An Engineering Approach to Determining Sampling Rates
for Switches and Sensors in Real-Time Systems

Melissa Moy and David B. Stewart

Dept. of Electrical and Computer Engineering, and
Institute for Advanced Computer Studies
University of Maryland, College Park, MD 20742
Tel. 301-405-3658; Fax. 301-314-9281; Emaihsguareddstewart}@eng.umd.edu

Abstract: An objective of our work is to find more system- designer have to fix this? While a theoretical approach sim-
atic methods of designing and implementing real-time deviceply states this is not schedulable, implementation of such an
drivers for embedded systems. As part of this objective, weapplication requires that a solution be found. The result is
answer the question “what is the best sampling rate to use for that the designer would use trial-and-error methods to fine-
reading data from sensors that provide continuous data?” tune various parts of the system. For example, the designer
Our experiences in answering this question for digital switch may spend weeks to optimize part of the code to make the
and analog sensor inputs is described. We first present atask set schedulable. Changing the task’s period, however, is
model of a real-time device driver that enables the driver to not acceptable, because 50 Hz is part of the specification.
execute as its own thread of control, independent of whatever An objective of our work is to find more systematic meth-
control task is using the data. We then present an engineer-ods of designing and implementing real-time device drivers
ing approach towards determining a good sample rate for for embedded systems. As part of this objective, we answer
reading digital switches and analog sensors that provide the questionwhat is the best sampling rate to use for reading
continuous data. Rather than providing a single value for the data from sensors that provide continuous data?

sample rate, ranges that are based on application parame- |, yanera|, there is no best answer for choosing a correct
ters are derived analytically. An application designer can gamping rate. Rather, there are a variety of trade-offs, many
use these equations to quickly determine the minimum ancyt which are application-specific. Thus, decisions on adjust-
maximum sampling rates for their device driver task. ing real-time scheduling parameters can only be made after
Keywords component-based device drivers, real-time oper- suitable determination of the needs of the software as it cor-
ating system, experimental software engineering, digital responds to the original application specifications [12].
control systems, real-time scheduling, switch matrix, analog- Examples of parameters that are part of the trade-offs include
to-digital converter, software modelling, parallel I/O. CPU utilization, memory usage, real-time schedulability,
data accuracy, data integrity, response time, preemption
overhead, predictability, /0O hardware cost and complexity,
and control system performance. Typically, trying to
improve some of these parameters results in a necessary
compromise of the other parameters. Correlating our results
with the control sampling rates described in [2], becomes an
end-to-end timing issue, which has been addressed in [5].
The results we present indicate that different switches and
sensors often need to be polled at different rates; issues in
developing control systems with such non-uniform sampling
rates are presented in [1].

1. Introduction

Most real-time scheduling algorithms rely on knowledge
of a task’s period and execution time to determine the CPU
utilization and feasibility of a schedule. In most cases, the
period of any task reading input is constant and provided as
part of the specification. In our experience, this specification
is often determined in an arbitrary manner, with no support-
ing evidence that the value is the best choice or even a gooc
choice. Unfortunately, the practice of arbitrarily specifying
periods of tasks often results in using more CPU resources
than is necessary, or providing a level of performance or T]
quality that is below what can be achieved using the same First, in Section 2, we present our model for I/O tasks, that
resources. In this paper, we focus on execution rate of inputWe have designed especially for use in real-time systems.
tasks; that is, tasks that read switches and sensors to obtai 1 Ne /O model is an improvement over traditional device
data that represents the current state of the environment. ~ driver approaches, as it allows for much greater real-time

For example, consider a speed control system with aerX|b|I|ty|n both preemptive and non-preemptive mu_ltltask-
velocity input, that is read through an analog-to-digital con- iNg environments. The model is sufficiently flexible to
verter (ADC). The specifications state the velocity is to be @ccommodate the trade-offs described in this paper.
read 50 times per second. Thus, the period for the task is se Since trade-offs are application specific, it is not possible
to 20 msec. Suppose a schedulability analysis is done on theto provide a general umbrella solution that is suitable to all
entire system that included this task, and it is determined thatsystems. Instead, in Section 3 we focus on digital input
the task set is not schedulable; what flexibility does the switches and in Section 4 on analog input sensors. These

switches and sensors are representative of many of the inpuputer-aided software engineering (CASE) tools to aid in

devices found in today’s embedded applications. developing hardware-independent software.

)) As a result, nearly all of the software is hardware-depen-

2. Device Drivers dent therefore preventing software reuse and portability to
Device drivers are used to provide a layer of abstraction to other target environments. Long development time is intro-

hardware I/O devices, so that higher levels of software canduced since programmers need to learn the intricate low-level

access devices in a uniform, hardware-independent fashiondetails of the microprocessor and 1/0 hardware and difficult

A class of device drivers is usually defined by the operating debugging occurs since problems are hard to isolate in non-

system as an interface specification, such that each instancenodular software.

of a driver ensures that interaction with a device conforms t0 2 1 pevice Driver Model for Embedded Systems

the specificat_ion. Examples _of classes i_nclude _the POSIX 14 address these problems, we have created a new device
open/read/write/closstreams interface, printer drivers, net- yyiver model and interface specification for use in embedded
work drivers, and display drivers. control systems. The model leverages the fact that real-time
While the use of device drivers in desktop computing has software can be implemented as a multitasking application,
successfully enabled the creation of complex heterogeneoushus the driver itself can have its own thread of control.
environments, real-time operating systems (RTOS) have We addressed the modeling and interface issues of device
failed to define a good specification for hardware-indepen- drivers in embedded systems, and developed a component-
dent access to embedded I/O devices. For embedded systempased device driver model. The driver uses a data-driven
we define I/0 as the interaction of the system with the envi- approach to interact with the rest of the application software,
ronment. Aspects such as interprocessor communicationas opposed to the more traditional process driven approach, as
(IPC), where one task outputs information to another, is not shown diagrammatically in Figure 1.
considered I/O, since it remains internal to the system. The data-driven approach takes advantage of the fact that
The large variety of I/0O on embedded processors makes itmost real-time systems can be implemented as a collection of
difficult to use a standardized model and application-pro- concurrent tasks that use IPC to exchange data. In contrast,
grammer interface (API) for accessing the devices. In addi- the traditional driver model was designed for UNIX systems
tion, low performance and limited memory often make the when each process was a single thread of control, and that one
overhead of implementing a device driver unacceptable, process would do a system call to invoke the driver’s func-
especially when there are severe real-time constraints thations, then obtain the data as a return value to that call.
require regular access to the devices at rates that range fronBecause the new model has less software layers, it can be
1to 10,000 times per second. Thus, embedded system desigrimplemented more efficiently on embedded processors.
ers build application software that interacts directly with the Rather than defining an entirely new interface specifica-
microcontroller's 1/0 hardware. There are many problems tion, we found the port-based object (PBO) interface specifi-
with the existing device driver models, such as no concept of cation, as detailed in [13], suitable for these component-based
time, lack of real-time threading support, incorrect distinc- device driver. The PBO interface decomposes the software
tions between the 1/0 port and the I/O device connected to acomponent into initialize, activate, cycle, sync, deactivate,
port, ad-hoc approach to interrupt handling, and lack of com- and terminate methods. For our discussion, the most impor-

Y Y

r r
Code executing on the main processor Code executing on the main processor

(Process-Flow Driven) (Data-Flow Driven)
[Control Algorithm [Control Algorithm]
layers of a
device driver Dl
—_— sensor data actuator output
- v
I/O filtering data filter cmd filter
| Shared State Data for IPC | 7
-
raw data raw data A actuator output P
sensor data 4

RTOS driver : -~
interface L

Component-based 3
activate

Device - - Device Driver
: xxread xxintr XXwrite
driver | |"| |"| | ~
4% & X J |\ ,
| | v v v ~ Lycle
S ~N
° 2R ° AR ~
ﬁl F % @ oF % \ /
. [\ ° [\
sensor /o actuator sensor 1o actuator
. electronics
. electronics))))
(a) traditional design of a device driver (b) component-based device driver

Figure 1: Comparison of traditional and new device driver designs.

tant method is the cycle method, which executes periodically ary trade-off is the potential error in the input or output signal
as a real-time thread. See [13] for complete details. Transferversus execution time used by the driver software. The cor-
of data to the hardware independent code uses a state variableect choice is then dependent on the application needs and
table mechanism, as described in[7]. The driver model resources available.

should also be compatible with other reasonable real-time A systematic approach to determining sampling rate is the
IPC mechanisms, such as shared memory with semaphorefollowing:

using the priority ceiling protocol. However, we have not
experimented with other such mechanisms.

An important aspect of the new model is that the sampling
rate is specified as one of the component’s configurable
parameters. This provides the flexibility needed to select the
best sampling rate for any particular I/O device and applica-

» Measure sensor characteristics of application

* [dentify constraints of 1/0O ports

» Compute the lower and upper bound for sampling and
obtaining correct answers

« Identify the trade-offs between lower and upper bound

« Develop driver algorithm to read sensors

« Analyze the performance of the driver code
» Measure execution time of driver to experimentally
validate the analysis
« Select period within sampling rate frame that is the best
compromise of trade-offs and is schedulable
methods combine experimental measurement with analyt-
cal understanding of the application needs, in order to engi-
eer a good solution.
The simplest form of a digital input is a switch. When on,
he switch produces a value of 1. When off, the switch pro-
vides a value of 0. The reverse can be true if negative logic is

tion combination, as described in Section 3.

2.2 Real-time analysis of device drivers

Real-time scheduling analysis has focussed primarily on
the scheduling of well behaved computational components,
assuming an idealized system with no device access. Evenl_he
work on aperiodic servers [11], which are characterized as.
random events occurring in response to externally generate
interrupts, only take into account the CPU usage of the event
handler, and not any of the overhead incurred in generating or
handling the event. None of the prior driver models has even

considered sampling rate as one of the factors that affects th%sed; for purposes of this paper, we only use positive logic.

performance and resource utiIi;ation .of the device driver. When dealing with negative logic, the input from a switch can
The ccr)]mdpcinent-balsec_i device lglrll\ller_ mlo%el ?]”0\’(;'5 Fhe be inverted immediately upon reading the data. Through

same scheduling analysis to explicitly include the device examples, we apply this systematic approach to digital inputs.

drivers. Each device driver is analyzed simply as another taskrp,o process is repeated in Section 4 for analog inputs.

in the real-time system. Itg perio_d, execution time, ?‘F‘d utili- Most embedded systems have one or more switches; some-
zation then become the primary inputs to schedulability anal'times dozens or even over a hundred. When a small number
ysis. Enabling such ?”a'yS‘S forms th.e basis for wanting 0 ¢ o\vitches is used (e.g. less than 10), the switches are usually
select_ the best sampllng rates. In trad|t_|ona| systems, the Irat‘?jirectly connected to a digital input port (DIO), (also called a
at which an 1/0 device was read or written was the same aSparallel port). With more switches, a switch matrix is com-

t_he mr(])dule in_vo_king thebqlrivder. _F:]atherl,_ de_vice and_fgpp_lica— monly employed to reduce the hardware requirements. First,
tion characteristics combined with application specifications e giscuss the simple switches that connect directly to DIO.

can yield s_ampling rates for drivers that are independent ofIn Section 3.5, we extend the analysis to large humber of
the execution rates of other processes. switches connected using a switch matrix.
3. Sampling Rates for Digital Inputs 3.1 Ideal and Real Switch Characteristics

In most embedded applications that we observed, sampling An ideal switch provides a 1 when the switch is closed and
rates for reading or writing 1/0O devices were determined in an 0 when the switch is open. The transition from one state to the
ad-hoc manner. Usually the rates are included in specifica-other is instantaneous. In reality, there is rise and fall time.
tions. If the software appears to work with the specified sam- However, since these times are proportional to the amount of
pling rates, then the rates would stay fixed for the lifetime of capacitance in a circuit, their value is generally negligible, as
the application and the values never questioned. If the soft-it is on the order of nanoseconds. For our analysis, we thus
ware does not work, then the sampling rate may be adjustecheglect the rise and fall time. When neglecting this time,
on a trial-and-error basis until an acceptable solution is some switches, such as optical and tightly constructed
obtained. While these methods may result in working sys- momentary switches, do exhibit ideal behavior.
tems, there is no guarantee that the software meets the appli- Most mechanical switches, however, exhibit bouncing.
cation’s specifications all the time, nor is there any indication When the switch is closed, the transition from 0 to 1 is not
as to whether the device driver software is using more CPU instantaneous, nor is it uniformly rising. Rather, Figure 2(a)
execution time than needed to meet those specifications. shows the oscilloscope output of one such mechanical switch.

The use of proper sampling rates for device drivers allows However, our concern is the digital representation of the tran-
software to better meet application specifications, and maysitions, as shown in Figure 2(b). The extra pulses preceding
reduce the overall utilization by not executing the driver soft- (and following) the main pulse are commonly referred to as
ware any faster than necessary. In most cases, there is not ouncesas they result from bouncing when contact is made
single answer as to the correct sampling rate. Rather, the sambetween mechanical plates internal to the switch. When
pling rate is usually a range of acceptable values, but differentbouncing exists, an application will usually require filtering
ends of the range result in trade-offs. For example, a custom-the input, also called debouncing.

The switch characteristics form the basis for the design of ble such as in switch matrices (described in Section 3.5). If a
the algorithms for reading inputs and the necessary samplingatch were used, the response would then be similar to the
rate of the tasks polling these inputs to meet the applicationswitches shown in Figure 3(c), with the rate being a function
specifications. We now focus on the experimental determina- of the task that generates the signal to clear the latch.
tion of relevant application parameters. If the switch is not ideal, then the settling time, (which we
3.2 Switch Closure Times callt), must also be measured. The settling time is the amount

One of the most important parameters to measure in orderof time the switch may bounce before settling to its steady
to determine the sampling rate is the minimum switch closure State value that correctly represents the state of the switch as
time, Gmin. If @ switch is closed for at least this long, the soft- €ither closed or open. For the switches shown in Figure 3(a),
ware is guaranteed to detect it as a switch closure. If the actualve found that the rollover switch (left side of diagram) is not
pulse width of a switch closure is shorter than this, the soft- ideal. The opto-switch on the right side of the diagram, how-
ware might miss the switch closure, but it is not necessarily €Ver, is an ideal switch and did not show any bouncing. For
considered a failure. As an example, one of our embedded@nalysis purposes, we are especially interestegdn
applications was to design software for a pinball machine To measur@m,i, andtyay connect the switch betweéfy.
(one of our experimental testbeds [4]). The machine has sev-and GND (through a resistor) as shown in Figure 4, and con-
eral kinds of switches, each with a different set of character- nect a logic analyzer &ty Note thatV.. should be the same
istics. Some of the switches are shown in Figure 3. as would be used with this switch in the final application.

Figure 3(a) are switches that must be polled quickly, Setup the logic analyzer to trigger on the rising edge.
because the velocity of the ball can be very fast. For these Close and re-open the switch as fast as possible. If the
switches, we measuregi,to be about 10 msécNote that switch is ideal (or near ideal), you should see a smooth switch
this value is dependent on the environment; changing charactransition from 0 to 1 and back to 0. If it is a bouncy switch,
teristics of the environment may yield a different value for the then the output would be similar to that shown in Figure 2.
fastest switch closure time. It may be possible to experimen- Repeat this experiment at least several dozen times, recording
tally or analytically determine the fastest the ball may travel the values ofyaxandomin for each. When performing these
across one of these switches, in which cagg, can be

derived indirectly as a function of the ball speed. Q > (eriter
Figure 3(b) shows “medium-speed” switches. Due to a

change in direction of the ball, there is a much lower bound e)

on the maximum velocity of the ball as it travels across the M rollover

switch. In our experiments, we measured the shortest switch
closure time for these switches to be about 50 msec.

A “slow switch” is one that is guaranteed to remain closed - - . _ _ _ _ _ _ __ ___ __ __ __ __ _
until the control software detects it, and issues a command to
re-open the switch. Figure 3(c) shows examples of such #
switches. In the first case, a ball is sitting in a saucer on the __ #
switch. When the software detects this, it fires a solenoid that stand-up target
kicks the ball out. In the second case, the targets are spring- 180° change in direction
loaded to fall when a ball hits it. Firing a solenoid is needed
to re-raise the target. For the slow switches, the shortest
switch closure time is a function of the control software used
to fire the solenoid; in our testbed application, the solenoid
firing process was executing at a rate of 10 Hz.

In general, we assume that a switch closing is not latched.
Using latches is often not practical, and sometimes not possi-

X
¥ _90° change in directio

= :

to a rollover switch

(b) Medium Switch Closure Time (e.g 50 msec)

solenoid kicks
ball out

solenoid switch at bottom
kicker of a saucer is closed

@

(b)
Figure 2: Characteristics of mechanical switches with bounces.

(a) as viewed on an oscilloscope; (b) as viewed on a logic
analyzer and as viewed on the input pins of a digital input port.

drop target
(before hit)

switch open

switch at bottom
of a saucer is open drop target
< (after hit)

witch closed

1 . (c) Slow Switch Closure Time (e.g. > 100 msec.)
We have more accurate measurements available. However, for sake

of discussion, it is much easier to round to the nearest whole number. Figure 3: Switches that need fast, medium, and slow polling rates.

experiments, itis important to consider how the switch will be tion code that acts in response to this switch closure. To per-
used in the final application. For example, a momentary form this filtering, a debouncing algorithm is needed. A
switch that is designed for a human to press, might be pressedariety of debouncing algorithms exist (both in hardware and
very differently depending on the person. It is thus necessarysoftware) as discussed in [10].

to repeat the experiments using a variety of touches. For In this paper, we use the simple debouncing algorithm
example, a light tap may yield a fast settling time, but also a shown as a state diagram in Figure 6. In words, this algorithm
shortomin. On the other hand, a heavy press might have a longlooks for two consecutive samples to be of the same value to
Omin, but also might have more bouncing and therefore a consider that the switch has changed states. It is using this
longertyay It is important to record the minimum, average, specific algorithm that we perform the following analysis.

and maximuno i, andtmax for your experiments. Should a different debouncing algorithm be used, the analysis
3.3 Sampling Rate for Ideal Switches would be different, and hence the specification of the correct

For an ideal switchTpay Will V sampling time would change. Implementation of this algo-
always be 0. The sampling rate to |°° rithm on an embedded processor is straightforward using
guarantee that all switch closures Vv boolean algebra. If variables are 8-bits wide, eight switches
are detected must then be less out can be debounced in parallel.
thanonin. While this seems sim- < The switch closure must be sampled at least twice within
ple, there is a trade-off. What if Fiqure 4: Circui the timeonn, Otherwise the switch hit will be filtered. This

. gure 4: Circuit used to . .

OminiS 10usec? Mu;t we poll the easure Ormin @nd Trmax places an upper bound on the sampling pgrlamfmtz. N
switch at 100,000 times per sec- To determine a lower bound, we consider the minimum

ond? This would surely use all the available CPU resources.case needed for the debouncing algorithm to mistake bounces
It is at this point that the application specifications must be for two consecutive switch hits. Such a case occurs if we
considered and trade-offs performed. While it may be possi- obtain two samples showing 1, followed by two with 0, then
ble to get a switch closure that is only i®ec, that mightonly ~ two more with 1. Assume that only the last two 1’s are the
happen once in 1000 times (0.1%). In an application, we may steady state. The sampling that would generate such a filtered
find that 99.9% of the timegmi, is greater than 5 msec. In output would require at least four samples during the time
such a case, sampling at 5 msec instead giisér is much intervaltmax TO prevent such an occurrence, we must sample
more practical and uses a lot less CPU time. The questionat most three times during the transient bouncing of the
then, is whether or not it is acceptable for the application to switch closure. Therefore, the sampling period must be
detect a switch closure that is only fi6ec. If the switch clo- greater thammy{3.

sure is associated with human input, we can assume that the Combining the lower and upper bounds, we have the fol-
switch was closed too lightly, hence they simply need to presslowing condition on the sampling peridd and sampling rate
harder. If the closure is one of the switches in our pinball fs(wherefs=1/Tg) for the input driver that debounces a digital
machine, then we may conclude that the switch was not reallyinput according to the state machine in Figure 6:

closed. On the other hand, if the switch closure is associated

i H . . T Omi) 2
with a toxic gas substance, then we want to capture it; in this %Q Tg< %‘ or —=< fs<ri 1)
latter case, we may choose to latch the switch, or dedicate a _ min max
small processor to reading the switch apis6c intervals. The range of possible values shows the range of acceptable

Lets suppose that it is acceptable in our application to only trade-offs for the sampling rate. Suppasgxis 3 msec and
guarantee detecting switch closures withi, greater than 5~ OminiS 10 msec. Then 1 mseck < 5 msec. To minimize the
msec, thus being 99.9% accurate. What if the CPU is over-

loaded? We can halve the CPU utilization of this task if we |

poll at 10 msec instead of 5 msec. Based on experimentation,
this might reduce accuracy to 99.0%. If that is still okay for Toz _ o T10
the application, then the trade-off is acceptable. But if slow- (a) switch value before debouncing

ing the sampling rate to 10 msec reduces our accuracy to

70.0%, that might no longer be acceptabile. It is for this reason) .
that logging all results of the experimentation for determining (b) switch value after debouncing
Omin should be noted. It allows for a trade-off between accu- ~ Fi9ure 5: Measurement of - Tmax and Oin-; Tmax = Max(Toz,T 10)-
racy and CPU utilization.

The above discussion assumes an ideal switch. If there is
switch bouncing, then this imposes additional constraints on
selecting an appropriate sampling rate.

CID
3.4 Sampling Rates for non-ldeal Switches Y
Let us reconsider the rollover switch in Figure 3(a). A sam- AB: current state
ple of the output for this switch is shown in Figure 5(a), with g: input of;i|f;e|>r
: output of filter

the filtered output being shown in Figure 5(b). All of the
bouncing is filtered, to provide a clean signal to the applica- Figure 6: State diagram for debouncing algorithm

amount of CPU time that sampling the switches takes, we debate the choice to use a switch matrix over other alterna-
would select the sampling rate to be near 5 msec. On the othetives. Rather, we are interested in the switch matrix as an aca-
hand, suppose that the task set is being scheduled using thdemic example of a complex device structure, to demonstrate
rate monotonic algorithm, the fastest task is executing at 3an engineering approach to determining the sampling rate for
msec, and all other tasks are multiples of this value (hencea complex device driver.
producing a harmonic task set). Then it may be desirable to Without a switch matrixN digital input ports are needed
use a bit more execution time, run the task at 3 msec, and thuso interface td\ switches, assuming a common ground for all
keep the schedulable bound at 100%. We knowdlamsec switches. A software-controlled switch matrix is used to
rate is acceptable because it is within the acceptable rangereduce the number of 1/O ports to 2*lg@\), thus reducing
One may ask if there is any reason to ever execute with a samthe overall cost of the hardware. Half of the 1/O ports on a
pling rate of 1 msec? One reason for doing so is that experi-DIO board are used for selecting one of thes®) columns
mentally obtaining the valuenm;, might not have yielded the of the matrix, and the other half of the ports are used to read
lowest possible value. Or, &, was selected to catch 99.0% the corresponding switches for each row in the active column.
of switch closures, using the faster sampling rate might raise As an example, Figure 7(a) shows a 16-bit DIO board con-
this value even higher. But in no case should the samplingnected to 16 binary switches. The software can obtain the val-
rate be faster than 1 msec to avoid mistaking a bounce for ayes of the switches by reading the registers corresponding to
switch closure. the DIO’s ports, all of which are configured for input. The
For a particular bouncy switch, it might be possible that advantage of this method is that software is very simple. A
TmaxiS 6 msec, andyin is only 4 msec. In such a case, there single read operation of the input ports is sufficient to collect
is no possible sampling rate that can guarantee the capture oéll the data on a single cycle. Thus, each polling cycle of the
the switch closure; the designer must choose other optionsentire switch matrix is about 1Q@sec on an 8 MHz 8-bit
One is to use a different debouncing algorithm such as look- microcontroller. The disadvantage is the hardware cost. For
ing for two out of three 1's instead of two consecutive 1's. example, if there are 64 switches to poll, then a microcontrol-
Another option is to consider the minimum inter-arrival time ler with 64 DIO pins is required.
of switch closures. A third possibility is to either accept an The DIO hardware requirements for reading 16 switches
occasional miss of a switch closure, in which caggcanbe can be reduced to 8 by reorganizing the switches as a 4 by 4
raised, or accept an occasional switch closure to be mistakermatrix, as shown in Figure 7(b). The diodes in the switch
for two separate events, thus reducigy Regardless of the matrix are used to allow the software to detect multiple
decision made by the designer, the choices can easily be docswitches that are depressed simultaneously by preventing

umented, and should the decision not be the right one, modi-feedback current into inactive columns. Four of the DIO bits
fying the design is simply a matter of modifying the algorithm

in one module, or changing the sampling rate.

Although a single switch digital input is simple, it high- : Pio1 :
lights many real issues for determining a correct sampling ”H H“
rate. Next, we focus on a more complex form of digital input:
the switch matrix.
3.5 The Switch Matrix

A switch matrix is a more complex digital input device. It
is used in applications with large number of binary sensors to
reduce wiring requirements. A switch matrix is most com- 3 IR R MK MK MR A S A A AL A &
monly employed in keypads and keyboards [6]. It can also be (@
used in more sophisticated applications, such as intelligent ﬁm
traffic light control, building temperature control, security c1
and alarm systems, and tactile skin for robots. These applica- c2
tions differ from keyboards in that the I/O from a digital I/O s o4
(DIO) port of a microcontroller does not have sufficient drive 008 L
current to propagate through the matrix. Instead, the com- |R_0@J A A A A
puter signal must be propagated through power amplifiers, G XXX
relays, and/or opto-isolators. The propagation delay is signif- R Y S S S
icant, often on the order of several dozens to hundreds of R3 KX
microseconds, and puts severe requirements on the software — e oS
timing. ®)

There is a trend towards using a serial bus, such as a con- buffer, amplifier, or relay

troller area network (CAN) [14], to reduce wiring require-

ments. However, it raises the cost of the hardware and Figure 7: (a) 16-port DIO board connected to 16 switches.
changes the design of the software, as each sensor or actuator () 8-port DIO board connected to 16 switches by using a
node must have its local processor. In this paper, we do not software-controlled switch matrix.

are configured for output; they are used to activate one of the Table 1. Overhead o f switch matrix polling operations on
four columns. The other four I/O bits are configured for input. an 8 MHz 8088

Note_ that thi§ is on_Iy one of many configurgtions f(_)r switch Variable Description Lsec
matrices. Thls particular matrix allows multiple switches to o e =
be closed simultaneously, and allows the software to detect C Write 0 comn G
. Wr

precisely which switches are closed and which are open. Sim- C Read from row 22
pler switch matrices, as often used in keypads, usually cannot Conod Increment and moddlo 0
distinguish m_ultiple simultgneous k_ey presses. R_egardless of Co Base loop overhead 15
the construction qf thg SWItC.h matrix, the analysis and algo- Cy Additional overhead per loop iteration 8

rithms described in this section are similar. Ci Simple If comparison 15

The switch matrix is scalable with complexity of O(lgg. i)
For example, an application with 256 switches can be wired "€€rs combat the problem by replacing the delay with
as a 16 by 16 switch matrix, to reduce the number of required unrelated but useful instructions into the code. Although this
I/O pins from 256 to 32. An application with 64 switches can MProves on CPU utilization, it eliminates any form of mod-
be defined as an 8 by 8 matrix, requiring only 16 I/O pins. ularity and prevents creating a standard device driver model

The boxes with arrows shown in Figure 7 represent buff- for a svvllt(;hdm_ﬁ:rlx smlti_e the ftr\J/\c/)”mg' sof’ttwarelcznf?ot I':)te
ers, power amplifiers, opto-isolators and/or relays, (which for encapsulated. 1he resulting software 1S extremely difficutt to

simplicity we will collectively callbufferg required to drive analyze, and often the source of difficult to fix timing errors.
the lines with sufficient voltage and current. In a keyboard, 3.5.1 Modelling the Switch Matrix Driver

line drivers with a few microseconds propagation delay is The primary requirements for polling a switch matrix are
usually sufficient. In larger-scale applications, however, a conflicting:

separate power supply and opto-isolation between the com- poll fast enough to catch every switch closure

puter’s logic supply and this power supply is often needed. In poll as slow as possible to minimize CPU utilization
our experimental testbed, we use Grayhill 70-ODCS for out- We have studied five variations for the switch matrix

putand 70IDC Industrial Control Modules for input. The data driver, three of which are based on a fixed polling rate for all

sheets specify a maximum turn-on time of j2c for the switches, and two are based on a configurable variable rate.

output modules and 2Q&ec for the input modules. - . i
Soft that polis th itch matri t select | For each variation, we provide the pseudocode, a mathemati-
ottware that polis tne Swilch matrix must Select a CoIUMN | cy5racterization of the utilization, measurements of the

to poll, then wait for the signal to propagate through the buff- execution time of our implementations to validate our analy-

grs,_ the[lrgmally rgad tge fS|gna:|_at thetrl]npfut”por_t O_f the 1/0 sis, and a comparison with the other methods. We conclude
e;nge_.m elzvpsdeu ocode for polling 1S the following: that for a fixed-rate method using an interrupt-driven timer, it
or ;_t' (t) C"I’ 0 C by turmi the bit leadina o that col J is best to poll only a single column of the matrix per cycle,
ctivate column & by turning on the bit leading o that column, an unless the interrupt overhead is greater than the propagation
turning off all other output bits. .
. . . delay. In cases where only some of the switches need to be
Wait D, seconds, where Dpis the sum of the propagation delay for both olled at the fastest rate. we present a device driver for pollin
the input and output modules. (We assume that the propagation p_ o P . p . 9
different columns of a matrix at variable rates that can signif-

delay of the wires that connect the switches is negligible). . I .
Read the row. If a switch in column Cjis closed, then the bit in the row icantly reduce the overall CPU utilization of the microcon-

of that switch will be on, otherwise it will be off. Any number o~ troller. _ _ _
switches in the column can be closed simultaneously. To capture the overhead of polling and implementing the
end individual instructions, we use the method that Katcher [8]

To demonstrate the effect of propagation delay, supposeused to characterize real-time scheduling overhead. To quan-
the delay in an 8 by 8 switch matrix is 1p@ec and the tify our analysis, we measured the values for several micro-
switches must be polled 500 times per second. Assumecontroller platforms. In this paper, we present results from our
another 10Qusec overhead for context switching and for writ- €xperiments using the 8 MHz 8088.
ing to and reading from the 1/O ports. It takes the software = The overhead for various basic operations used in our
250usec per column, or 2.0 msec to read all switches. At a equations is shown in Table 1. The context switch overhead,
frequency of 500 Hz, this amounts to 100% CPU utilization. Cggy includes scheduling tim€,, is the time to select a col-
The switch matrix, however, is often not the only function umn by writing to an appropriate output poBq is the time
that needs to be performed by the microcontroller. On a to read the row via an input port. The time to performnied
slower processors the utilization may rise to above 100%. operation iSsCyo¢ Cio andCyy quantifies the loop overhead.

In a multitasking environment where the switch matrix Ci is the time to perform the simple comparison for the vari-
executes as a higher-priority process, the (i8€c delay may able-rate algorithm (Section 3.5.3).
be too short to make it worthwhile to switch contexts to The overhead was measured by instrumenting the code to
another process. A context switch on a microcontroller is toggle unused bits on a DIO board. Before an operation, the
expensive, often longer than the amount of busy waiting bitis setto 1. After an operation, the bitis setto 0. The signal
needed; thus the time to swap out and back in does not prowas then viewed on a logic analyzer with better thgrséc
vide any improvement. Experienced embedded system engi+esolution. Note this method is fairly accurate for microcon-

trollers with no cache nor pipeline, but not necessarily as All switches every cycle

accurate for modern RISC architectures. This first algorithm is used to scan a switch matrix in
The context switch overhead cannot be measured directlyWhich multiple switches may be closed simultaneously, and

using the method described above. Instead, it is measured bjl'e Software must detect all such closures. Pseudocode for

taking three measurements, as shown in the timing diagram of \-CORITHM F1 is shown in Figure 9.

Figure 8. A bit on Channel 1 is continuously toggled withina 1€ €xecution time for EGORITHM F1 is computed as

low priority task (e.g. the idle task). A bit in Channel 2 is set Cs = Cio * Neol(Cry * Cuyr * Crg *Pp) * Cosw ®3)

to 1 as the first instruction in the higher priority switch matrix Since every column is polled on every cyclB=Cnin

polling task, and reset to 0 as the last instruction. The pulsetherefore, the CPU utilizatiotl, is

width on Channel 2 represents the length of the sampling rate U - Cio* Mol Cly * Cyyr * Crg +Dp) +Cegyy @)

code. The measurements arepft,, andts, wheret; repre- s~ Ormin

sents the length of time it takes to execute the switch matrix An alternative to polling every column on each cycle, is to

polling plus overhead for calling the handigrrepresents the) 51y 4 single column per cycle, but increase the rate of
length of only the handler code, angrepresent the execution 6 interrupt handler. This leads to the next algorithm.

time of one cycle of the while loop. We compute the overhead

of the context switch code &.q,= (t1—t)—ts. Note that this ~ O"€ column per cycle

same overhead analysis can be used if the polling code is A;GSRATHM th’) detai:jed in FigL:jre 9, Eanothﬁr fz(e? ratg.
placed within a periodic interrupt handler; the schedulability method that can be used to spread out the overhead of reading
analysis, however, might change. the matrix, such that each switch is only polled once every

Neol CycCles.
The CPU execution time used by one iteration of the sam- Cq:-h)é execution time for EGORITHM E2 is

pling code, including all overhead, S5 The period isTg.

Thus the utilization of the switch matrix polling software, is i
c As compared to AGORITHM F1, there is no loop overhead

U =S) but additional overhead for computiy,o.¢ However, since
s T only one column is polled on each cycle, the rate of the inter-

The analysis assumes that the polling software is executed Pt handler must be increased accordingly, such that
at a rate that matches the shortest switch closure time. InTs-Omin/Ncol- Therefore, the utilization is

col

Cs = er + Crd + Dp + Ccsw+ Cmod (5)

many applications, however, it may be desirable to poll at U = Cwr * Crg +Dp+ccsw+cmod[h (6)
least twice as fast, to take into account issues such as switch s Omin col
debouncing. A comparison of the utilization between this algorithm,

. . . .) ALGORITHM F1, and the other algorithms still to be shown in
8.5.2 Fixed-Rate Switch Matrix Polling Algorithms. this section is illustrated in Figure 10 and Figure 11.

Fixed-rate algorithms are commonly employed in switch Figure 10 compares the results assuming the propagation
matrix control software. Every column of switches is polled delayD,=200usec, but the shortest switch closure timg
with the same frequency. We first present the most commonvaries from 5 to 50 msec. Figure 11 showgj, constant at
algorithm for reading a switch matrix, then show two varia- 10 msec, buby, varies from 0 to 30Qusec. Note that although
tions. For each version, the CPU utilization is computed as athis algorithm uses consistently more CPU time thas®:
function of the shortest switch closure time and of the propa- RITHM F1, we use it as the basis for@oRITHM F3.

gation delay. Read-before-write, one column per cycle
An alternative to AGORITHM F2 eliminates the busy-wait-

channel 1 m ing time Dy, as long as th&s > D,. Note, the modification to

" t3 the initialization is to ensure that a good value is read the first

channel 2 ﬁ— time swCycleis called. Pseudocode forLAORITHM F3 is

shown in Figure 9. The CPU utilization forl&ORITHM F3 is

Figure 8: Measuring the context switch overhead. the following:
ALGORITHM F1 ALGORITHM F2: ALGORITHM F3:
swinit: swinit: swinit:
col=0; col=0;
write (1<<col) to Pyy;
swCycle: swCycle: swCycle:
for col= 010 ney-1 do col = (coH1) mod ngy read Pj, to swmx[col]
write (1 << col) to Pyt write (1 << col)to Pyt col = (cok1) mod ng
delay Dp delay Dp write (1 << col) to Pyy
read Pj, to swmx]col] read Pj, to swmx][col]
endfor

Figure 9: Fixed-Rate Switch Matrix Polling Algorithm.

_ er + Crd + Ccsw+ Cmod

U [h

(7
Even though it is necessary to run theCycleroutinengg,
times faster than BGORITHM F1 to read the switches at the

same rate, it uses less CPU time for cases wbgre Ccgy
as shown in Figure 11. The utilization for8oRITHM F3 as
a function of opin with Dp=200psec is consistently better
than both AGORITHM F1 and AGORITHM F2, as shown in
Figure 10.

3.5.3 \Variable-Rate Switch Matrix Polling Algorithms

s~) col
Smin

Given that not all switches must be polled at the same fre-

quency, we want to develop a driver model for scheduling
which columns of the switch matrix are polled on each peri-
odic execution obwCycle It is essential that the implemen-

polled at a rate fast enough to read the switch with the shortest
closure time. In contrast, assigning switches to specific rows
makes no difference from the software perspective.

We now describe a method for determining an appropriate
schedule given the shortest closure switch timg {or each
columnk. The method is based on building a multi-rate cyclic
schedule, as commonly used for job shop scheduling [3,9].
Note that we assume it is acceptable to poll any column faster
than the specified switch closure time; although if switch
debouncing is used, the fastest polling time may be bounded
as was discussed in Section 3.4. This allows us to adjust the
polling time to optimize the cyclic schedule.

To build the schedule, the shortest closure time of any
switch in each columk, oy, must be supplied by the applica-
tion specification, or obtained through experimental measure-

tation of the schedule is efficient, such that the overhead doesments to gather the data.

not counteract the benefits of using a variable-rate polling

method. Note that when wiring the switch matrix for variable-
rate polling, it is desirable to include switches with similar

From this value, we can compuigi, as

(8)

(0]

R 7
min ~ mln(ok)‘k: 0

closure times on the same column, since the column must be \ye also defineayas the largest value afin(oy), scaled

F1

F2 Dp=200 pisec.

Omin (Msec).
Figure 10: Comparison of utilization vs. shortest switch closure

time for switch polling algorithms. Propagation delay Dy=200 psec.
lbrriag
ol -
Gminzlo msec.
u S
F2
F1
VLo
|
i — F3 mm—
ki - e V2 e——
\
|
9 = i
csw - B
Dp (usec).

Figure 11: Comparison of utilization vs. propagation delay for
switch polling algorithms. 0pi,=10 msec.

to a multiple ofopn, as follows:

7
max(ok)‘
o =|_ k=0jg
max e min

| (©)

The length of the schedulkeg, can be computed as the ratio
of Omaxt0 Omin as,

L :Omax
S o

(10)

min
assuming thalg will be set toomin. Equation (9) ensures that
OmaxiS @ common multiple o6, Note that the more factors
of omaxthat are also multiples afmn, the more flexible the
algorithm we present below for building a schedule. Note also
that Omax Omin OF both can be lowered — implying that it is
acceptable for a switch to be polled faster than necessary — to
increase the number of factors of,,x that are multiples of
Omin, Without affecting the correctness of the switch matrix
operation.

The polling period of each column in units of number of
iterations of the interrupt handlgsy, is computed as follows:

s (11)

B
Ok
The polling periodTy for each column is then be computed as,
Tk = Pk%min (12)

Equations (11) and (12) are used to ensure that the polling
times for individual columns are harmonic and are a multiple
of Ts. If necessary, polling occurs more often than defined by
Ok, but never less oftefy is used to build the schedie

The schedul&is an array ol_g elements ohq bits each,
that is used to store the schedule. Settinghit elementS
means to poll columrk on cyclej, where on each cycle,
j=(j+1) modLs. In creating a schedule, the number of bits for
any one cyclg should be minimized, thus minimizing the
number of columns that must be polled on a single cycle.

The schedule is built either offline or during initialization,
using the following algorithm, where the functidrits(x)

Py =

returns the number of bits set in the valudhe pseudocode
for creating the scheduler is shown in Figure 12.

Using ALGORITHM S1, the maximum number of columns
that must be polled on any one cyctg, is computed as,

r1(:0I_1
5 Fmﬂ
m = k=0 Tk
cc L

S
Given the above schedule, we now present an algorithm to poll
the switch matrix.

(13)

Variable-rate switch matrix polling, write before read

The basic variable-rate polling algorithm is a variation of
the Algorithm F1 (See AGORITHM V1 of Figure 13). The
CPU utilization for AGORITHM V1 is the following:

U_Ccsw+ CIo + Ncol E(Clv + Cif) + Mec E(er + Crd + Dp + Cmod) (14)
S

Smin

As can be seen in Figure 10, this algorithm (plotted for
0,={10,10,20,80,120,240,20,80}) performs similar to the
best fixed rate algorithm. Note that results may vary signifi-

cantly depending oay. With a known set of minimum switch

ALGORITHM S1
sort Tgin increasing order
for each column k (in order of Tj) do
b=0;
valid = FALSE;
while (valid == FALSE)
for j=0to pgdo
if bits(S;neo) == bthen
/try to fit in as b column to poll on every pk”’ cycle.
valid = TRUE;
for j=jto Lgstep pxdo
if bits(S;Nco) > b

valid = FALSE; // does not fit, try with next cycle j.
end for
end for
if valid == TRUE exit while loop ;
b+,
end while

// starting cycle for columnk isj. Set bitk in'Sj, Sj+py, Sj+2p, etc.
for j=jto Lgstep pxdo
setbit kin S;
end for
end for
Figure 12: Scheduling algorithm

ALGORITHM V1: ALGORITHM V2:

swinit: swinit:
initialize Ls (Eq. (10)) and Sjfrom initialize mec, Ls and S;
data generated in ALGORITHM S1. j=0;
j=0; col=0;
swCycle: swCycle:
for col=0to ngy do read Pj, to swmx[col]
if (1<<col) & S[j] then while not (1<<col) & S[j] do
write (1 << col) to Py increment col;
delay Dy if col == ncol then
read Pj, to swmx]col] j=(+1) mod Lg
end if col=0;
end for end if
j=(+1) mod Lg end while

write (1 << col)to Py,

Figure 13: Variable-rate switch matrix polling algorithms

Table 2: Experimental measurements of utilization for
sk={10,10,20,80,120,240,20,80}on an 8 Mhz 8088.
(All times in msec).

Algorithm T Meaé:red Meaﬁ:red TheoLrJiticaI c%?rﬁjpadit?nngf%r s
F1 10,000 2550 26 21 (4)
F2 1250 402 32 27 (6)
F3 1250 151 12 11 (7
V1 10,000 1442 14 13 (14)
V2 2500 202 8 5 (16)

closure times, we can use any graphical plotting package to
display the graphs and select the best performing algorithm
for the specific application.

Variable-rate switch matrix polling, read before write.

In the fixed-rate method, we reduced utilization by per-
forming only a single column per cycle and switching the
order of the write column and read row operations. The com-
promise is that the rate of the interrupt handler had to be
increased by a factor of,,. Nevertheless, it still resulted in
reduced utilization.

We can perform the same modification ta@orITHM V1
to reduce CPU utilization further. (SeeL@ORITHM V2 of
Figure 13).

The execution time afwCycleis

C

n
_ col
s~ Cesw? Clo+m_mE(cIv+Cif)+er+crd *Crod (15)

Since only one column is polled on each cycle, the rate of
the interrupt handler must be increased. However, since we
only have to cycle throughm. columns and not alq col-
umns, the rate only needs to be increased $eomjy/Mcc
Therefore,

C +C

Ccsw

n
col
o™ F,I; HCy *+Cif) *Coyr + Crg * Crnod

Us

- [, (16)

As can be seen in Figure 10 and Figure 11, this algorithm
(plotted for 0,={10,10,20,80,120,240,20,80}) performs sig-
nificantly better than any other algorithm.

To substantiate our analytically-derived plots, we mea-
sured the actual execution time for our implementation of
swCycleon our 8088 implementation. The results are shown
in Table 2. Although the measured times tend to be higher
than the theoretical estimation, the results do support our
claim that a variable-rate switch matrix handler can signifi-
cantly reduce CPU utilization for applications where switches
need not all be polled using the sample sampling rate.

To compare the effect of the variable rate algorithms, we
compare the CPU utilization of different switch matrix con-
figurations each witm.,=8, as shown in Table 3. The differ-
ent configurations are obtained by assuming different sets of
switch closure timesy. The schedulé& for each configura-
tion is then obtained by applyingl&oRrITHM S1. The values
Ls, Me, Pr Tk @ndTyg, are also computed using the equations
above, and included in the table. The schedule lets us know
which columns are polled during a given cycle. Utilization for
each configuration and algorithm is computed assuming the

use of an 8088 microcontroller. Based on the calculated utili- Table 3: Examples of various switch matrix configurations,
zations, we can configure a device driver’s real-time behavior corresponding schedule for variable-rate algorithms, and utilization
to suit the application’s needs as well as to use only as much for each algorithm presented

CPU utilization as necessary. Note that the second rowinthisn i P P T et s Folon oo lonboulo
table corresponds to the schedule used in generating the= ;0 L S e pk4 Zom — ol i e
. . . 0 o3 194,94,
graphs in Figure 9 and Figure 10, as well as for the measure{ | g 4| 20|S50s: 315234d0
ments in Table 2. 58 g gg
) 8| 10| 10| 80| 8 4| 7| To 10].21|.27|.11|.13|.08
4. Sampling Rates for Analog Input 20 2| 20
Analog inputs provide data to the processor through an| | 3 A
analog—to-di_gital converter. The sampling rate refers to the 10 1] 10[Spt0 S5 07c3,17,63
number of times the data is read from the ADC and passed| | 2 e g;}g §171 S ras
along to other application components that use the data. Thg 4| 80| o100 2al 4| 8| 80|Si2t0 15 0743,17.83| 10l 51| 59| 1] 13| 08
P H : 120 12| 120|S;4t0 Sp9: 0f,c3,07,43 Bl Bl el Rl
sampling rate directly affects the temporal resolution of the | |7, 24| 240|300 Sy 07,43.07.43
input signal, much in the same way as the number of bits of gg g gg
resolution in the ADC affects the spatial resolution. z TS oS GTEOna
The maximum error is a function of the sampling rate. We 10 2| 10|Sjto Sy 83210721
define the errok(t) as the difference between the real sensor 30 8] 30|9st0 Sy 03210361
: 3 100 5| 150] 30| 3 15| 75|S;zpt0 Sp5 07,21,03,21 5|.42(.54].22] 20 .13
value, and the value used by the control value, at any time 1?8 Sg 1?8 ?6{0 glgg 83228;% i e el
Note thatt is continuous, thus asincreases between sample 50 10| 50 sggtg S 07210321
periods, the input value is constant, but the error typically 80 15| 7552510 Sag: 03,21

increases. This is shown in Figure 14.)

In signal processing, Nyquist criteria is used to determine Motor. The measurement can use the analog sensor as input,
the sampling rate. Specifically, the sampling must be at leastPY Sampling as fast as the processor is capable of sampling
twice as fast as the highest frequency component in the inpu2nd recording the values of the velocity in ADC units. Sup-
signal. Given this sampling rate, the original input signal can POSe the sampling rate&, reading the log of measurements
then be reconstructed. will yield a max(a) during a time intervalt, whereAais the
difference between two successive ADC readings. We can

Unfortunately, the Nyquist criteria cannot be used in most S - .
y yd then computeda/At. If significant digits on the inputha

embedded applications. Reconstruction of the original signal ; .
bb 9 J becomes an issue becausds too small, then we can com-

requires significant computational power; thus the need for - i .
digital signal processors. On the other hand, in embedded!Olne multiple samples, and instead comphkfia/kAt, wherek

control applications, the analog input does not need to be'S the_number_ of sz;l]mples ?kﬁﬁ N%t_e th_at t_hisAtfi_? forht_hiﬁ
reconstructed. Rather, the input is typically used to provide fsxpt)]erltr)nentatllon Fc)mafse or? yf,_t ?O JT.Ct'V.e is to filydwhic f
sensory input as the basis for feedback control. Thus, only the!S the best value ot for the final application, to ensure suf-

most recent data is needed. It is important to keep the errorliCi€Nt accuracy while minimizing resource usage.

within the maximum bounds specified by the application. Since Aa/At is a specification of the maximum .slope,
For microcontrollers, as when using Nyquist criteria, the Which by definition is als&, we note the relationship:
highest_ frequenc_y component i_n the system can be used to c=Ba_ on-1_ 2n"fmax (19)
determine the minimum sampling ratg,i,. Let's call the At
highest frequency componéit,, We definew=2mf a5 The Let E be the maximum desired error, specified as a per-
worst-case changes in the analog input can be modelled as centage of the maximum range of the signal. That is, for a
g(H=2""sin(w1) (17) maximum five percent errogE=0.05.
wheren is the number of bits on the ADC. The maximum rate y
of change fog(t), which we callG, occurs Wherﬁg(t) is max-
imized. Thus Ksin(wl) e)
i - 50— pay 50
G = %g(t) = w2" Coos(t) | = o = W2 (18) gg 4 e b 40
max ! - 4 30

For many applications, the maximum rate of change might 2/ \ ISl /WI/WM,/WM/L//
already be specified as a maximum slope, such as “1 degree " | i 12
per second” for a digital thermometer. This can be converted | Y Ho1o
to the form ofAa/At (ADC units per second) through simple :
scaling based on the range of the ADC. Other times, the max- - |

-20
-30

imum can often be estimated reasonably through experimen- -4 oy 40

tation. For example, suppose an analog velocity sensor is ;15 35 735 ¢ 7 8 9 0 0 1 2 3 4 5 6 7 8 510
connected to a motor. Then the maximum rate of change of (100 msec) (100 msec)

the velocity occurs when the motor exhibits maximum accel- Figure 14: Example of error that results from

eration, which will occur when full power is applied to the sampling an analog signal. €(t) = |y—Ksin(ct)|

The minimum sampling rate is then computed as devices, for which there are similar issues with regards to

G (ha/At) w o 20) determining good update rates.

2E E 6. Acknowledgements

For example, if an application has a maximum rate of The research described in this paper has been supported in
change that is equivalent to sampling a 50 Hz sine wave, anPart by the National Science Foundation and in part by the
8-bit ADC is used to read a sensor, and the maximum error is D€Pt. of Electrical and Computer Engineering and the Insti-
5%. Then, f=5070.05=3.1 KHz. The sampling period tute for Adv_anced Com_puter Studies at University of Mary-
Te1ff= 318psec. land. The pmball machine that was used as an experimental

Interesting to note, the minimum sampling rate is not a testbed was built as part of a capstone design course and spon-

function of the number of bits on the ADC. Rather, it creates SOred by Lockheed Martin Corporation; details of this project
a lower bound on the maximum error: are online ahttp://www.ece.umd.edu/pinball

E<2 (21) 7. References
This also leads to asking the question, if maximum error is [1] P. Albertos,, A. Crespo, “Real-time control of non-uniformly
specified as 1 ADC unit (i.e. maximum errodia/At=1), then Zi?ﬂ%% SXSIﬁnI;ggntfol Engineering Practicev.7, n.4 p.
what is the sampling rate that would yield this result. To com- » AP :
utz tﬁat \e,gﬁe pwegsgl:ez—n?n Eou(dz%)et% rf)v?dsg oco [2] M.C. Berg, N. Amit, J.D. Powell, “Multirate digital control
P ’ ?1 0P system design,JEEE Trans. on Automatic Controt.33, n.12
fpant = f1= G = 2" fmax (22) p. 1139-1150, Dec. 1988.

For a specific ADC device and application, it does not [3] A. Burns, N. Hayes, M.F. Richardson, “Generating feasible
make sense to sample any faster than this value, as the error ~ cyclic schedules,Control Engineering Practicev.3, n.2, p.
is already limited by the resolution of the device. “151'_62’ Feb. 1995.) . ' .
The sampling rate for an analog input has a lower bound as[4] Engineering students become pinball wizardstie Chroni-

) . . . cle of Higher Educationv.44, n.25, Feb. 27, 1998. For project
defined in Eq. (20) and an upper bound as defined in Eq. (22). details, gedattp://www.ece.umd.edu/pinball. prol

To summarize, givefinax [5] R. Gerber, S. Hong, M. Saksena, “Guaranteeing end-to-end
Tf ax n timing constraints by calibrating intermediate processes,” in
£ s fs=2 a0 (23) Proc. Real-Time Systems Symposipm192—203, Dec. 1994,
I [6] D. Hammond, “Microprocessor chip scans keyboard without
or if givenAa/At, o) ™ hardware interfaceElectronics v.50, n1, pp.110-2, Jan 1977.
SNt s (24) [7] M. Hassani and D.B. Stewart, “A mechanism for communi-
EL2 cating in dynamically reconfigurable embedded systems,” in

Note that these equations provide a bound that assumes a Proc. High Assurance Systems Engineering Worksiash-
maximum error based on the full range of the ADC, which is ington, DC, pp. 215-220, August 1997.
from 0 through 2. In some applications, the full range of [8] D. Katcher, H. Arakawa and J. Strosnider, “Engineering and
the ADC might not be used, in which case slower sampling ~ @nalysis of fixed priority schedulersfEEE Trans. on Soft-
rates might be possible. The slower rates can still be deter-,, Ware€ Engineeringv.19, n.9, Sept. 1993.

. . — . [9] J.0. McClain, W.W. Trigeiro, “Cyclic assembly schedules,”
mlned ana!ytlcally, by adjusting the amplitude of the model IIE Trans, v.17, n.4, p. 346-53, Dec. 1985.
sine wave in Eq. (17).

[10]A. Smith, “The merest flick of a switch,Practical Electron-
5. Summary ics, v.27, n.4 pp. 24-29, April 1991.

. . . . [11]B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task schedul-
In this paper, we first present a model of a real-time device ing for hard real-time systemsJ. of Real-Time Systems1,

driver that enables the driver to execute as its own thread of 7 pp. 27-60, November 1989.
control, independent of whatever control task is using the [12]S. A. Steele, “System software design trade-offs for real-time

data. The interface specification of the device driver is com- data measurement and control systenist’l J. of Mini and
patible with the port-based object model of software compo- Microcomputersv.4, n.2 pp. 28-32, 1982.
nents, thus it can be used in reconfigurable systems. [13]D.B. Stewart, R.A. Volpe, and P.K. Khosla, “Design of

We then present an engineering approach towards deter- ~dynamically reconfigurable real-time software using port-
mining a good sample rate for reading digital switches and 25711329dp8b1795cés'EEEDESQ;-b%? 1S£;g‘t7ware Engineering 23,
analog sensors that provide continuous data. Rather than pro-, _'+2 FF AT .)
viding a single value for the sampleT rate, ranges thatare bageé14]26ﬁfrg\;vgﬂgﬁ:é e’?‘i?] é%?é;llfg; 6};;25 ;?;‘igg‘; ntals of CAN,
on application parameters are derived analytically. An appli-
cation designer can use these equations to quickly determine
the minimum and maximum sampling rates (or periods) for
their device driver task.

The input devices we considered are representative of
devices in many embedded systems, but are far from being
complete. We plan to continue with this work, and to incor-
porate results into a tool that will enable designers to quickly
configure their systems. We will also investigate output

	1.� Introduction
	2.� Device Drivers
	3.� Sampling Rates for Digital Inputs
	4.� Sampling Rates for Analog Input
	5.� Summary
	6.� Acknowledgements
	7.� References

