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SUMMARY

This paper describes two related tools developed to sup-
port the isolation and analysis of optimization errors in
the vpo optimizer. Both tools rely on vpo identifying
sequences of changes, referred to as transformations,
that result in semantically equivalent (and usually
improved) code. One tool determines the first transfor-
mation that causes incorrect output of the execution of
the compiled program. This tool not only automatically
isolates the illegal transformation, but also identifies the
location and instant the transformation is performed in
vpo. To assist in the analysis of an optimization error, a
graphical optimization viewer was also implemented
that can display the state of the generated instructions
before and after each transformation performed byvpo.
Unique features of the optimization viewer include
re verse viewing (or undoing) of transformations and the
ability to stop at breakpoints associated with the gener-
ated instructions. Both tools are useful independently.
Together these tools form a powerful environment for
facilitating the retargeting of vpo to a new machine and
supporting experimentation with new optimizations. In
addition, the optimization viewer can be used as a
teaching aid in compiler classes.

INTRODUCTION
While the time required to retarget a back end of a

compiler to a new machine has decreased over the years,
performing this task in an expeditious manner still remains
a problem. One reason is that the rate of new machines
being introduced has increased. In addition, there is an
increasing reliance on compilers to perform more sophisti-
cated optimizations to exploit architectural features. Usu-
ally these optimizations can be applied most effectively in
the back ends of compilers [BeD88].

Much of the effort required to retarget a back end
occurs during testing. Often much time is spent determin-
ing why incorrect code is generated or optimizations cannot
be applied for specific programs. Most back ends store
information about the program that is being compiled in an
encoded internal format, which exacerbates these problems.
While such formats require less space and allow

optimizations to occur more rapidly, they also increase the
difficulty of analyzing a specific problem.

This paper describes two tools that assist a compiler
writer in isolating and analyzing optimization errors. First,
an optimization error isolator is presented that can automat-
ically determine the first transformation during the opti-
mization of a program that causes the output of the execu-
tion to be incorrect. Second, an optimization viewer is
described that can graphically depict the state of the gener-
ated instructions before and after each transformation per-
formed by the optimizer. One can easily examine the
invalid transformation discovered by the optimization error
isolator with the optimization viewer and quickly access the
point in the compiler when the transformation is performed.

OVERVIEW OF THE COMPILER
The tools described in this paper support isolating

and analyzing optimization errors for the compiler technol-
ogy known asvpo (Very Portable Optimizer) [BeD88,
Dav86, DaF84]. The optimizer,vpo, replaces the tradi-
tional code generator used in many compilers and has been
used to build C, Pascal, and Ada compilers. The back end
is retargeted by supplying a description of the target
machine. Using the diagrammatic notation of Wulf
[WJW75], Figure 1 shows the overall structure of a set of
compilers constructed usingvpo. Vertical columns within a
box represent logical phases which operate serially.
Columns divided horizontally into rows indicate that the
subphases of the column may be executed in an arbitrary
order. IL is the Intermediate Language generated by a front
end. Register transfers or register transfer lists (RTLs)
describe the effects of machine instructions and have the
form of conventional expressions and assignments over the
hardware’s storage cells. For example, the RTL

r[1] = r[1] + r[2]; cc = r[1] + r[2] ? 0;

represents a register-to-register integer add on many
machines. While any particular RTL is machine-specific,
theform of the RTL is machine-independent.

All phases of the optimizer manipulate RTLs. An
advantage of using RTLs as the sole intermediate represen-
tation is that many phase ordering problems are eliminated.
Most optimizations can be invoked in any order and are
allowed to iterate until no more improvements can be
found.

The RTLs are stored in a data structure invpo that
also contains information about the order and controlflow
of the RTLs within a function. Thevpo optimizer was
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Figure 1: Compiler Structure

modified to identify eachchangeto this data structure and
to denote each serial sequence of changes that preserves the
meaning of the compiled program. In this paper these
sequences of changes are referred to astransformations.

ISOLATING OPTIMIZATION ERRORS
Testing is often the most time-consuming component

of retargeting a back end of an optimizing compiler to a
new machine. Much of the time spent during testing
involves isolating errors in an optimizer to determine why
specific programs do not execute correctly. The compiler
writer must not only determine what was produced incor-
rectly in the erroneous program, but also at what point it
was produced within the compiler.

Traditional Isolation of Optimization Errors

Traditionally, the compiler writer initially attempts to
determine the specific instruction (or instructions) gener-
ated by the compiler that causes the compiled program to
execute incorrectly. One could first isolate a function that
contains incorrect instructions. This is accomplished by

compiling some functions with optimizations and other
functions without optimizations and executing the program.
If the program executes correctly, then the compiler writer
knows the problem is in the set of functions that were not
compiled with optimizations. Otherwise, the compiler
writer assumes the problem is in the set of functions that
were compiled with optimizations. The compiler writer
continues to narrow down the set of functions that could
contain an error until the function with incorrect code is
isolated.

The compiler writer can then compile the isolated
function with and without various optimizations until find-
ing the additional optimization being applied to the func-
tion that causes the compiled program to execute incor-
rectly. At this point the compiler writer can visually
inspect the differences between the two assembly versions
of the functions in an attempt to determine the instruction
or instructions that appear to cause incorrect behavior.

Given that the compiler writer is able to conclude
that a specific instruction within a function causes the com-
piled program to produce incorrect results, finding the rea-
son why the compiler produced this instruction is the next
task. Identifying the optimization that produces the prob-
lem may be difficult since the instruction may only be pro-
duced when a specific combination of optimizations are
performed. Even if the compiler writer happens to cor-
rectly identify the optimization that produces the problem,
the point in the compiler when the incorrect transformation
occurs still has to be found. A specific optimization may be
applied to hundreds of RTLs invpowhen compiling a func-
tion.

While these techniques may sometimes be effective,
they are also quite tedious. Furthermore, some compiler
optimizations that reduce execution time while increasing
code size are becoming more popular. These optimizations
include subprogram inlining [DaH88], loop unrolling
[HeP90], and replicating code to avoid unconditional jumps
[MuW92]. When these types of optimizations are applied,
a single function may expand into several thousands lines
of assembly code. Visual inspection of such functions to
discover incorrect instructions is impractical. Using tradi-
tional methods to identify the point in the compiler that
causes an invalid instruction to be produced in these func-
tions may also be unrealistic.

Automatic Isolation of Optimization Errors

A tool, calledvpoiso, has been developed to automat-
ically isolate the first transformation that causes incorrect
output from the execution of the compiled program. First,
the optimization phases applied byvpo were classified as
one of two types,necessaryor improving. A necessary
phase is required to produce code that can be compiled and
executed. These phases include assigning pseudo registers
to hardware registers and fixing the entry and exit points of
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a function to manage the run-time stack. All phases that
are not required are referred to asimproving. Only
improving transformations that cause incorrect output can
be isolated byvpoiso.

The vpoiso tool performs a binary search that relies
on the ability to limit the number ofimprovingtransforma-
tions applied to a specified function. In the routine that is
invoked when the end of a transformation is identified,vpo
checks a counter to determine if the specified limit to the
number of improving transformations has been reached.
Unfortunately,vpo can be in quite deeply nested routines
and logic at a point when a transformation has been com-
pleted. To check a status flag at each of the points after
completing a transformation to prevent furtherimproving
transformations would have required significant modifica-
tions to vpo. Therefore, vpo was modified using the
setjmp and longjmp functions. Thesetjmp function
saves the values of all registers, including the stack pointer
and program counter, into a environment buffer. Immedi-
ately before each call to a highest level optimization rou-
tine, a call tosetjmp is performed. Thelongjmp function
uses the environment buffer to restore the values of the reg-
isters, which has the effect of transferring control back to
the point immediately following the call tosetjmp .1 A call
to longjmp is executed at the point when the specified
limit of the number of transformations was reached. Exe-
cution then resumes after the call tosetjmp and only the
remainingnecessarytransformations are applied. The fol-
lowing code illustrates these modifications tovpo.

/* Within a high level routine in VPO.*/
...
/* Save current environment.*/
setjmp(my_env);

/* If more optimizations allowed then
perform register coloring.*/

if (moreopts)
color();

...
/* Within the routine that is invoked when

the end of a transformation is identified.*/
...
/* If reached limit, then set flag to not allow any

more optimizations and restore environment.*/
if (maxtrans == opttransnum) {

moreopts = FALSE;
longjmp(my_env, 1);
}

...

1 One has to ensure that no local variable is modified between in-
voking setjmp and the call to the optimization routine. If the variable
was allocated to a register, then the variable’s value at the point of invok-
ing setjmp would be restored by thelongjmp call.

The vpoiso tool is a C program which uses the C
system() function to invoke various UNIX shell com-
mands. First,vpoisoreads in a file of information indicat-
ing how to isolate an error within a program. This informa-
tion includes the basenames of the files that are output from
the code expander (or input tovpo), link and execute com-
mands, maximum cpu time in seconds allowed for execu-
tion (i.e. in case an error causes the program to not termi-
nate), desired and actual output filenames, compilation
flags (user can specify some or all optimizations to be per-
formed), and strings indicating lines to disregard (i.e. the
output contains information dependent on time). For
instance, a manufactured error was inserted during the com-
pilation of the programyacc. To isolate the error, the fol-
lowing information was input tovpoiso.

cexfiles: y1 y2 y3 y4 #
link command: cc -o yacc y1.o y2.o y3.o y4.o
execute command: yacc cgram.y
maximum time: 15
desired output file: yacc.out
actual output file: y.tab.c
compilation flags: LVGOCMSFA
disregard strings:

After reading this informationvpoiso has to deter-
mine if an incorrect transformation can be isolated. Thus,
vpoiso invokes vpo for each file to be compiled with an
option to record the number ofimproving transformations
required for each function, the function name, and the base-
name of the file in which the function resides. Thevpoiso
tool then links and executes the program using the specified
commands. If the actual output is the same as the desired
output, thenvpoiso quits after informing the user that it
could find no error when all optimizations were applied to
each function in the program. Otherwise,vpoisoreads the
information generated during the previous compilation and
invokesvpo for each file to be compiled indicating that no
improving transformations are to be performed. Again,
vpoiso issues commands to link and execute the program.
If the actual output differs from the desired output, then
vpoisoexits after informing the user that the error must be
caused by the front end, code expander, or anecessary
transformation invpo.

If vpoiso determined that the error can be isolated,
then it performs a binary search to isolate the first incorrect
transformation. The search is depicted in the following
pseudocode.
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lastmin = 0;
lastmax = total number ofimprovingtransformations
while (lastmax - lastmin > 0) {

midnum = (lastmin + lastmax)/2;
recompile program with only the firstmidnum

transformations performed
remove actual output file
link and execute program
if ( actual output file == desired output file)

lastmin = midnum+1;
else

lastmax = midnum;
}

if ( last result was incorrect)
badtrans = midnum;

else
badtrans = midnum+1;

At this pointvpoisoprints the name of the function contain-
ing the first incorrect transformation and the incorrect trans-
formation number within that function.2 The user can then
set a breakpoint in the source-level debugger that is execut-
ing vpo that will stop when the transformation with that
number is encountered. The routine invpo that is invoked
when the start of a transformation is identified contains the
following portion of code.

...
if (opttransnum == breakopttransnum)

fprintf(stderr,
"improving trans breakpoint\n");

...

The user assigns the displayed transformation number to
the breakopttransnum variable, sets a breakpoint at the
line where the message is printed, and reexecutesvpo.
Thus, using this feature, the compiler writer can quickly
access the point during the compilation that precedes the
incorrectimprovingtransformation.

The vpoisotool avoids unnecessary recompilation to
reduce the isolation time. If the transformations on func-
tions in a file are not within the current search range that
could contain the first incorrect transformation, then this
file is not recompiled. Recompilation of a file is also
unnecessary when all the functions in the file would be
compiled with the same number of transformations as in
the previous compilation. In addition, if a function is in a
file that needs to be compiled and it is not within the cur-
rent search range, then the function is compiled with no
optimizations to decrease the compilation time.

2 The vpoisotool is only guaranteed to find the first transformation
that causes incorrect output. It is possible that a previous transformation
was inv alid and the isolated transformation was the first transformation
that moves inv alid instructions into a path that was executed. This situa-
tion has not occurred when testingvpoisowith manufactured or actual er-
rors.

To illustrate the performance ofvpoiso, the results
for finding a manufactured error inserted into the compila-
tion of theyaccprogram is described. There were a total of
13,955 improving transformations applied with the com-
plete optimization ofyacc. The vpoiso tool required 16
compilations/executions ofyaccand a little under 10 min-
utes of wall-clock time to correctly isolate the erroneous
transformation on a Sun SPARC IPC.3 A log of the actions
performed byvpoisowhen isolating this error is given in
Appendix I.

SUPPORTING THE ANALYSIS
OF OPTIMIZATION ERRORS

After isolating the incorrect transformation, the com-
piler writer still has to determine why the transformation
was produced. A graphical optimization viewer, called
xvpodb, was developed to assist in the analysis of optimiza-
tion errors invpo. Figure 2 depicts how viewing optimiza-
tions will typically be accomplished. One process isvpo
executing under the control of a source-level debugger and
the other isxvpodb. By inv oking vpo with a source-level
debugger, the user can control the execution of the opti-
mizer and perform such tasks as setting breakpoints and
printing the values of variables that are local to routines
within the compiler. Before performing any optimizations
for the current function,vpo will pass a set of messages to
xvpodbthat describe the initial set of RTLs produced by the
code expander. After receiving these messages,xvpodb
will display this initial set to the user. Subsequently, infor-
mation about each transformation to the RTLs will be
passed toxvpodb. The user can view these transformations
serially or at specified breakpoints, either in the forward
(showing the transformations being applied) or reverse
(showing them being undone) direction.

VPO executing

source-level
debugger

messages reflecting
each change to the

program representation Optimization

Viewer

within a

Figure 2: Typical Use of the Optimization Viewer

3 Note that the first 2 executions were only performed to verify that
an incorrect transformation could be isolated.
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XVPODB User Interface

Figure 3 depicts the interface for the main window of
the optimization viewer. The large display in the center of
the window contains a scrollable view of the RTLs
(describing SPARC instructions) in the current function
being compiled. A portion of the RTL structure is dis-
played at a given point during the compilation. Each basic
block is represented by enclosing its RTLs within a rectan-
gle. The basic blocks are displayed in the order that they
would appear when generated as assembly instructions.
Transfers of control between basic blocks are depicted
using arcs. Forward transfers of control are depicted to the
right of the blocks and backward transfers of control are
depicted on the left. Arcs are used to enable a user to dis-
tinguish overlapping control transitions. The RTLs are dis-
played in human readable form (not the encoded internal
format used byvpo). Highlighted RTLs are those that are
affected by the current transformation being viewed.

Figure 3: Main Window for the Optimization Viewer

The labels at the top of the window display the name
of the function being examined, the optimization phase in
which the current transformation is performed, the unique
number of this transformation, and the total number of
transformations that have been received for this function.
Also shown is the current state, which in this example is
BEFORE. The BEFORE state indicates that this transfor-
mation has not yet been applied to the RTLs.

The buttons at the bottom of the window represent
the different options available to the user ofxvpodbvia
mouse clicks. Four of these buttons resemble the controls
on an audio tape player (including auto-reverse). When the
Step Forward (>) and Step Backward (<) buttons are
clicked, xvpodbdisplays the next or previous transforma-
tion, respectively. The user can view a full transformation
with two clicks of the mouse. In the case of>, the first
click causes the BEFORE state of the RTLs to be dis-
played. The RTLs that will be deleted or modified are
highlighted. Figure 3 shows two RTLs about to be com-
bined during an instruction selection transformation. A
second click of> causes the viewer to display the AFTER
state. The highlighted RTLs will be those that were just
modified or inserted. Selecting> again will display the
BEFORE state of the next transformation. After each
selection the RTL display is automatically scrolled to a
position where highlighted RTLs are visible.< works simi-
larly, except the display of the AFTER state precedes the
BEFORE. The user can apply and reverse (or vice-versa) a
transformation as many times as desired, which is very use-
ful for grasping the full effect of a complicated transforma-
tion. The Continue Forward (>>) and Continue Back-
ward (<<) buttons are similar to> and<, except they con-
tinue to apply transformations until a breakpoint is reached.

There are two main types of breakpoints inxvpodb.
The first and simplest is atransformation numberbreak-
point. The user enters a transformation number or num-
bers, andxvpodbwill break when encountering the begin-
ning or end of those transformations (depending on whether
>> or << was selected). Sincevpo knows the number of
each transformation it sends toxvpodb, this provides a con-
venient way to coordinate breakpoints in the compiler and
the viewer. In addition, this type of breakpoint allows a
user to quickly view an inv alid transformation identified by
vpoiso.

The second type of breakpoint is more general. Ini-
tially, the user selects some or all optimization phases from
a toggle menu. After completing this selection the user has
two choices. One choice is to havexvpodbstop whenever
one of the selected phases is encountered (at the beginning
or end of the phase, depending on the direction of the view-
ing). Alternately, the user can choose a set of RTLs to
associate with this breakpoint. The viewer will stop when-
ev er any of the selected RTLs is changed during any of the
selected phases. Thus, breakpoints can be set on specific
optimization phases, specific RTLs, or any combination of
both. Figure 4 shows an example of setting this type of
breakpoint. The user has selected the optimization phases
and can now chooseInitiation Only or Proceed to RTL
Selection.

The options menu allows selection of less commonly
used features of the viewer. Currently, the options menu
includes buttons to return the RTLs to the inital state
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(before any transformations) and to apply all transforma-
tions (thus showing the fully optimized set of RTLs). Both
of these functions skip all breakpoints. In addition, there is
a button that allows one to select to proceed to the next
function within the file being compiled.

Figure 4: XVPODB Breakpoint Selections

To illustrate the power ofxvpodb, the process of
using the viewer to understand how a particular RTL was
generated is described. Initially, the user selects theApply
All Transformations button (located in the options menu),
which will cause the viewer to display the completely opti-
mized set of RTLs. Next, the user sets a breakpoint to
cause the viewer to stop on any change to the desired RTL.
At this point, by successively clicking<< the user can view
each transformation involving this RTL being undone. The
transformation can be analyzed by clicking< and > as
many times as necessary. The user can click<< until the
transformations that produced the particular RTL are under-
stood. If desired, the user could click>> to view each
transformation being reapplied to the RTL. If an invalid
instruction has been identified and a tool likevpoiso is
unavailable, then this technique can also be used to visually
isolate the incorrect transformation.

Implementing XVPODB

Each message fromvpo to xvpodbreflects at most a
single change to the data structure containing the RTLs.
The list of message types fromvpoto xvpodbinclude:

begin function modify basic block label
end function insert RTL
start optimization phase delete RTL
end optimization phase move RTL
start transformation modify RTL
end transformation modify RTL dead register list
create new basic block modify controlflow successor
free up basic block modify output position successor

Separately displaying this level of detail to the user
would be excessive. For instance, in Figure 3 the two high-
lighted RTLs are about to be combined together as a result
of an instruction selection transformation. The first high-
lighted RTL will be deleted and the second highlighted
RTL will be modified. In fact, showing these two changes
as separate steps would be confusing to the user since the
function would not appear equivalent after a single change.
Also, the order in which these two changes are applied to
the RTL data structure is unimportant. Therefore, the
effects of all changes that are enclosed betweenstart and
end transformationmessages are displayed simultaneously.

Providing reverse viewing affected the design of the
optimization viewer. First, the information within each
message has to be retained after being processed. When-
ev er a new message is received from the compiler, a new
node containing the information about the message is added
to the end of a doubly linked list. When the user chooses to
proceed to the next function, the nodes in the list that com-
prise the function are freed. A pointer to this list indicates
the current state of the displayed RTLs. All transforma-
tions preceding and none following this pointer have been
applied to the initial set of RTLs. If the user steps or con-
tinues in either direction (<, >, <<, >>), then the nodes of
the list are traversed (and the changes are applied) in the
appropriate direction until the desired transformation is
reached. Another implication of reverse viewing is that all
information needed to reverse a change must be retained.
For example, when reversing adelete RTLchange,xvpodb
must regenerate the deleted RTL and insert it into the RTL
display structure.

The optimization viewer is quite easy to retarget to
versions ofvpo for other architectures. The code compris-
ing xvpodb itself is machine-independent. The messages
passed fromvpo to xvpodbare accomplished via system
calls using UNIX sockets. The optimization viewer was
developed in X-Windows. As UNIX has become the most
popular and portable operating system, X-Windows appears
to be achieving the same goals as a graphical environment.
A final feature that enhances portability is that the general
form of RTLs is machine-independent. This allows algo-
rithms that perform transformations on the RTLs to be
implemented in machine-independent code. Since most of
the transformations on RTLs invpo are accomplished in a
machine-independent fashion, there are few additional
changes required due to the addition ofxvpodbwhen retar-
getingvpo.
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The message passing paradigm provides the user
with the option of executingvpoandxvpodbon two differ-
ent machines. Due to the use of X-Windows, the user has
the option to view the output windows of the two programs
on yet another machine. Thus, one can use the resources of
up to three machines to speed up the debugging process.

APPLYING THE TECHNIQUES
TO OTHER OPTIMIZERS

There are certain features ofvpo that simplified the
development of the tools to isolate and analyze optimiza-
tion errors. Performing code generation before all opti-
mizations allowsvpoisoto accurately determine that a code
generation error was not caused by the optimizer. If code
generation was performed after optimizations, then a code
generation error may only occur when the intermediate rep-
resentation is in a specific form (e.g. a particular instance of
a dag). When the number of optimizations performed is
reduced, this specific form may not appear. In this situation
it would be difficult to have a tool automatically determine
that the error was not caused by the optimizer. The struc-
ture of thevpooptimizer also made it easy to stop perform-
ing improving transformations at any point during a compi-
lation. This ability may not be as straightforward to imple-
ment in other optimizers.

Certain features ofvpo also simplified the develop-
ment ofxvpodb. One such feature is that all phases of the
optimizer manipulate RTLs. Because there is only one type
of data structure to represent program information, only
one algorithm needs to be developed to accept changes and
produce a view of the data structure. Since each RTL rep-
resents a legal machine instruction (and can be decoded
into a very readable format), the effect of a modification to
the set of RTLs comprising a function is simple to grasp.
In contrast, most conventional compiler systems generate
code after optimizations. In these systems the effect of a
modification on the final code that will be generated may
not be obvious. Finally, RTLs can easily be displayed in a
linear fashion at any point during the optimization. Dis-
playing the representation of a program being optimized
that has a dag or tree intermediate form would be much
more difficult.

COMPARISON WITH RELATED WORK
A tool known asbugfind[CaD90] was developed to

assist in the debugging of optimizing compilers. The
bugfindtool attempts to determine the highest optimization
level at which each file within a program can be compiled
and produce correct output. To isolate a function that was
not optimized correctly, one has to place each function
within the program in a separate file. Thebugfindtool uses
themakefacility in Unix and is generalized enough to work
with different compilers.

While bugfindand vpoisoshare some similar ideas,
there are also considerable differences. Bothbugfindand
vpoisouse a binary search technique to isolate optimization
errors. Thevpoiso tool finds not only the failing module,
but also the first transformation within a function that
causes incorrect results. The transformation number can be
used to view the transformation inxvpodband access the
point invpowhen the transformation is about to be applied.
This finer level of isolating errors is important when opti-
mization errors occur in large functions or code size
increasing transformations are performed. Unlikebugfind,
vpoiso can only isolate errors withinvpo. Howev er, the
techniquesvpoisouses can probably be applied with other
optimizers.

The UW Illustrated Compiler [AHY88], also known
as icomp, graphically displays its control and data struc-
tures during the compilation of a program. A feature called
hookpoints is used to specify points in the compiler to
update the windows that have changed since the last hook-
point was executed. By specifying hookpoints and break-
points in the compiler a user can control the rate at which
views are displayed during a compilation. Theicompcom-
piler has been used by undergraduate compiler classes to
illustrate the compilation process.

There are many differences betweenicomp and
xvpodb. The purpose for developing theicomp compiler
was for use as a teaching tool in an undergraduate compiler
class. The main purpose for constructingxvpodb is to
assist a compiler writer when retargeting thevpo compiler
to a new machine. Thexvpodbtool can also be used as a
teaching tool in a compiler class to illustrate various com-
piler optimizations. The source programs compiled by
icomp are written in a subset of Pascal called PL/0. The
vpo back end currently interfaces with a front end called
vpcc(Very Portable C compiler) that supports the complete
C language. Theicompcompiler shows views of different
portions of the compilation process which includes lexical
analysis, parsing, semantic analysis, and code generation.
No optimizations are performed by the compiler. In con-
trast, xvpodbdisplays the effects of optimizations exclu-
sively. The icomp compiler allows breakpoints and hook-
points to be set at different locations in the source code of
the compiler. It does not have the ability to stop when a
user-specified portion of a view is updated. Thexvpodb
tool allows breakpoints to be set associated with updates to
a specific portion of the information representing a func-
tion. The icomp compiler was written in Interlisp-D to
access facilities in the language for implementing hook-
points and producing graphical displays. Both thevpo
compiler andxvpodbare written in C. Thus, optimization
viewers could be developed for other existing compilers
written in conventional programming languages using the
techniques to implementxvpodb. Finally, icomp does not
allow rev erse viewing of transformations. It was stated,
"icompcannot be run in reverse because of the complexity
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of implementing such a feature." Reverse viewing was fea-
sible in xvpodbsince the information about a function is
represented in only a single type of data structure. By
retaining information about each change to this data struc-
ture the ability to undo transformations was accomplished
without excessive complexity.

CONCLUSIONS
The tools described in this paper have sev eral impor-

tant benefits when retargeting the back end of a compiler.
A tool with the ability to isolate incorrect transformations
automatically, such asvpoiso, may prove to be inv aluable,
particularly when employing code size increasing optimiza-
tions. An optimization viewer, such asxvpodb, is also quite
useful. Displaying the program representation at any giv en
point during the optimization of a function, stopping at
breakpoints associated with the generated code, and reverse
viewing of transformations are all helpful features for ana-
lyzing problems with an optimizer. Compilers can also be
used to guide instruction set design to determine if pro-
posed architectural features can be exploited [DaW91].
Decreasing the time to retarget a compiler to a proposed
architecture would also decrease the time required to design
and develop a new machine.

Additionally, xvpodbcan be used as a teaching aid
for advanced compiler classes. Many recently introduced
machines require sophisticated compiler optimizations to
exploit their architectural features. Advanced compiler
courses that present techniques to perform these types of
optimizations may soon become more common. A tool that
would allow a student to interactively visualize the effect of
each transformation would be quite useful in illustrating
these optimizations.
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APPENDIX I
Below is the log fromvpoisowhen isolating the man-

ufactured error inserted during transformation 500 in the
routinesetupin theyaccprogram.

START TIME: 18:02:22

compiling program to check if works with all improving transformations
compiling y1.cex
compiling y2.cex
compiling y3.cex
compiling y4.cex
linking program
executing program
As expected, the output was incorrect.

13955 total improving transformations for program
y1: main: 1-42 y2: fdtype: 6913-6966
y1: others: 43-782 y2: chfind: 6967-7098
y1: chcopy: 783-807 y2: cpyunion: 7099-7409
y1: writem: 808-945 y2: cpycode: 7410-7848
y1: symnam: 946-980 y2: skipcom: 7849-7982
y1: summary: 981-1160 y2: cpyact: 7983-9734
y1: error: 1161-1196 y3: output: 9735-10169
y1: aryfil: 1197-1237 y3: apack: 10170-10473
y1: setunion: 1238-1287 y3: go2out: 10474-10762
y1: prlook: 1288-1368 y3: go2gen: 10763-11128
y1: cpres: 1369-1559 y3: precftn: 11129-11257
y1: cpfir: 1560-2016 y3: wract: 11258-11647
y1: state: 2017-2449 y3: wrstate: 11648-12006
y1: putitem: 2450-2523 y3: wdef: 12007-12019
y1: cempty: 2524-2904 y3: warray: 12020-12121
y1: stagen: 2905-3291 y3: hideprod: 12122-12241
y1: closure: 3292-3873 y4: callopt: 12242-12911
y1: flset: 3874-3989 y4: gin: 12912-13126
y2: setup: 3990-5413 y4: stin: 13127-13491
y2: finact: 5414-5429 y4: nxti: 13492-13648
y2: defin: 5430-5689 y4: osummary: 13649-13724
y2: defout: 5690-5877 y4: aoutput: 13725-13760
y2: cstash: 5878-5922 y4: arout: 13761-13862
y2: gettok: 5923-6912 y4: gtnm: 13863-13955

compiling program to check if works with no improving transformations
compiling y1.cex
compiling y2.cex
compiling y3.cex
compiling y4.cex
linking program
executing program
As expected, the output was correct.

starting binary search to isolate error within 13955 transformations

error within main to gtnm (transformation 1 to 13955)
compiling program: applying transformations 1 to 6978
compiling y1.cex
compiling y2.cex
stopped optimization of chfind after 11 improving transformations
linking program
executing program
execution was incorrect

error within main to chfind (transformation 1 to 6978)
compiling program: applying transformations 1 to 3489
compiling y1.cex
stopped optimization of closure after 197 improving transformations
compiling y2.cex
linking program
executing program
execution was correct

error within closure to chfind (transformation 3490 to 6978)
compiling program: applying transformations 3490 to 5234
compiling y1.cex
compiling y2.cex
stopped optimization of setup after 1244 improving transformations
linking program
executing program
execution was incorrect

error within closure to setup (transformation 3490 to 5234)
compiling program: applying transformations 3490 to 4362
compiling y2.cex
stopped optimization of setup after 372 improving transformations
linking program
executing program
execution was correct

incorrect transformation isolated to function setup

error within setup (transformation 4363 to 5234)
compiling program: applying transformations 4363 to 4798
compiling y2.cex
stopped optimization of setup after 808 improving transformations
linking program
executing program
execution was incorrect

error within setup (transformation 4363 to 4798)
compiling program: applying transformations 4363 to 4580
compiling y2.cex
stopped optimization of setup after 590 improving transformations
linking program
executing program
execution was incorrect

error within setup (transformation 4363 to 4580)
compiling program: applying transformations 4363 to 4471
compiling y2.cex
stopped optimization of setup after 481 improving transformations
linking program
executing program
execution was correct

error within setup (transformation 4472 to 4580)
compiling program: applying transformations 4472 to 4526
compiling y2.cex
stopped optimization of setup after 536 improving transformations
linking program
executing program
execution was incorrect
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error within setup (transformation 4472 to 4526)
compiling program: applying transformations 4472 to 4499
compiling y2.cex
stopped optimization of setup after 509 improving transformations
linking program
executing program
execution was incorrect

error within setup (transformation 4472 to 4499)
compiling program: applying transformations 4472 to 4485
compiling y2.cex
stopped optimization of setup after 495 improving transformations
linking program
executing program
execution was correct

error within setup (transformation 4486 to 4499)
compiling program: applying transformations 4486 to 4492
compiling y2.cex
stopped optimization of setup after 502 improving transformations
linking program
executing program
execution was incorrect

error within setup (transformation 4486 to 4492)
compiling program: applying transformations 4486 to 4489
compiling y2.cex
stopped optimization of setup after 499 improving transformations
linking program
executing program
execution was correct

error within setup (transformation 4490 to 4492)
compiling program: applying transformations 4490 to 4491
compiling y2.cex
stopped optimization of setup after 501 improving transformations
linking program
executing program
execution was incorrect

error within setup (transformation 4490 to 4491)
compiling program: applying transformations 4490 to 4490
compiling y2.cex
stopped optimization of setup after 500 improving transformations
linking program
executing program
execution was incorrect

incorrect transformation isolated to optimization 500 in function setup

STOP TIME: 18:12:18
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