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Hartmanis and Stearns [7] have posed the problem of finding an algebraic irrational
whose decimal expansion is real-time computable. No such number is known and indeed it
seems unlikely that any such number exists. In this paper, we prove a new transcendence
theorem which answers the Hartmanis-Stearns question in the negative for a restricted
class of machines. More precisely, we show that the decimal expansion of an algebraic
irrational cannot be generated by a finite automaton. In this sense, such expansions are
relatively complicated, but we are still a long way from proving that they are random, or
even normal. This connection between the Hartmanis-Stearns problem and transcendence
theory was noted by Cobham [5] and our argument follows the spirit of his remarks.

In a previous paper [9], we tackled this problem by a technique which has become
known as Mahler’s method. The method gives transcendence results for functions of several
complex variables which satisfy functional equations of a certain type. (See [8] for a
general description and survey of results.) For the application to automata, one only
needs functions of one complex variable evaluated at very special points, but in [9] we were
not able to verify one technical hypothesis that seemed unavoidable in the transcendence
proof. The present work follows a different route and replaces and completes our previous
attempt in this case. The principal change is a better approach to algebraic independence,
inspired by Mahler’s work on the algebraic approximation of functions [11]. The auxiliary
results on this subject in section 2 are completely general and of interest in their own
right. The transcendence argument itself in sections 3 and 4 relies on little more than first
principles and reverts to the style which made the original applications of Mahler’s method
so appealing.

There are a number of essentially equivalent formulations of the transcendence theo-
rem. The application to automata following Cobham [4] is detailed in section 1. Another
version suggested by Mendès France [12] yields the following result. Let f =

∑
fnXn be

a formal Laurent series over a finite field Fq which is algebraic over the field Fq(X) of
rational functions and suppose that the coefficients fn take the values 0 or 1. (In fact,
the last hypothesis does not lose any generality.) If f is not in Fq(X), then the number
. . . f−1f0 · f1f2 . . ., regarded as expanded in any base b ≥ 2, is transcendental.

Finite automata and Mahler functions

1. Let t be an integer greater than 1. A t-automaton consists of a finite set S of
states containing a distinguished element i, the initial state, and a subset F of acceptance



Loxton and van der Poorten, Arithmetic properties of automata: regular sequences 2

or final states, related by a map

τ : {0, 1, 2, . . . , t − 1} × S −→ S ,

called the transition function. A word w in ∪∞
n=0{0, 1, 2, . . . , t− 1}n is said to be accepted

by the automaton if w sends the state i to a state in F . Thus, if i = x0, w = ω0ω1 . . .ωn−1

with the ωi in {0, 1, 2, . . . , t − 1} and xk+1 = τ(ωk, xk), then w sends x0 to xn, so it is
accepted by the automaton if and only if xn is in F . The language L of all words accepted
by the automaton is said to be generated by the automaton. The words of L may be
interpreted as natural numbers represented in base t, yielding a formal power series

L(X) =
∑
n∈L

Xn .

Conversely, suppose we associate a symbol with each state in S. (It is convenient below to
associate the symbol j with the state xj .) Denote by (h)t the word expressing the positive
integer h in base t, read from left to right. Such an h gives rise to a symbol βh, say, which
is the symbol associated with the final state reached by the automaton after processing
the word (h)t. (If i is the initial state, we always set τ(i, 0) = i so that initial zeros are
ignored.) Then the formal power series ∑

h≥0

βhXh,

or the sequence (βh) , is appropriately described as t-automatic. In particular, the series L

arises by allotting the symbol 1 to the states of F and the symbol 0 to the states in S \F .

These matters are of interest in apparently distant areas of mathematics. Suppose
that

∑
uhXh is a power series over Q representing an algebraic function. By Eisenstein’s

Theorem the set of rational primes dividing the denominators of the coefficients is finite.
Suppose p is a prime not in that set. Christol, Kamae, Mendès France and Rauzy [3] prove
that the sequence (uh mod p) is p-automatic. More generally, Denef and Lipschitz [6], show
that, for any positive integer k, the sequence (uh mod pk) is pk-automatic. Conversely [3],
if (uh) is p-automatic then the series

∑
uhXh is algebraic over Fp(X).

Example [10]. Consider the transition table

0 1 2 3
x0 x0 x0 x0 x0

x1 x1 x3 x2 x1

x2 x0 x0 x2 x1

x3 x1 x3 x0 x0

If x1 is the initial state, the generated sequence (βn)n≥0 is the sequence limn→∞ θn(1)
generated by the uniform (regular) substitution θ

0 �→ 0000 , 1 �→ 1321 , 2 �→ 0021 , 3 �→ 1300 ,
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in the following sense:

θ(1) = 1321 , θ2(1) = θ(1321) = θ(1)θ(3)θ(2)θ(1) = 1321130000211321 , . . . . . .

This sequence yields the characteristic sequence of those non-negative integers which, in
base 4, can be expressed omitting the digit 2 and using only the digits 0,1, and −1; n is
such an integer if and only if βn is either 1 or 3.

Cobham [4], [5] points out that, as the example suggests, finite t-automata and uniform
t-substitutions are effectively the same thing. Thus we are led to consider tag machines
or substitution automata defined as follows. Let b0, b1, . . . , bm−1 be a given alphabet of
letters (or symbols), and suppose we are given a substitution

b0 �→ w0, b1 �→ w1, . . . , bm−1 �→ wm−1

with words wi of finite length. Denote by

β0β1β2 . . . . . .

a fixed point of the substitution. For instance, the sequence stable under the substitution
of the example is

1 3 2 1 1 3 0 0 0 0 2 1 1 3 2 1 . . . . . .
1321130000 2113211321 1300000000 0000000000 0021132113 2113000021 1321 . . . . . .

In the present paper we are concerned with the regular case in which each word wi is of
the same length, say of t ≥ 2 symbols. This construction then gives the same t-automatic
sequences (βh) as before.

Consider the generating function
∑

βhXh. More conveniently, associate with each
symbol bi its characteristic function

gi(X) =
∑
h≥0

uihXh , uih =
{

1 if βh = bi

0 otherwise,

so that
∑

h≥0 βhXh =
∑m−1

i=0 bigi(X). Note that βthβth+1 . . .βt(h+1)−1 depends only on
βh. Accordingly write

vijk =
{

1 if bi is the (k + 1)-st symbol of the word wj

0 if not,

so that

ui,th+k =
m−1∑
j=0

vijkujh .
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In other words,

gi(X) =
∞∑

s=0

uisX
s =

∞∑
h=0

t−1∑
k=0

ui,th+kXth+k

=
m−1∑
j=0

(
t−1∑
k=0

vijkXk

) ∞∑
h=0

ujhXth

=
m−1∑
j=0

pij(X)gj(Xt) .

If we denote by A(X) the m × m matrix

A(X) =
(

pij(X)
)

0≤i,j≤m−1

and by g(X) the column vector g(X) =
(
g0(X), g1(X), . . . , gm−1(X)

)′, then we have the
matrix functional equation

g(X) = A(X)g(Xt) .

Moreover every linear combination of the gi(X) satisfies a functional equation of the shape

m∑
i=0

ai(X)f(Xti

) = 0 ,

with polynomial coefficients ai(X).

Special cases of such functional equations were studied by Mahler in the late twenties;
see [8]. It is therefore appropriate to refer to these systems of equations as Mahler systems
and to their solutions as Mahler functions.

Normal Approximation

2. Let m be a positive integer and f(z) = (f1(z), f2(z), . . . , fm(z)) be a given system of
m formal power series fj(z) over a field F which do not all have zero constant term. (More
succinctly, f does not vanish at 0.) Let ρ = (ρ1, ρ2, . . . , ρm) be a system of non-negative
integer parameters ρj with sum

∑
ρj = σ. There is a system (a1(z|ρ), a2(z|ρ), . . . , am(z|ρ))

of polynomials aj(z|ρ) over F, not all zero, which together with the remainder function

r(z|ρ) =
m∑

j=1

aj(z|ρ)fj(z) ,

satisfy the inequalities

deg aj(z|ρ) ≤ ρj − 1 (1 ≤ j ≤ m) ,
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ord r(z|ρ) ≥ σ − 1 .

(Indeed, the requirements amount to σ−1 homogeneous linear equations in the σ unknown
coefficients of the polynomials.) We call such a system (a1(z|ρ), a2(z|ρ), . . . , am(z|ρ)) an
approximation at ρ. It is convenient to say that the system (a1(z|ρ), a2(z|ρ), . . . , am(z|ρ))
is of degree less than ρ. This implies a partial order on the parameter points: ρ′ lies above
ρ if ρ′j ≥ ρj for j = 1, 2, . . . , m.

Suppose the functions fj(z) are linearly independent over the field F(z). Amongst
all approximations at ρ there is, up to normalisation by an element of F×, a unique
approximation (b1(z|ρ), b2(z|ρ), . . . , bm(z|ρ)) so that ord

∑m
j=1 bj(z|ρ)fj(z) is maximal; say,

equal to σ−1+κ(ρ) for some κ(ρ) ≥ 0. We call this approximation the best approximation
at ρ, and refer to κ(ρ) as the excess at ρ. To see the uniqueness of the best approximation,
note that if there are two distinct equally good approximations, then a suitable linear
combination of them provides a better approximation. However, if the fj(z) are linearly
dependent the best approximation may not be unique. In this case, we set κ(ρ) = ∞ if
there is a choice of approximating polynomials making r(z|ρ) = 0. Finally, we say that the
system f(z) = (f1(z), f2(z), . . . , fm(z)) is normal at ρ if κ(ρ) = 0. Normality at ρ implies
that there is (up to normalisation by an element of F×) a unique approximation at ρ.

Proposition A. If the system of formal power series f(z) = (f1(z), f2(z), . . . , fm(z)) over

F does not vanish at 0, and does not have a normal approximation at any parameter point

ρ′ lying above ρ, then there is a system of polynomials a(z) = (a1(z), a2(z), . . . , am(z)), of

degree less than ρ, such that
m∑

j=1

aj(z)fj(z)

is identically zero.

Proof . Suppose that κ(ρ) is finite and that κ(ρ′) is positive for every ρ′ lying above ρ;
recall that this includes the choice ρ′ = ρ. Choose a parameter point ρ′ lying above ρ

where κ(ρ′) is minimal. Set
∑

ρ′j = σ′ and consider the best approximation

b(z|ρ′) = (b1(z|ρ′), b2(z|ρ′), . . . , bm(z|ρ′))

at ρ′. We claim that for some h with h = 1, 2, . . . , or m, the best approximation at

ρ′ + δh = (ρ′1 + δh1, ρ
′
2 + δh2, . . . , ρ′m + δhm) ,

where δhj is the usual Kronecker δ, is given by b(z|ρ′) and thus has order σ′ − 1 + κ(ρ′)
and excess κ(ρ′) − 1.

Suppose otherwise, namely that for each h the best approximation at ρ′+δh has order
at least σ′ + κ(ρ′). Since κ(ρ′) is finite, the best approximation at ρ′ + δh, say

(Bh1(z|ρ′), Bh2(z|ρ′), . . . , Bhm(z|ρ′)) ,



Loxton and van der Poorten, Arithmetic properties of automata: regular sequences 6

must have the property that

deg Bhh(z|ρ′) = ρ′h ,

since otherwise we contradict the definition of b(z|ρ′). We may therefore suppose that the
approximations have been normalised so that the leading coefficient of each Bhh(z|ρ′) is
equal to 1.

Now consider the matrix

B(z|ρ′) =
(

Bhj(z|ρ′)
)

1≤h,j≤m

.

We refer to B(z|ρ′) as the approximation matrix at ρ′. On the one hand we have

detB(z|ρ′) = zσ′
+ terms of lower degree .

This is plain since the diagonal supplies the unique term of degree σ′.

On the other hand, since f does not vanish at 0, we can choose an index i so that
fi(0) �= 0 and we can use column operations to replace the j–th column of det

(
B(z|ρ′)

)
by

the entries

fi(z)−1
m∑

j=1

Bhj(z|ρ′)fj(z) (h = 1, 2, . . . , m ).

Hence

ord
(
detB(z|ρ′)

)
≥ σ′ + κ(ρ′) .

These two conclusions entail κ(ρ′) = 0, contrary to our hypothesis that κ(ρ′) > 0 for every
ρ′ lying above ρ.

Thus, for some h, the excess at ρ′ + δh is at most κ(ρ′)− 1 contrary to the minimality
in our choice of ρ′. It follows finally that κ(ρ′) must be infinite for all ρ′ lying above ρ

proving the proposition.

We restate the proposition in the form in which we use it later and draw some further
conclusions from the proof.

Theorem 1 (Normality zig-zag theorem for linearly independent series). Let f(z) =
(f1(z), f2(z), . . . , fm(z)) be a system of m formal power series over a field F which does

not vanish at 0 and which has entries linearly independent over the ring of polynomials F[z].
Then f(z) is normal at an infinite sequence of parameter points ρ(0) = 0, ρ(1), ρ(2), . . . . . .
with ρ(n + 1) lying above ρ(n) and

∑m
j=1 ρj(n) = n for all n and min1≤j≤m ρj(n) → ∞ as

n → ∞. At each point ρ of this normality zig-zag the approximation matrix

B(z|ρ) =
(

Bhj(z|ρ)
)

1≤h,j≤m
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of polynomials Bhj(z|ρ) satisfying deg Bhj(z|ρ) ≤ ρj − 1 + δhj (h, j = 1, 2, . . . , m ), and

ord
∑m

j=1 Bhj(z|ρ)fj(z) ≥ σ (h = 1, 2, . . . , m ), remains nonsingular when z is specialised

to any element of F×.

Proof . The existence of the required normality zig-zag follows from the construction in
the proof of the proposition. Also, from the proof we see that normality at ρ entails

detB(z|ρ) = zσ

for some non-zero constant c and this gives the last assertion of the theorem.

The notions employed above arise from the manuscript of Mahler on ‘Perfect Systems’
[11] as expanded upon by Coates [2]. Our theorem is an extension of the normality zig-zag
theorem of Coates.

Linear independence

3. Let m be a positive integer and f(z) = (f1(z), f2(z), . . . , fm(z)) be a given system
of m power series fj(z) over an algebraic number field K, which are linearly independent
over K[z] and analytic at the origin. Suppose f(z) does not vanish at 0. Let ρ be a
parameter point at which f(z) is normal and at which ρmin = min1≤j≤m ρj is as large as
will be required in the sequel. The existence of ρ is guaranteed by theorem 1. Let

B(z|ρ) =
(

Bhj(z|ρ)
)

1≤h,j≤m

be the approximation matrix at ρ.

We shall operate with the valuations on K and we employ the usual notation. In
particular, | · |v denotes a normalised valuation on K and Kv denotes the corresponding
v-adic completion. The essence in normalising the valuations is to do so coherently, in
order to obtain the product formula. A useful normalisation, is to start from the näıve
valuation {

‖p‖v = p−1 if v | p and p is a rational prime,
‖n‖v = n if v | ∞ and n is a non-negative integer,

and then to set

|x|v = ‖x‖[Kv :Qv ]/[K:Q].

Let V− be a finite set of valuations of K. For each v in V−, choose δv with 0 < δv < 1
such that each of the series fj(z) converges for z in Kv with |z|v ≤ δv and such that
the fj(z) have no simultaneous zeros on this disc. Let V+ be the set of the remaining
valuations on K.
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Let β be an element of K× satisfying |β|v ≤ δv for v in V− and |β|v ≥ 1 for v in V+.
For each v in V−, we can assign a value in Kv to fj(β). We suppose there are s linearly
independent linear relations

m∑
j=1

cijfj(β) = 0 (i = 1, 2, . . . , s ) ,

in Kv for each v in V− and with coefficients cij from K.

By Theorem 1, the matrix

B(β|ρ) =
(

Bhj(β|ρ)
)

1≤h,j≤m

.

is nonsingular. Set Bhj(β|ρ) = bhj (h, j = 1, 2, . . . , m ). The s vectors (ci1, ci2, . . . , cim)
and m− s of the m vectors (bh1, bh2, . . . , bhm) are linearly independent, so there is no loss
of generality in supposing, for convenience, that the determinant

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

c11 c12 . . . c1m
...

...
. . .

...
cs1 cs2 . . . csm

bs+1,1 bs+1,2 . . . bs+1,m

...
...

. . .
...

bm1 bm2 . . . bmm

∣∣∣∣∣∣∣∣∣∣∣∣∣
does not vanish.

We proceed to estimate ∆ at each place v of K. As usual, set log+ x = max(0, log x).
For an archimedean valuation v, let |b|v be an upper bound for the v-adic length of the
polynomials Bhj(z|ρ) and for a non-archimedean v let |b|v denote the v-adic maximum of
the coefficients of these polynomials. Also, let |c|v denote an upper bound for the v-adic
values of the cij . Let V denote the set of all the valuations of K. The absolute logarithmic
height h(x) for x ∈ K is given by

h(x) =
∑
v∈V

log+ |x|v ,

and it is useful to write

h(b) =
∑
v∈V

log+ |b|v and h(c) =
∑
v∈V

log+ |c|v .

Take v ∈ V+ so that |β|v ≥ 1. We have the crude upper bound

log |∆|v ≤ log+ |m!|v + s log+ |c|v + (m − s) log+ |b|v + (σ − sρmin) log |β|v .
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Next, take v in V− so that |β|v < 1. Choose an index h so that fh(β) �= 0 in Kv. By
operating on the h-th column of ∆, we can write

∆ = (fh(β))−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

c11 . . . 0 . . . c1m
...

. . .
...

. . .
...

cs1 . . . 0 . . . csm

bs+1,1 . . . rs+1 . . . bs+1,m

...
. . .

...
. . .

...
bm1 . . . rm . . . bmm

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where we have set ri = ri(β) =
∑

bijfj(β) for i = 1, 2, . . . , m , and have used the fact
that

∑
cijfj(β) = 0 in Kv for i = 1, 2, . . . , s . For v ∈ V−, we may set |(fh(β))−1ri|v ≤

|r|v|β|σv (i = 1, 2, . . . , m ) where |r|v is independent of β. Of course, we lose no generality
if we choose |b|v so that |r|v ≤ |b|v. We then have, on expanding by the h-th column,

log |∆|v ≤ log+ |m!|v + s log+ |c|v + (m − s − 1) log+ |b|v + log+ |r|v + σ log |β|v .

The product formula for a non-zero element x of K states that

∑
v∈V

log |x|v = 0 .

By adding the estimates for log |∆|v over all v in V we obtain

0 =
∑
v∈V

log |∆|v

≤
∑
v∈V

log+ |m!|v + s
∑
v∈V

log+ |c|v + (m − s)
∑
v∈V

log+ |b|v − sρmin

∑
v∈V+

log |β|v ,

that is,

sρminh(β) − (m − s)h(b) − sh(c) − h(m!) ≤ 0 .

Let f(z) = (f1(z), f2(z), . . . , fm(z))′ be a vector whose components are formal power
series over the field Q of all algebraic numbers. Suppose that the vector f(z) satisfies the
system of functional equations

f(z) = A(z)f(zt) ,

where A(z) is an m × m matrix of rational functions over Q, and t is is a rational integer
greater than 1. The coefficients of the series fj(z) lie in an algebraic number field, K say,
of finite degree because a finite number of coefficients of the series and the coefficients of
the entries of A(z) determine the series completely. We therefore lose no generality in the
proposition below in assuming everything is defined over an algebraic number field.
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Proposition B. Let f(z) = (f1(z), f2(z), . . . , fm(z))′ be a vector whose components are

formal power series over an algebraic number field K and linearly independent over the

ring of polynomials K[z] and suppose that the vector f(z) satisfies the system of functional

equations

f(z) = A(z)f(zt) ,

where A(z) is a non-singular m×m matrix of rational functions over K, and t is a rational

integer greater than 1. Let α be a nonzero number in K and let V− denote the set of

valuations of K where |α|v < 1. Suppose that the series fj(α) converge v-adically for

each j and each v in V− and that the matrices A(αtk

) (t = 1, 2, . . .) are defined and

nonsingular. Let

a(z) = a1f1(z) + a2f2(z) + · · · + amfm(z)

be a linear form with coefficients aj in K and not all zero. Then a(α) cannot vanish in Kv

for every v in V−.

Proof . The proof is by contradiction. That is, we assume that a(α) = 0 in Kv for each v

in V−.

We may suppose that the vector f(z) does not vanish at 0, by multiplying f(z) and
A(z) by appropriate powers of z, if necessary. The functional equations ensure that the
series fj(z) are v-adically analytic at the origin for all places v of K. Set

β = αtk

.

If k is sufficiently large, then β satisfies the requirements of the previous work in this
section, that is |β|v ≤ δv for each v in V− and |β|v ≥ 1 for the remaining valuations on K.
(To verify that fj(β) �= 0 for some j, note that the analyticity at the origin entails that
none of the fj can vanish at more than finitely many of the points αtk

.)

Denote by a the vector a = (a1, a2, . . . , am)′ so that the given linear form is a(z) =
a · f(z). Iteration of the functional equation for f(z) leads to

f(z) = A(k)(z)f(ztk

) with A(k)(z) = A(z)A(zt)A(zt2) · · · A(ztk−1
) .

We can substitute for f(z) in the linear form to obtain

a(z) = a · f(z) = a · A(k)(z)f(ztk

) = (A(k)(z))′a · f(ztk

) .

We therefore set c = (A(k)(α))′ a and c(z) = c · f(z) so that c(β) = 0 in Kv for each v

in V−. The nonsingularity of the A(k)(α) guarantees that the linear form c(z) does not
vanish identically.

Now apply the fundamental inequality developed earlier in this section. We take β =
αtk

and c = (A(k)(α))′a, so that h(β) = tkh(α) and h(c) ≤ Ctk, with a positive constant C
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independent of k. The remaining terms are independent of k. Choose the parameter point
ρ so that ρmin > 2C/h(α). Then choose k so that tk > (h(m!) + (m − s)h(b))/sρminh(α).
These choices contradict the fundamental inequality. So we do indeed have a(α) �= 0 in
Kv for some v in V−, as required.

The proposition yields a very general result on the nonvanishing of certain linear forms
in the values of our functions at certain algebraic points. This is remarkable, because the
result is obtained without any explicit data on the normality zig-zags possessed by the
given system f(z) = (f1(z), f2(z), . . . , fm(z)), and without any information on the size
of the coefficients of the polynomials comprising the approximation matrix at ρ. There
is a price to be paid, however, because the contradiction in the proof depends on the
assumption of a “global” relation valid in all the relevant valuations. We note that just
such a condition arises in Bombieri’s work on G–functions [1].

Algebraic independence

4. The main theorem on algebraic independence is a straightforward corollary of the
last proposition. We restrict the statement to the situation of direct interest for the analysis
of automata. There are some obvious extensions to number fields, but these consequences
of the proposition are not particularly satisfying.

Theorem 2 (Algebraic independence of automatic numbers). Let f(z) = (f1(z), f2(z), . . .
. . . , fm(z))′ be a vector whose components are formal power series over the field of rational

numbers. Suppose, further, that the vector f(z) satisfies the system of functional equations

f(z) = A(z)f(zt) ,

where A(z) is a non-singular m×m matrix of rational functions over Q and t is is a rational

integer greater than 1. Set α = 1/n, where n is an integer greater than 1, and suppose α

is in the domain of convergence of each of the m series fj(z) and that the matrices

A(αtk

) (k = 1, 2, . . . . . .)

are defined and nonsingular. Then

transc. deg. Q (f1(α), f2(α), . . . , fm(α)) = transc. deg. C(z) (f1(z), f2(z), . . . , fm(z)) .

Proof . Suppose that there is an algebraic relation between the numbers f1(α), . . . , fm(α)
with rational coefficients which is not obtained by specialisation of an algebraic relation
between the functions f1(z), . . . , fm(z) with rational function coefficients. Then there is a
set of monomials fµ = fµ1

1 · · · fµm
m with 0 ≤ µj ≤ M , say, such that the fµ(α) are linearly
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dependent over Q but the fµ(z) are linearly independent over C(z). Let f∗ be a vector
whose components are these monomials supplemented by further monomials to yield a
basis for the set of all monomials of degree not exceeding M . Because the components of
f∗ are a basis of monomials, the functional equation f(z) = A(z)f(zt) determines a unique
transformation A∗(z) = Ω(A(z)) such that f∗(z) = A∗(z))f∗(zt). Moreover, since A(z)
is non-singular, we can reverse the argument and see that Ω(A(z))−1 = Ω(A(z)−1). In
particular, A∗(αtk

) is non-singular for every positive integer k. In the terms of Proposition
B, everything is now defined over Q, and V− consists of just the ordinary valuation on Q.
By the proposition, the components of f∗(α) are linearly independent over Q, contrary to
our hypothesis. Thus

transc. deg. Q (f1(α), f2(α), . . . , fm(α)) ≥ transc. deg. C(z) (f1(z), f2(z), . . . , fm(z)) .

Since the opposite inequality is trivial, we have the theorem.

Concluding remarks

5. As explained in §1, certain Mahler functions correspond to finite automata. These
functions have power series expansions involving only finitely many distinct coefficients
and so their radius of convergence, at every valuation, is 1. Let f(X) =

∑
βhXh be

a t-automatic power series. The series represents a rational function if and only if the
sequence (βh) is (eventually) periodic. By the Pólya-Carlson Theorem, the series either
represents a rational function or a function with the unit circle as natural boundary. In
the latter case f is transcendental over C(z). Then the transcendence arguments apply to
f and, in particular, for every integer b ≥ 2 the number f(1/b) is transcendental. This is
to say that the t-automatic number

β0.β1β2 . . . . . . ,

presented in base b is either rational or transcendental. In the contrapositive, as stated in
the introduction,

The sequence of digits (fh) of an irrational algebraic number . . . f−1f0.f1f2 . . . . . . , pre-

sented in any base b ≥ 2, cannot be generated by a t-automaton.

Our second introductory remark is explained as follows. If f =
∑

fhXh is a for-
mal Laurent series over a finite field Fq and algebraic over the field Fq(X) of rational
functions, then, by [3] the sequence (fh) is p-automatic (with p the characteristic of Fq).
Since the expansion . . . f−1f0.f1f2 . . . . . . , cannot represent a rational number, it must be
transcendental.
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