teaching tool in an under-
graduate compiler class. The main purpose for construgtipgdbis to assist a compiler writer when

retargeting thespo compiler to a new machine. Th@podbtool can also be used as a teaching tool in a

-29-



compiler class to illustrate various compiler optimizations.

The portion of the compilation process being viewed also differs between these systems. The paral-
lelization systems that illustrate a portion of the compilation process either illustrate source to source trans-
formations or depict high-level optimizations on intermediate code. iddmp compiler shows views of
different portions of the compilation process, which includes lexical analysis, parsing, semantic analysis,
and code generation. No optimizations are performed by the compiler. In corraadpdisplays the
effects of optimizations on RTLs exclusively. Each RTL represents a valid instruction for a machine. Thus,
the effect that each transformation has on the final code that will be generated can be easily grasped by the

user.

There are also differences in how a particular transformation can be reached before it is displayed. In
general, the parallelization systems step the user through the transformations since the purpose is to have
the user assist in parallelizing the code. Always stepping through each transformation would not be feasi-
ble withicompandxvpodbdue to the number of transformations being applied. iddrapcompiler allows
breakpoints and hookpoints to be set at different locations in the source code of the compiler. It does not
have the ability to stop when a user-specified portion of a view is updatedkvpbebtool allows break-
points to be set associated with updates to a specific portion of the information representing a function.
This feature is very useful for quickly isolating the transformations that effect a particular portion of the

program.

Only the University of Pittsburgh visualization system amgdodballow reverse viewing of transfor-
mations. Unlikexvpodh the University of Pittsburgh visualization system can also prevent a transforma-
tion from occurring. This ability to undo transformations allows a user of their system tvedhe
effects of a transformation deemed ineffective or inappropriate. Reverse viewivgpitballows a user to
quickly grasp how a particular portion of the code was generated. Reverse viewing was feasible in both of
these systems since the information about the program is represented in only a single type of data structure.
By retaining information about each change to this data structure, the ability to undo transformations can be

accomplished without excessive complexity.
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9. Conclusions

The viewer described in this paper provides several important benefits when retargeting the back end

of a compiler. Displaying the program representation at any given point during the optimization of a func-

tion, stopping at breakpoints associated with the generated code, and reverse viewing of transformations are

all helpful features for analyzing problems with an optimizer. Compilers can also be used to guide instruc-
tion set design by determining if proposed architectural features can be exploited [11]. Decreasing the time
to retarget a compiler to a proposed architecture would also decrease the time required to design and

develop a new machine.

Additionally, xvpodbcan be used as a teaching aid for advanced compiler classes. Many recently
introduced machines require sophisticated compiler optimizations to exploit their architectural features.
Advanced compiler courses that present techniques to perform these types of optimizations may soon
become more common. A tool that would allow a student to interactively visualize the effect of each trans-

formation would be quite useful in illustrating these optimizations.
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