
-
ic
w
fo

h
t
to
v
e
o
e

e
n
n

r
a
g

e

a

r

g
e
o

t

e
s
t

e

m-
an
is
e-
ner
the
r, is
.

-
rs
er

g

ect
ny

st-
fter
or-
].
de

y,
ion
y,
o
ary
lts
an
[5].
nd

in
g

at
s.

e
e

-

le
all
ut
ese

An Engineering Approach to Determining Sampling Rates
for Switches and Sensors in Real-Time Systems

Melissa Moy and David B. Stewart

Dept. of Electrical and Computer Engineering, and
Institute for Advanced Computer Studies

University of Maryland, College Park, MD 20742
Tel. 301-405-3658; Fax. 301-314-9281; Email: {msquared, dstewart}@eng.umd.edu
Abstract:An objective of our work is to find more system
atic methods of designing and implementing real-time dev
drivers for embedded systems. As part of this objective,
answer the question “what is the best sampling rate to use
reading data from sensors that provide continuous data?
Our experiences in answering this question for digital switc
and analog sensor inputs is described. We first presen
model of a real-time device driver that enables the driver
execute as its own thread of control, independent of whate
control task is using the data. We then present an engine
ing approach towards determining a good sample rate f
reading digital switches and analog sensors that provid
continuous data. Rather than providing a single value for th
sample rate, ranges that are based on application param
ters are derived analytically. An application designer ca
use these equations to quickly determine the minimum a
maximum sampling rates for their device driver task.

Keywords: component-based device drivers, real-time ope
ating system, experimental software engineering, digit
control systems, real-time scheduling, switch matrix, analo
to-digital converter, software modelling, parallel I/O.

1. Introduction
Most real-time scheduling algorithms rely on knowledg

of a task’s period and execution time to determine the CP
utilization and feasibility of a schedule. In most cases, th
period of any task reading input is constant and provided
part of the specification. In our experience, this specificatio
is often determined in an arbitrary manner, with no suppo
ing evidence that the value is the best choice or even a go
choice. Unfortunately, the practice of arbitrarily specifyin
periods of tasks often results in using more CPU resourc
than is necessary, or providing a level of performance
quality that is below what can be achieved using the sam
resources. In this paper, we focus on execution rate of inp
tasks; that is, tasks that read switches and sensors to ob
data that represents the current state of the environment.

For example, consider a speed control system with
velocity input, that is read through an analog-to-digital con
verter (ADC). The specifications state the velocity is to b
read 50 times per second. Thus, the period for the task is
to 20 msec. Suppose a schedulability analysis is done on
entire system that included this task, and it is determined th
the task set is not schedulable; what flexibility does th
e
e
r

”

a

er
r-
r

e
-

d

-
l
-

U
e
s

n
t-
od

s
r
e
ut
ain

a
-

et
he
at

designer have to fix this? While a theoretical approach si
ply states this is not schedulable, implementation of such
application requires that a solution be found. The result
that the designer would use trial-and-error methods to fin
tune various parts of the system. For example, the desig
may spend weeks to optimize part of the code to make
task set schedulable. Changing the task’s period, howeve
not acceptable, because 50 Hz is part of the specification

An objective of our work is to find more systematic meth
ods of designing and implementing real-time device drive
for embedded systems. As part of this objective, we answ
the question,what is the best sampling rate to use for readin
data from sensors that provide continuous data?

In general, there is no best answer for choosing a corr
sampling rate. Rather, there are a variety of trade-offs, ma
of which are application-specific. Thus, decisions on adju
ing real-time scheduling parameters can only be made a
suitable determination of the needs of the software as it c
responds to the original application specifications [12
Examples of parameters that are part of the trade-offs inclu
CPU utilization, memory usage, real-time schedulabilit
data accuracy, data integrity, response time, preempt
overhead, predictability, I/O hardware cost and complexit
and control system performance. Typically, trying t
improve some of these parameters results in a necess
compromise of the other parameters. Correlating our resu
with the control sampling rates described in [2], becomes
end-to-end timing issue, which has been addressed in
The results we present indicate that different switches a
sensors often need to be polled at different rates; issues
developing control systems with such non-uniform samplin
rates are presented in [1].

First, in Section 2, we present our model for I/O tasks, th
we have designed especially for use in real-time system
The I/O model is an improvement over traditional devic
driver approaches, as it allows for much greater real-tim
flexibility in both preemptive and non-preemptive multitask
ing environments. The model is sufficiently flexible to
accommodate the trade-offs described in this paper.

Since trade-offs are application specific, it is not possib
to provide a general umbrella solution that is suitable to
systems. Instead, in Section 3 we focus on digital inp
switches and in Section 4 on analog input sensors. Th

in

n-
to
o-
vel
lt

on-

vice
ed
me
n,

ice
ent-
en
e,
, as

hat
of

ast,
s
one
c-
ll.
be

a-
fi-
ed
re

e,
or-
switches and sensors are representative of many of the input
devices found in today’s embedded applications.

2. Device Drivers
Device drivers are used to provide a layer of abstraction to

hardware I/O devices, so that higher levels of software can
access devices in a uniform, hardware-independent fashion.
A class of device drivers is usually defined by the operating
system as an interface specification, such that each instance
of a driver ensures that interaction with a device conforms to
the specification. Examples of classes include the POSIX
open/read/write/closestreams interface, printer drivers, net-
work drivers, and display drivers.

While the use of device drivers in desktop computing has
successfully enabled the creation of complex heterogeneous
environments, real-time operating systems (RTOS) have
failed to define a good specification for hardware-indepen-
dent access to embedded I/O devices. For embedded systems,
we define I/O as the interaction of the system with the envi-
ronment. Aspects such as interprocessor communication
(IPC), where one task outputs information to another, is not
considered I/O, since it remains internal to the system.

The large variety of I/O on embedded processors makes it
difficult to use a standardized model and application-pro-
grammer interface (API) for accessing the devices. In addi-
tion, low performance and limited memory often make the
overhead of implementing a device driver unacceptable,
especially when there are severe real-time constraints that
require regular access to the devices at rates that range from
1 to 10,000 times per second. Thus, embedded system design-
ers build application software that interacts directly with the
microcontroller’s I/O hardware. There are many problems
with the existing device driver models, such as no concept of
time, lack of real-time threading support, incorrect distinc-
tions between the I/O port and the I/O device connected to a
port, ad-hoc approach to interrupt handling, and lack of com-

puter-aided software engineering (CASE) tools to aid
developing hardware-independent software.

As a result, nearly all of the software is hardware-depe
dent therefore preventing software reuse and portability
other target environments. Long development time is intr
duced since programmers need to learn the intricate low-le
details of the microprocessor and I/O hardware and difficu
debugging occurs since problems are hard to isolate in n
modular software.
2.1 Device Driver Model for Embedded Systems

To address these problems, we have created a new de
driver model and interface specification for use in embedd
control systems. The model leverages the fact that real-ti
software can be implemented as a multitasking applicatio
thus the driver itself can have its own thread of control.

We addressed the modeling and interface issues of dev
drivers in embedded systems, and developed a compon
based device driver model. The driver uses a data-driv
approach to interact with the rest of the application softwar
as opposed to the more traditional process driven approach
shown diagrammatically in Figure 1.

The data-driven approach takes advantage of the fact t
most real-time systems can be implemented as a collection
concurrent tasks that use IPC to exchange data. In contr
the traditional driver model was designed for UNIX system
when each process was a single thread of control, and that
process would do a system call to invoke the driver’s fun
tions, then obtain the data as a return value to that ca
Because the new model has less software layers, it can
implemented more efficiently on embedded processors.

Rather than defining an entirely new interface specific
tion, we found the port-based object (PBO) interface speci
cation, as detailed in [13], suitable for these component-bas
device driver. The PBO interface decomposes the softwa
component into initialize, activate, cycle, sync, deactivat
and terminate methods. For our discussion, the most imp

Code executing on the main processor

xxread xxwritexxintr

read write

data filter

raw data

sensor actuatorI/O
electronics

sensor data

cmd filter

raw data

actuator output

Control Algorithm

sensor actuatorI/O
electronics

Control Algorithm

sensor data
actuator output

(Process-Flow Driven)

Figure 1: Comparison of traditional and new device driver designs.

Component-based

Code executing on the main processor

RTOS driver

Device

interface

driver

I/O filtering

layers of a
device driver

Shared State Data for IPC

(a) traditional design of a device driver (b) component-based device driver

Device Driver

(Data-Flow Driven)

activate

Start

cycle

init

al
or-
and

he

d

y

st

lyt-
gi-

,
o-
is

ic.
n
gh
ts.

me-
ber
ally
a
-

rst,
O.
of

d
he
e.
t of
as
us

e,
ed

g.
ot
a)
ch.
n-
ing
s
e

en
tant method is the cycle method, which executes periodically
as a real-time thread. See [13] for complete details. Transfer
of data to the hardware independent code uses a state variable
table mechanism, as described in [7]. The driver model
should also be compatible with other reasonable real-time
IPC mechanisms, such as shared memory with semaphores
using the priority ceiling protocol. However, we have not
experimented with other such mechanisms.

An important aspect of the new model is that the sampling
rate is specified as one of the component’s configurable
parameters. This provides the flexibility needed to select the
best sampling rate for any particular I/O device and applica-
tion combination, as described in Section 3.
2.2 Real-time analysis of device drivers

Real-time scheduling analysis has focussed primarily on
the scheduling of well behaved computational components,
assuming an idealized system with no device access. Even
work on aperiodic servers [11], which are characterized as
random events occurring in response to externally generated
interrupts, only take into account the CPU usage of the event
handler, and not any of the overhead incurred in generating or
handling the event. None of the prior driver models has even
considered sampling rate as one of the factors that affects the
performance and resource utilization of the device driver.

The component-based device driver model allows the
same scheduling analysis to explicitly include the device
drivers. Each device driver is analyzed simply as another task
in the real-time system. Its period, execution time, and utili-
zation then become the primary inputs to schedulability anal-
ysis. Enabling such analysis forms the basis for wanting to
select the best sampling rates. In traditional systems, the rate
at which an I/O device was read or written was the same as
the module invoking the driver. Rather, device and applica-
tion characteristics combined with application specifications
can yield sampling rates for drivers that are independent of
the execution rates of other processes.

3. Sampling Rates for Digital Inputs
In most embedded applications that we observed, sampling

rates for reading or writing I/O devices were determined in an
ad-hoc manner. Usually the rates are included in specifica-
tions. If the software appears to work with the specified sam-
pling rates, then the rates would stay fixed for the lifetime of
the application and the values never questioned. If the soft-
ware does not work, then the sampling rate may be adjusted
on a trial-and-error basis until an acceptable solution is
obtained. While these methods may result in working sys-
tems, there is no guarantee that the software meets the appli-
cation’s specifications all the time, nor is there any indication
as to whether the device driver software is using more CPU
execution time than needed to meet those specifications.

The use of proper sampling rates for device drivers allows
software to better meet application specifications, and may
reduce the overall utilization by not executing the driver soft-
ware any faster than necessary. In most cases, there is not a
single answer as to the correct sampling rate. Rather, the sam-
pling rate is usually a range of acceptable values, but different
ends of the range result in trade-offs. For example, a custom-

ary trade-off is the potential error in the input or output sign
versus execution time used by the driver software. The c
rect choice is then dependent on the application needs
resources available.

A systematic approach to determining sampling rate is t
following:

• Measure sensor characteristics of application
• Identify constraints of I/O ports
• Compute the lower and upper bound for sampling an

obtaining correct answers
• Identify the trade-offs between lower and upper bound
• Develop driver algorithm to read sensors
• Analyze the performance of the driver code
• Measure execution time of driver to experimentall

validate the analysis
• Select period within sampling rate frame that is the be

compromise of trade-offs and is schedulable
The methods combine experimental measurement with ana
ical understanding of the application needs, in order to en
neer a good solution.

The simplest form of a digital input is a switch. When on
the switch produces a value of 1. When off, the switch pr
vides a value of 0. The reverse can be true if negative logic
used; for purposes of this paper, we only use positive log
When dealing with negative logic, the input from a switch ca
be inverted immediately upon reading the data. Throu
examples, we apply this systematic approach to digital inpu
The process is repeated in Section 4 for analog inputs.

Most embedded systems have one or more switches; so
times dozens or even over a hundred. When a small num
of switches is used (e.g. less than 10), the switches are usu
directly connected to a digital input port (DIO), (also called
parallel port). With more switches, a switch matrix is com
monly employed to reduce the hardware requirements. Fi
we discuss the simple switches that connect directly to DI
In Section 3.5, we extend the analysis to large number
switches connected using a switch matrix.
3.1 Ideal and Real Switch Characteristics

An ideal switch provides a 1 when the switch is closed an
0 when the switch is open. The transition from one state to t
other is instantaneous. In reality, there is rise and fall tim
However, since these times are proportional to the amoun
capacitance in a circuit, their value is generally negligible,
it is on the order of nanoseconds. For our analysis, we th
neglect the rise and fall time. When neglecting this tim
some switches, such as optical and tightly construct
momentary switches, do exhibit ideal behavior.

Most mechanical switches, however, exhibit bouncin
When the switch is closed, the transition from 0 to 1 is n
instantaneous, nor is it uniformly rising. Rather, Figure 2(
shows the oscilloscope output of one such mechanical swit
However, our concern is the digital representation of the tra
sitions, as shown in Figure 2(b). The extra pulses preced
(and following) the main pulse are commonly referred to a
bounces, as they result from bouncing when contact is mad
between mechanical plates internal to the switch. Wh
bouncing exists, an application will usually require filtering
the input, also called debouncing.

f a
the
n

e
unt
dy

as
a),
t
-

or

n-

.

he
ch
,

2.
ing
The switch characteristics form the basis for the design of
the algorithms for reading inputs and the necessary sampling
rate of the tasks polling these inputs to meet the application
specifications. We now focus on the experimental determina-
tion of relevant application parameters.

3.2 Switch Closure Times
One of the most important parameters to measure in order

to determine the sampling rate is the minimum switch closure
time,σmin. If a switch is closed for at least this long, the soft-
ware is guaranteed to detect it as a switch closure. If the actual
pulse width of a switch closure is shorter than this, the soft-
ware might miss the switch closure, but it is not necessarily
considered a failure. As an example, one of our embedded
applications was to design software for a pinball machine
(one of our experimental testbeds [4]). The machine has sev-
eral kinds of switches, each with a different set of character-
istics. Some of the switches are shown in Figure 3.

Figure 3(a) are switches that must be polled quickly,
because the velocity of the ball can be very fast. For these
switches, we measuredσmin to be about 10 msec1. Note that
this value is dependent on the environment; changing charac-
teristics of the environment may yield a different value for the
fastest switch closure time. It may be possible to experimen-
tally or analytically determine the fastest the ball may travel
across one of these switches, in which caseσmin can be
derived indirectly as a function of the ball speed.

Figure 3(b) shows “medium-speed” switches. Due to a
change in direction of the ball, there is a much lower bound
on the maximum velocity of the ball as it travels across the
switch. In our experiments, we measured the shortest switch
closure time for these switches to be about 50 msec.

A “slow switch” is one that is guaranteed to remain closed
until the control software detects it, and issues a command to
re-open the switch. Figure 3(c) shows examples of such
switches. In the first case, a ball is sitting in a saucer on the
switch. When the software detects this, it fires a solenoid that
kicks the ball out. In the second case, the targets are spring-
loaded to fall when a ball hits it. Firing a solenoid is needed
to re-raise the target. For the slow switches, the shortest
switch closure time is a function of the control software used
to fire the solenoid; in our testbed application, the solenoid
firing process was executing at a rate of 10 Hz.

In general, we assume that a switch closing is not latched.
Using latches is often not practical, and sometimes not possi-

ble such as in switch matrices (described in Section 3.5). I
latch were used, the response would then be similar to
switches shown in Figure 3(c), with the rate being a functio
of the task that generates the signal to clear the latch.

If the switch is not ideal, then the settling time, (which w
call τ), must also be measured. The settling time is the amo
of time the switch may bounce before settling to its stea
state value that correctly represents the state of the switch
either closed or open. For the switches shown in Figure 3(
we found that the rollover switch (left side of diagram) is no
ideal. The opto-switch on the right side of the diagram, how
ever, is an ideal switch and did not show any bouncing. F
analysis purposes, we are especially interested inτmax.

To measureσmin andτmax, connect the switch betweenVcc
and GND (through a resistor) as shown in Figure 4, and co
nect a logic analyzer atVout. Note thatVcc should be the same
as would be used with this switch in the final application
Setup the logic analyzer to trigger on the rising edge.

Close and re-open the switch as fast as possible. If t
switch is ideal (or near ideal), you should see a smooth swit
transition from 0 to 1 and back to 0. If it is a bouncy switch
then the output would be similar to that shown in Figure
Repeat this experiment at least several dozen times, record
the values ofτmaxandσmin for each. When performing these

1 We have more accurate measurements available. However, for sake
of discussion, it is much easier to round to the nearest whole number.

Figure 2: Characteristics of mechanical switches with bounces.
(a) as viewed on an oscilloscope; (b) as viewed on a logic

analyzer and as viewed on the input pins of a digital input port.

(a)

(b)

rollover

opto switches

stand-up target

90o change in direction

(emitter)

(receiver)

drop targetswitch at bottomsolenoid

solenoid kicks

180o change in direction

to a rollover switch

kicker

ball out

of a saucer is closed

solenoid
kicker

switch at bottom
of a saucer is open

(a) Fast Switch Closure Time (e.g. 10 msec)

 (before hit)

drop target
 (after hit)

switch open

(b) Medium Switch Closure Time (e.g 50 msec)

(c) Slow Switch Closure Time (e.g. > 100 msec.)

Figure 3: Switches that need fast, medium, and slow polling rates.

switch closed

er-

d

m
m
to

his
.
sis
ct
-

ng
es

in

m
ces
e

n
e
red
e
le

he
be

l-

l

ble
experiments, it is important to consider how the switch will be
used in the final application. For example, a momentary
switch that is designed for a human to press, might be pressed
very differently depending on the person. It is thus necessary
to repeat the experiments using a variety of touches. For
example, a light tap may yield a fast settling time, but also a
shortσmin. On the other hand, a heavy press might have a long
σmin, but also might have more bouncing and therefore a
longerτmax. It is important to record the minimum, average,
and maximumσmin andτmax for your experiments.
3.3 Sampling Rate for Ideal Switches

For an ideal switch,τmax will
always be 0. The sampling rate to
guarantee that all switch closures
are detected must then be less
thanσmin. While this seems sim-
ple, there is a trade-off. What if
σmin is 10µsec? Must we poll the
switch at 100,000 times per sec-
ond? This would surely use all the available CPU resources.
It is at this point that the application specifications must be
considered and trade-offs performed. While it may be possi-
ble to get a switch closure that is only 10µsec, that might only
happen once in 1000 times (0.1%). In an application, we may
find that 99.9% of the time,σmin is greater than 5 msec. In
such a case, sampling at 5 msec instead of 10µsec is much
more practical and uses a lot less CPU time. The question
then, is whether or not it is acceptable for the application to
detect a switch closure that is only 10µsec. If the switch clo-
sure is associated with human input, we can assume that the
switch was closed too lightly, hence they simply need to press
harder. If the closure is one of the switches in our pinball
machine, then we may conclude that the switch was not really
closed. On the other hand, if the switch closure is associated
with a toxic gas substance, then we want to capture it; in this
latter case, we may choose to latch the switch, or dedicate a
small processor to reading the switch at 10µsec intervals.

Lets suppose that it is acceptable in our application to only
guarantee detecting switch closures withσmin greater than 5
msec, thus being 99.9% accurate. What if the CPU is over-
loaded? We can halve the CPU utilization of this task if we
poll at 10 msec instead of 5 msec. Based on experimentation,
this might reduce accuracy to 99.0%. If that is still okay for
the application, then the trade-off is acceptable. But if slow-
ing the sampling rate to 10 msec reduces our accuracy to
70.0%, that might no longer be acceptable. It is for this reason
that logging all results of the experimentation for determining
σmin should be noted. It allows for a trade-off between accu-
racy and CPU utilization.

The above discussion assumes an ideal switch. If there is
switch bouncing, then this imposes additional constraints on
selecting an appropriate sampling rate.
3.4 Sampling Rates for non-Ideal Switches

Let us reconsider the rollover switch in Figure 3(a). A sam-
ple of the output for this switch is shown in Figure 5(a), with
the filtered output being shown in Figure 5(b). All of the
bouncing is filtered, to provide a clean signal to the applica-

tion code that acts in response to this switch closure. To p
form this filtering, a debouncing algorithm is needed. A
variety of debouncing algorithms exist (both in hardware an
software) as discussed in [10].

In this paper, we use the simple debouncing algorith
shown as a state diagram in Figure 6. In words, this algorith
looks for two consecutive samples to be of the same value
consider that the switch has changed states. It is using t
specific algorithm that we perform the following analysis
Should a different debouncing algorithm be used, the analy
would be different, and hence the specification of the corre
sampling time would change. Implementation of this algo
rithm on an embedded processor is straightforward usi
boolean algebra. If variables are 8-bits wide, eight switch
can be debounced in parallel.

The switch closure must be sampled at least twice with
the timeσmin, otherwise the switch hit will be filtered. This
places an upper bound on the sampling period asσmin/2.

To determine a lower bound, we consider the minimu
case needed for the debouncing algorithm to mistake boun
for two consecutive switch hits. Such a case occurs if w
obtain two samples showing 1, followed by two with 0, the
two more with 1. Assume that only the last two 1’s are th
steady state. The sampling that would generate such a filte
output would require at least four samples during the tim
intervalτmax. To prevent such an occurrence, we must samp
at most three times during the transient bouncing of t
switch closure. Therefore, the sampling period must
greater thanτmax/3.

Combining the lower and upper bounds, we have the fo
lowing condition on the sampling periodTsand sampling rate
fs (wherefs=1/Ts) for the input driver that debounces a digita
input according to the state machine in Figure 6:

; or (1)

The range of possible values shows the range of accepta
trade-offs for the sampling rate. Supposeτmax is 3 msec and
σmin is 10 msec. Then 1 msec <Ts < 5 msec. To minimize the

Vcc

Vout

Figure 4: Circuit used to
measure σmin and τmax

τ01 τ10σ

Figure 5: Measurement of τmax and σmin .; τmax = max(τ01,τ10).

(a) switch value before debouncing

(b) switch value after debouncing

Figure 6: State diagram for debouncing algorithm

00 10

1101

0/0
1/0

0/0
0/0 1/1

0/1

C/D

1/1

AB

AB: current state
C: input of filter
D: output of filter

Key:

1/1

τmax
3

------------- Ts

σmin
2

-------------< < 2
σmin
------------- f s

3
τmax
-------------< <

a-
ca-
ate
for

ll
o

a

ad
n.
n-
al-
to

A
ct
he

or
l-

es
y 4
h
le
ing
ts
amount of CPU time that sampling the switches takes, we
would select the sampling rate to be near 5 msec. On the other
hand, suppose that the task set is being scheduled using the
rate monotonic algorithm, the fastest task is executing at 3
msec, and all other tasks are multiples of this value (hence
producing a harmonic task set). Then it may be desirable to
use a bit more execution time, run the task at 3 msec, and thus
keep the schedulable bound at 100%. We know that a 3 msec
rate is acceptable because it is within the acceptable range.
One may ask if there is any reason to ever execute with a sam-
pling rate of 1 msec? One reason for doing so is that experi-
mentally obtaining the valueσmin might not have yielded the
lowest possible value. Or, ifσminwas selected to catch 99.0%
of switch closures, using the faster sampling rate might raise
this value even higher. But in no case should the sampling
rate be faster than 1 msec to avoid mistaking a bounce for a
switch closure.

For a particular bouncy switch, it might be possible that
τmax is 6 msec, andσmin is only 4 msec. In such a case, there
is no possible sampling rate that can guarantee the capture of
the switch closure; the designer must choose other options.
One is to use a different debouncing algorithm such as look-
ing for two out of three 1’s instead of two consecutive 1’s.
Another option is to consider the minimum inter-arrival time
of switch closures. A third possibility is to either accept an
occasional miss of a switch closure, in which caseσmincan be
raised, or accept an occasional switch closure to be mistaken
for two separate events, thus reducingτmax. Regardless of the
decision made by the designer, the choices can easily be doc-
umented, and should the decision not be the right one, modi-
fying the design is simply a matter of modifying the algorithm
in one module, or changing the sampling rate.

Although a single switch digital input is simple, it high-
lights many real issues for determining a correct sampling
rate. Next, we focus on a more complex form of digital input:
the switch matrix.

3.5 The Switch Matrix
A switch matrix is a more complex digital input device. It

is used in applications with large number of binary sensors to
reduce wiring requirements. A switch matrix is most com-
monly employed in keypads and keyboards [6]. It can also be
used in more sophisticated applications, such as intelligent
traffic light control, building temperature control, security
and alarm systems, and tactile skin for robots. These applica-
tions differ from keyboards in that the I/O from a digital I/O
(DIO) port of a microcontroller does not have sufficient drive
current to propagate through the matrix. Instead, the com-
puter signal must be propagated through power amplifiers,
relays, and/or opto-isolators. The propagation delay is signif-
icant, often on the order of several dozens to hundreds of
microseconds, and puts severe requirements on the software
timing.

There is a trend towards using a serial bus, such as a con-
troller area network (CAN) [14], to reduce wiring require-
ments. However, it raises the cost of the hardware and
changes the design of the software, as each sensor or actuator
node must have its local processor. In this paper, we do not

debate the choice to use a switch matrix over other altern
tives. Rather, we are interested in the switch matrix as an a
demic example of a complex device structure, to demonstr
an engineering approach to determining the sampling rate
a complex device driver.

Without a switch matrix,N digital input ports are needed
to interface toN switches, assuming a common ground for a
switches. A software-controlled switch matrix is used t
reduce the number of I/O ports to 2*log2(N), thus reducing
the overall cost of the hardware. Half of the I/O ports on
DIO board are used for selecting one of the log2(N) columns
of the matrix, and the other half of the ports are used to re
the corresponding switches for each row in the active colum

As an example, Figure 7(a) shows a 16-bit DIO board co
nected to 16 binary switches. The software can obtain the v
ues of the switches by reading the registers corresponding
the DIO’s ports, all of which are configured for input. The
advantage of this method is that software is very simple.
single read operation of the input ports is sufficient to colle
all the data on a single cycle. Thus, each polling cycle of t
entire switch matrix is about 100µsec on an 8 MHz 8-bit
microcontroller. The disadvantage is the hardware cost. F
example, if there are 64 switches to poll, then a microcontro
ler with 64 DIO pins is required.

The DIO hardware requirements for reading 16 switch
can be reduced to 8 by reorganizing the switches as a 4 b
matrix, as shown in Figure 7(b). The diodes in the switc
matrix are used to allow the software to detect multip
switches that are depressed simultaneously by prevent
feedback current into inactive columns. Four of the DIO bi

DIO-16

Figure 7: (a) 16-port DIO board connected to 16 switches.
(b) 8-port DIO board connected to 16 switches by using a

software-controlled switch matrix.

PIO-8

C0

C1

C2

C3

R0

R1

R2

R3

(a)

(b)

buffer, amplifier, or relay

th
is
-
del
e
to
s.

e

x
ll
te.

ati-
he
y-
de
it
,

tion
be

ng
if-
-

e
8]
an-
o-
ur

ur
d,

i-

to
he
al

-

are configured for output; they are used to activate one of the
four columns. The other four I/O bits are configured for input.
Note that this is only one of many configurations for switch
matrices. This particular matrix allows multiple switches to
be closed simultaneously, and allows the software to detect
precisely which switches are closed and which are open. Sim-
pler switch matrices, as often used in keypads, usually cannot
distinguish multiple simultaneous key presses. Regardless of
the construction of the switch matrix, the analysis and algo-
rithms described in this section are similar.

The switch matrix is scalable with complexity of O(log2n).
For example, an application with 256 switches can be wired
as a 16 by 16 switch matrix, to reduce the number of required
I/O pins from 256 to 32. An application with 64 switches can
be defined as an 8 by 8 matrix, requiring only 16 I/O pins.

The boxes with arrows shown in Figure 7 represent buff-
ers, power amplifiers, opto-isolators and/or relays, (which for
simplicity we will collectively callbuffers) required to drive
the lines with sufficient voltage and current. In a keyboard,
line drivers with a few microseconds propagation delay is
usually sufficient. In larger-scale applications, however, a
separate power supply and opto-isolation between the com-
puter’s logic supply and this power supply is often needed. In
our experimental testbed, we use Grayhill 70-ODC5 for out-
put and 70IDC Industrial Control Modules for input. The data
sheets specify a maximum turn-on time of 20µsec for the
output modules and 200µsec for the input modules.

Software that polls the switch matrix must select a column
to poll, then wait for the signal to propagate through the buff-
ers, then finally read the signal at the input port of the I/O
device. The pseudocode for polling is the following:

for i = 0 to Ncol do
Activate column Ci by turning on the bit leading to that column, and

turning off all other output bits.
Wait Dp seconds, where Dp is the sum of the propagation delay for both

the input and output modules. (We assume that the propagation
delay of the wires that connect the switches is negligible).

Read the row. If a switch in column Ci is closed, then the bit in the row
of that switch will be on, otherwise it will be off. Any number of
switches in the column can be closed simultaneously.

end
To demonstrate the effect of propagation delay, suppose

the delay in an 8 by 8 switch matrix is 150µsec and the
switches must be polled 500 times per second. Assume
another 100µsec overhead for context switching and for writ-
ing to and reading from the I/O ports. It takes the software
250µsec per column, or 2.0 msec to read all switches. At a
frequency of 500 Hz, this amounts to 100% CPU utilization.
The switch matrix, however, is often not the only function
that needs to be performed by the microcontroller. On a
slower processors the utilization may rise to above 100%.

In a multitasking environment where the switch matrix
executes as a higher-priority process, the 150µsec delay may
be too short to make it worthwhile to switch contexts to
another process. A context switch on a microcontroller is
expensive, often longer than the amount of busy waiting
needed; thus the time to swap out and back in does not pro-
vide any improvement. Experienced embedded system engi-

neers combat the problem by replacing the delay wi
unrelated but useful instructions into the code. Although th
improves on CPU utilization, it eliminates any form of mod
ularity and prevents creating a standard device driver mo
for a switch matrix since the polling software cannot b
encapsulated. The resulting software is extremely difficult
analyze, and often the source of difficult to fix timing error

3.5.1 Modelling the Switch Matrix Driver
The primary requirements for polling a switch matrix ar

conflicting:
• poll fast enough to catch every switch closure
• poll as slow as possible to minimize CPU utilization
We have studied five variations for the switch matri

driver, three of which are based on a fixed polling rate for a
switches, and two are based on a configurable variable ra
For each variation, we provide the pseudocode, a mathem
cal characterization of the utilization, measurements of t
execution time of our implementations to validate our anal
sis, and a comparison with the other methods. We conclu
that for a fixed-rate method using an interrupt-driven timer,
is best to poll only a single column of the matrix per cycle
unless the interrupt overhead is greater than the propaga
delay. In cases where only some of the switches need to
polled at the fastest rate, we present a device driver for polli
different columns of a matrix at variable rates that can sign
icantly reduce the overall CPU utilization of the microcon
troller.

To capture the overhead of polling and implementing th
individual instructions, we use the method that Katcher [
used to characterize real-time scheduling overhead. To qu
tify our analysis, we measured the values for several micr
controller platforms. In this paper, we present results from o
experiments using the 8 MHz 8088.

The overhead for various basic operations used in o
equations is shown in Table 1. The context switch overhea
Ccsw, includes scheduling time.Cwr is the time to select a col-
umn by writing to an appropriate output port.Crd is the time
to read the row via an input port. The time to perform themod
operation isCmod. Clo andClv quantifies the loop overhead.
Cif is the time to perform the simple comparison for the var
able-rate algorithm (Section 3.5.3).

The overhead was measured by instrumenting the code
toggle unused bits on a DIO board. Before an operation, t
bit is set to 1. After an operation, the bit is set to 0. The sign
was then viewed on a logic analyzer with better than 1µsec
resolution. Note this method is fairly accurate for microcon

Table 1: Overhead o f switch matrix polling operations on
an 8 MHz 8088

Variable Description µsec

Ccsw context switch overhead 88
Cwr Write to column 15
Crd Read from row 24

Cmod Increment and modulo 11
Clo Base loop overhead 15
Clv Additional overhead per loop iteration 8
Cif Simple If comparison 15

n
nd
for

o
of

e
ding
ry

r-
at

,
n
.

tion

rst
trollers with no cache nor pipeline, but not necessarily as
accurate for modern RISC architectures.

The context switch overhead cannot be measured directly
using the method described above. Instead, it is measured by
taking three measurements, as shown in the timing diagram of
Figure 8. A bit on Channel 1 is continuously toggled within a
low priority task (e.g. the idle task). A bit in Channel 2 is set
to 1 as the first instruction in the higher priority switch matrix
polling task, and reset to 0 as the last instruction. The pulse
width on Channel 2 represents the length of the sampling rate
code. The measurements are oft1, t2, andt3, wheret1 repre-
sents the length of time it takes to execute the switch matrix
polling plus overhead for calling the handler,t2 represents the
length of only the handler code, andt3 represent the execution
time of one cycle of the while loop. We compute the overhead
of the context switch code asCcsw= (t1–t2)–t3. Note that this
same overhead analysis can be used if the polling code is
placed within a periodic interrupt handler; the schedulability
analysis, however, might change.

The CPU execution time used by one iteration of the sam-
pling code, including all overhead, isCs. The period isTs.
Thus the utilization of the switch matrix polling software, is

(2)

The analysis assumes that the polling software is executed
at a rate that matches the shortest switch closure time. In
many applications, however, it may be desirable to poll at
least twice as fast, to take into account issues such as switch
debouncing.

3.5.2 Fixed-Rate Switch Matrix Polling Algorithms.

Fixed-rate algorithms are commonly employed in switch
matrix control software. Every column of switches is polled
with the same frequency. We first present the most common
algorithm for reading a switch matrix, then show two varia-
tions. For each version, the CPU utilization is computed as a
function of the shortest switch closure time and of the propa-
gation delay.

All switches every cycle
This first algorithm is used to scan a switch matrix i

which multiple switches may be closed simultaneously, a
the software must detect all such closures. Pseudocode
ALGORITHM F1 is shown in Figure 9.

The execution time for ALGORITHM F1 is computed as
(3)

Since every column is polled on every cycle,Ts=σmin;
therefore, the CPU utilization,Us, is

(4)

An alternative to polling every column on each cycle, is t
poll only a single column per cycle, but increase the rate
the interrupt handler. This leads to the next algorithm.

One column per cycle
ALGORITHM F2, detailed in Figure 9, is another fixed rat

method that can be used to spread out the overhead of rea
the matrix, such that each switch is only polled once eve
ncol cycles.

The execution time for ALGORITHM F2 is
(5)

As compared to ALGORITHM F1, there is no loop overhead
but additional overhead for computingCmod. However, since
only one column is polled on each cycle, the rate of the inte
rupt handler must be increased accordingly, such th
Ts=σmin/ncol. Therefore, the utilization is

(6)

A comparison of the utilization between this algorithm
ALGORITHM F1, and the other algorithms still to be shown i
this section is illustrated in Figure 10 and Figure 11
Figure 10 compares the results assuming the propaga
delayDp=200µsec, but the shortest switch closure timeσmin
varies from 5 to 50 msec. Figure 11 showsσmin constant at
10 msec, butDp varies from 0 to 300µsec. Note that although
this algorithm uses consistently more CPU time than ALGO-

RITHM F1, we use it as the basis for ALGORITHM F3.

Read-before-write, one column per cycle
An alternative to ALGORITHM F2 eliminates the busy-wait-

ing timeDp, as long as theTs > Dp. Note, the modification to
the initialization is to ensure that a good value is read the fi
time swCycleis called. Pseudocode for ALGORITHM F3 is
shown in Figure 9. The CPU utilization for ALGORITHM F3 is
the following:Figure 8: Measuring the context switch overhead.

t1 t3

t2

channel 1

channel 2

Us

Cs
Ts
------=

ALGORITHM F1
swInit:

swCycle:
for col = 0 to ncol–1 do

write (1 << col) to Pout
delay Dp
read Pin to swmx[col]

end fo r

ALGORITHM F2:
swInit:

col = 0;

swCycle:
col = (col+1) mod ncol
write (1 << col) to Pout
delay Dp
read Pin to swmx[col]

ALGORITHM F3:
swInit:

col = 0;
write (1<<col) to Pout

swCycle:
read Pin to swmx[col]
col = (col+1) mod ncol

write (1 << col) to Pout

Figure 9: Fixed-Rate Switch Matrix Polling Algorithm.

Cs Clo ncol Clv Cwr Crd Dp+ + +() Ccsw+ +=

Us

Clo ncol Clv Cwr Crd Dp+ + +() Ccsw+ +

σmin
--=

Cs Cwr Crd Dp Ccsw Cmod+ + + +=

Us

Cwr Crd Dp Ccsw Cmod+ + + +

σmin
-- ncol⋅=

est
ws

te

c
9].
ter
h
ed
the

ny

re-

so

to

x

f

,

ing
le
y

r

,

(7)

Even though it is necessary to run theswCycleroutinencol
times faster than ALGORITHM F1 to read the switches at the
same rate, it uses less CPU time for cases whereDp > Ccsw,
as shown in Figure 11. The utilization for ALGORITHM F3 as
a function ofσmin with Dp=200µsec is consistently better
than both ALGORITHM F1 and ALGORITHM F2, as shown in
Figure 10.

3.5.3 Variable-Rate Switch Matrix Polling Algorithms
Given that not all switches must be polled at the same fre-

quency, we want to develop a driver model for scheduling
which columns of the switch matrix are polled on each peri-
odic execution ofswCycle. It is essential that the implemen-
tation of the schedule is efficient, such that the overhead does
not counteract the benefits of using a variable-rate polling
method. Note that when wiring the switch matrix for variable-
rate polling, it is desirable to include switches with similar
closure times on the same column, since the column must be

polled at a rate fast enough to read the switch with the short
closure time. In contrast, assigning switches to specific ro
makes no difference from the software perspective.

We now describe a method for determining an appropria
schedule given the shortest closure switch time (σk) for each
columnk. The method is based on building a multi-rate cycli
schedule, as commonly used for job shop scheduling [3,
Note that we assume it is acceptable to poll any column fas
than the specified switch closure time; although if switc
debouncing is used, the fastest polling time may be bound
as was discussed in Section 3.4. This allows us to adjust
polling time to optimize the cyclic schedule.

To build the schedule, the shortest closure time of a
switch in each columnk, σk, must be supplied by the applica-
tion specification, or obtained through experimental measu
ments to gather the data.

From this value, we can computeσmin as

(8)

We also defineσmaxas the largest value ofmin(σk), scaled
to a multiple ofσmin, as follows:

(9)

The length of the schedule,Ls, can be computed as the ratio
of σmax to σmin as,

(10)

assuming thatTs will be set toσmin. Equation (9) ensures that
σmaxis a common multiple ofσmin. Note that the more factors
of σmax that are also multiples ofσmin, the more flexible the
algorithm we present below for building a schedule. Note al
that σmax, σmin, or both can be lowered – implying that it is
acceptable for a switch to be polled faster than necessary –
increase the number of factors ofσmax that are multiples of
σmin, without affecting the correctness of the switch matri
operation.

The polling period of each column in units of number o
iterations of the interrupt handler,ρk, is computed as follows:

(11)

The polling periodTk for each column is then be computed as
(12)

Equations (11) and (12) are used to ensure that the poll
times for individual columns are harmonic and are a multip
of Ts. If necessary, polling occurs more often than defined b
σk, but never less often.Tk is used to build the scheduleS.

The scheduleS is an array ofLs elements ofncol bits each,
that is used to store the schedule. Setting bitk in elementSj
means to poll columnk on cycle j, where on each cycle,
j=(j+1) modLs. In creating a schedule, the number of bits fo
any one cyclej should be minimized, thus minimizing the
number of columns that must be polled on a single cycle.

The schedule is built either offline or during initialization
using the following algorithm, where the functionbits(x)

Figure 10: Comparison of utilization vs. shortest switch closure
time for switch polling algorithms. Propagation delay Dp=200 µsec.

U

Dp=200 µsec.

σmin (msec).

Dp

σmin=10 msec.

(µsec).
C

Figure 11: Comparison of utilization vs. propagation delay for
switch polling algorithms. σmin =10 msec.

s

csw

V1

V2

F1

F2

F3

V1

V2

U s

F2

F1

F3

Us

Cwr Crd Ccsw Cmod+ + +

σmin
-- ncol⋅=

σmin min σk()
k 0=

7
=

σmax

max σk()
k 0=

7

σmin
----------------------------------- σmin=

Ls

σmax
σmin
--------------=

ρk
Ls

σmax
σk

--------------------=

Tk ρkσmin=

to
m

r-
e

-
be

of
we

m
-

a-
of
n
er
ur
i-
s

e
-

of

s
ow
r
he
returns the number of bits set in the valuex. The pseudocode
for creating the scheduler is shown in Figure 12.

Using ALGORITHM S1, the maximum number of columns
that must be polled on any one cycle,mcc, is computed as,

(13)

Given the above schedule, we now present an algorithm to poll
the switch matrix.

Variable-rate switch matrix polling, write before read
The basic variable-rate polling algorithm is a variation of

the Algorithm F1 (See ALGORITHM V1 of Figure 13). The
CPU utilization for ALGORITHM V1 is the following:

(14)

As can be seen in Figure 10, this algorithm (plotted for
σk={10,10,20,80,120,240,20,80}) performs similar to the
best fixed rate algorithm. Note that results may vary signifi-
cantly depending onσk. With a known set of minimum switch

closure times, we can use any graphical plotting package
display the graphs and select the best performing algorith
for the specific application.

Variable-rate switch matrix polling, read before write.
In the fixed-rate method, we reduced utilization by pe

forming only a single column per cycle and switching th
order of the write column and read row operations. The com
promise is that the rate of the interrupt handler had to
increased by a factor ofncol. Nevertheless, it still resulted in
reduced utilization.

We can perform the same modification to ALGORITHM V1
to reduce CPU utilization further. (See ALGORITHM V2 of
Figure 13).

The execution time ofswCycle is

(15)

Since only one column is polled on each cycle, the rate
the interrupt handler must be increased. However, since
only have to cycle throughmcc columns and not allncol col-
umns, the rate only needs to be increased toTs=σmin/mcc.
Therefore,

(16)

As can be seen in Figure 10 and Figure 11, this algorith
(plotted forσk={10,10,20,80,120,240,20,80}) performs sig
nificantly better than any other algorithm.

To substantiate our analytically-derived plots, we me
sured the actual execution time for our implementation
swCycleon our 8088 implementation. The results are show
in Table 2. Although the measured times tend to be high
than the theoretical estimation, the results do support o
claim that a variable-rate switch matrix handler can signif
cantly reduce CPU utilization for applications where switche
need not all be polled using the sample sampling rate.

To compare the effect of the variable rate algorithms, w
compare the CPU utilization of different switch matrix con
figurations each withncol=8, as shown in Table 3. The differ-
ent configurations are obtained by assuming different sets
switch closure timesσk. The scheduleS for each configura-
tion is then obtained by applying ALGORITHM S1. The values
Ls, mcc, ρk, Tk, andTs, are also computed using the equation
above, and included in the table. The schedule lets us kn
which columns are polled during a given cycle. Utilization fo
each configuration and algorithm is computed assuming t

ALGORITHM S1
sort Tk in increasing order
for each column k (in order of Tk) do

b=0;
valid = FALSE;
while (valid == FALSE)

for j = 0 to ρk do
if bits(Sj,ncol) == b then

// try to fit in as bth column to poll on every ρk
th cycle.

valid = TRUE;
for i = j to Ls step ρk do

if bits(Si,ncol) > b
valid = FALSE; // does not fit, try with next cycle j.

end for
end for
if valid == TRUE exit while loop ;
b++;

end while
// starting cycle for column k is j. Set bit k in Sj, Sj+ρk, Sj+2ρk, etc.

for i = j to Ls step ρk do
set bit k in Si

end for
end for

Figure 12: Scheduling algorithm

mcc

σmax
Tk

k 0=

ncol 1–

∑
Ls

--------------------------------------=

ALGORITHM V1:
swInit:

initialize Ls (Eq. (10)) and Sj from
data generated in ALGORITHM S1.

j = 0;
swCycle:

for col = 0 to ncol do
if (1<<col) & S[j] then

write (1 << col) to Pout
delay Dp
read Pin to swmx[col]

end if
end for

j = (j+1) mod Ls

ALGORITHM V2:
swInit:

initialize mcc, Ls and Sj
j = 0;
col=0;

swCycle:
read Pin to swmx[col]
while not (1<<col) & S[j] do

increment col;
if col == ncol then

j = (j+1) mod Ls
col=0;

end if
end while

write (1 << col) to Pout

Figure 13: Variable-rate switch matrix polling algorithms

Us

Ccsw Clo ncol Clv Cif+()⋅ mcc Cwr Crd Dp Cmod+ + +()⋅+ + +

σmin
--=

Cs Ccsw Clo

ncol
mcc
---------- Clv Cif+()⋅ Cwr Crd Cmod+ ++ + +=

Us

Ccsw Clo

ncol
mcc
---------- Clv Cif+()⋅ Cwr Crd Cmod+ ++ + +

σmin
--- mcc⋅=

Table 2: Experimental measurements of utilization for
sk={10,10,20,80,120,240,20,80}on an 8 Mhz 8088.

(All times in msec).

Algorithm T s
Measured

Cs

Measured
Us

Theoretical
Us

Equation for
computing U s

F1 10,000 2550 26 21 (4)
F2 1250 402 32 27 (6)
F3 1250 151 12 11 (7)
V1 10,000 1442 14 13 (14)
V2 2500 202 8 5 (16)

put,
ling
-

s

an

,

r-
a

use of an 8088 microcontroller. Based on the calculated utili-
zations, we can configure a device driver’s real-time behavior
to suit the application’s needs as well as to use only as much
CPU utilization as necessary. Note that the second row in this
table corresponds to the schedule used in generating the
graphs in Figure 9 and Figure 10, as well as for the measure-
ments in Table 2.

4. Sampling Rates for Analog Input
Analog inputs provide data to the processor through an

analog-to-digital converter. The sampling rate refers to the
number of times the data is read from the ADC and passed
along to other application components that use the data. The
sampling rate directly affects the temporal resolution of the
input signal, much in the same way as the number of bits of
resolution in the ADC affects the spatial resolution.

The maximum error is a function of the sampling rate. We
define the errorε(t) as the difference between the real sensor
value, and the value used by the control value, at any timet.
Note thatt is continuous, thus ast increases between sample
periods, the input value is constant, but the error typically
increases. This is shown in Figure 14.

In signal processing, Nyquist criteria is used to determine
the sampling rate. Specifically, the sampling must be at least
twice as fast as the highest frequency component in the input
signal. Given this sampling rate, the original input signal can
then be reconstructed.

Unfortunately, the Nyquist criteria cannot be used in most
embedded applications. Reconstruction of the original signal
requires significant computational power; thus the need for
digital signal processors. On the other hand, in embedded
control applications, the analog input does not need to be
reconstructed. Rather, the input is typically used to provide
sensory input as the basis for feedback control. Thus, only the
most recent data is needed. It is important to keep the error
within the maximum bounds specified by the application.

For microcontrollers, as when using Nyquist criteria, the
highest frequency component in the system can be used to
determine the minimum sampling rateσmin. Let’s call the
highest frequency componentfmax. We defineω=2πfmax. The
worst-case changes in the analog input can be modelled as

g(t)=2n–1sin(ωt) (17)
wheren is the number of bits on the ADC. The maximum rate
of change forg(t), which we callG, occurs when is max-
imized. Thus

(18)

For many applications, the maximum rate of change might
already be specified as a maximum slope, such as “1 degree
per second” for a digital thermometer. This can be converted
to the form of∆a/∆t (ADC units per second) through simple
scaling based on the range of the ADC. Other times, the max-
imum can often be estimated reasonably through experimen-
tation. For example, suppose an analog velocity sensor is
connected to a motor. Then the maximum rate of change of
the velocity occurs when the motor exhibits maximum accel-
eration, which will occur when full power is applied to the

motor. The measurement can use the analog sensor as in
by sampling as fast as the processor is capable of samp
and recording the values of the velocity in ADC units. Sup
pose the sampling rate is∆t, reading the log of measurement
will yield a max(∆a) during a time interval∆t, where∆a is the
difference between two successive ADC readings. We c
then compute∆a/∆t. If significant digits on the input∆a
becomes an issue because∆t is too small, then we can com-
bine multiple samples, and instead computek∆a/k∆t, wherek
is the number of samples andk≥1. Note that this∆t is for this
experimentation phase only; the objective is to findTs, which
is the best value of∆t for the final application, to ensure suf-
ficient accuracy while minimizing resource usage.

Since ∆a/∆t is a specification of the maximum slope
which by definition is alsoG, we note the relationship:

(19)

Let E be the maximum desired error, specified as a pe
centage of the maximum range of the signal. That is, for
maximum five percent error,E=0.05.

td
d

g t()

G
td

d
g t()

max
ω2

n 1– ωt()cos ωt 0=
⋅ ω2

n 1–
= = =

Table 3: Examples of various switch matrix configurations,
corresponding schedule for variable-rate algorithms, and utilization

for each algorithm presented

ncol σk σmin σmax Ls mcc ρk Tk Schedule S (in hex) T s Uf1 Uf2 Uf3 Uv1 Uv2

8

50
60
70
80
10
20
30
40

10 80 8 4

4
4
4
8
1
2
2
4

40
40
40
80
10
20
20
40

S0 to S3: 39,52,34,d0
S4 to S7: 31,52,34,d0

10 .21 .27 .11 .13 .08

8

10
10
20
80

120
240

20
80

10 240 24 4

1
1
2
8

12
24
2
8

10
10
20
80

120
240
20
80

S0 to S3: 0f,c3,17,63
S4 to S7: 07,43,07,43
S8 to S11: 0f,c3,07,43
S12 to S15: 07,43,17,43
S16 to S19: 0f,c3,07,43
S20 to S23: 07,43,07,43

10 .21 .27 .11 .13 .08

8

5
10
30

100
150

10
50
80

5 150 30 3

1
2
6

15
30
2

10
15

5
10
30
75

150
10
50
75

S0 to S3: 07,61,0b,31
S4 to S7: 83,21,07,21
S8 to S11: 03,21,03,61
S12 to S15: 07,21,03,21
S16 to S19: 03,29,07,a1
S20 to S23: 03,61,03,21
S24 to S27: 07,21,03,21
S28 to S29: 03,21

5 .42 .54 .22 .20 .13

G
∆a
∆t
------- ω2

n 1–
2
nπ f max= = =

Ksin(ωt)

y

50

40

30

20

10

0

-10

-20

-30

-40

Figure 14: Example of error that results from
sampling an analog signal. ε(t) = |y–Ksin(ωt)|

Period: Ts

y

Ksin(ωt)
50

40

30

20

10

0

-10

-20

-30

-40

-50

εa(t)

0 1 2 3 4 5 6 7 8 9 10
t (100 msec)

0 1 2 3 4 5 6 7 8 9 10
t (100 msec)

-50

to

d in
he
ti-
-
tal

pon-
ct

le

t

nd
in

ut

i-
in

d

”

l-

e

f
t-

”

The minimum sampling rate is then computed as

(20)

For example, if an application has a maximum rate of
change that is equivalent to sampling a 50 Hz sine wave, an
8-bit ADC is used to read a sensor, and the maximum error is
5%. Then, fs=50π/0.05=3.1 KHz. The sampling period
Ts=1/fs= 318µsec.

Interesting to note, the minimum sampling rate is not a
function of the number of bits on the ADC. Rather, it creates
a lower bound on the maximum error:

(21)
This also leads to asking the question, if maximum error is

specified as 1 ADC unit (i.e. maximum error is∆a/∆t=1), then
what is the sampling rate that would yield this result. To com-
pute that value, we setE=2–n in Eq. (20), to provide

f∆a/∆t = f1 = G = 2nπfmax (22)
For a specific ADC device and application, it does not

make sense to sample any faster than this value, as the error
is already limited by the resolution of the device.

The sampling rate for an analog input has a lower bound as
defined in Eq. (20) and an upper bound as defined in Eq. (22).
To summarize, givenfmax,

, (23)

or if given∆a/∆t,

(24)

Note that these equations provide a bound that assumes a
maximum error based on the full range of the ADC, which is
from 0 through 2n–1. In some applications, the full range of
the ADC might not be used, in which case slower sampling
rates might be possible. The slower rates can still be deter-
mined analytically, by adjusting the amplitude of the model
sine wave in Eq. (17).

5. Summary
In this paper, we first present a model of a real-time device

driver that enables the driver to execute as its own thread of
control, independent of whatever control task is using the
data. The interface specification of the device driver is com-
patible with the port-based object model of software compo-
nents, thus it can be used in reconfigurable systems.

We then present an engineering approach towards deter-
mining a good sample rate for reading digital switches and
analog sensors that provide continuous data. Rather than pro-
viding a single value for the sample rate, ranges that are based
on application parameters are derived analytically. An appli-
cation designer can use these equations to quickly determine
the minimum and maximum sampling rates (or periods) for
their device driver task.

The input devices we considered are representative of
devices in many embedded systems, but are far from being
complete. We plan to continue with this work, and to incor-
porate results into a tool that will enable designers to quickly
configure their systems. We will also investigate output

devices, for which there are similar issues with regards
determining good update rates.

6. Acknowledgements
The research described in this paper has been supporte

part by the National Science Foundation and in part by t
Dept. of Electrical and Computer Engineering and the Ins
tute for Advanced Computer Studies at University of Mary
land. The pinball machine that was used as an experimen
testbed was built as part of a capstone design course and s
sored by Lockheed Martin Corporation; details of this proje
are online athttp://www.ece.umd.edu/pinball.

7. References
[1] P. Albertos,, A. Crespo, “Real-time control of non-uniformly

sampled systems,”Control Engineering Practice, v.7, n.4 p.
445–458, April 1999.

[2] M.C. Berg, N. Amit, J.D. Powell, “Multirate digital control
system design,”IEEE Trans. on Automatic Control, v.33, n.12
p. 1139-1150, Dec. 1988.

[3] A. Burns, N. Hayes, M.F. Richardson, “Generating feasib
cyclic schedules,”Control Engineering Practice, v.3, n.2, p.
151-62, Feb. 1995.

[4] “Engineering students become pinball wizards,”The Chroni-
cle of Higher Education, v.44, n.25, Feb. 27, 1998. For projec
details, seehttp://www.ece.umd.edu/pinball.

[5] R. Gerber, S. Hong, M. Saksena, “Guaranteeing end-to-e
timing constraints by calibrating intermediate processes,”
Proc. Real-Time Systems Symposium, pp.192–203, Dec. 1994.

[6] D. Hammond, “Microprocessor chip scans keyboard witho
hardware interface”Electronics, v.50, n1, pp.110-2, Jan 1977.

[7] M. Hassani and D.B. Stewart, “A mechanism for commun
cating in dynamically reconfigurable embedded systems,”
Proc. High Assurance Systems Engineering Workshop,Wash-
ington, DC, pp. 215–220, August 1997.

[8] D. Katcher, H. Arakawa and J. Strosnider, “Engineering an
analysis of fixed priority schedulers”,IEEE Trans. on Soft-
ware Engineering, v.19, n.9, Sept. 1993.

[9] J.O. McClain, W.W. Trigeiro, “Cyclic assembly schedules,
IIE Trans., v.17, n.4, p. 346-53, Dec. 1985.

[10]A. Smith, “The merest flick of a switch,”Practical Electron-
ics, v.27, n.4 pp. 24–29, April 1991.

[11]B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task schedu
ing for hard real-time systems,”J. of Real-Time Systems, v.1,
n.1, pp. 27-60, November 1989.

[12]S. A. Steele, “System software design trade-offs for real-tim
data measurement and control systems,”Int’l J. of Mini and
Microcomputers, v.4, n.2 pp. 28-32, 1982.

[13]D.B. Stewart, R.A. Volpe, and P.K. Khosla, “Design o
dynamically reconfigurable real-time software using por
based objects,”IEEE Trans. on Software Engineering, v.23,
n.12, pp. 759–776, December 1997.

[14]H. Zeltwanger, “An inside look at the fundamentals of CAN,
Control Engineering, pp.81–87, January 1995.

f s
G

E 2
n⋅

-------------- ∆a ∆t⁄()

E 2
n⋅

--------------------- ω
2E

π f max
E

------------------= = = =

E 2
n–≤

π f max
E

----------------- f s 2
nπ f max≤ ≤

∆a ∆t⁄()

E 2
n⋅

--------------------- f s
∆a
∆t
-------≤ ≤

	1.� Introduction
	2.� Device Drivers
	3.� Sampling Rates for Digital Inputs
	4.� Sampling Rates for Analog Input
	5.� Summary
	6.� Acknowledgements
	7.� References

