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Abstract. Driven by the philosophy of the “primacy of structure over data”, 
CB-OHS present an open set of structure servers providing structural 
abstractions of different hypermedia domains. To address the emerged 
requirements and to facilitate the development of structure servers, structure 
should be handled as a first class entity. We propose patterns for structure, 
called templates, that define the structural model upon which structure servers 
operate. We present how structure servers are developed and operate in the 
Callimachus CB-OHS. Development of structure servers within Callimachus is 
based on the explicit specification of structure with the use of an atomic 
structural primitive called the structural element. Explicit structure 
specification eases the development of structure servers in CB-OHS, make such 
development less error prone and can provide the basis for tailoring domain 
specific abstractions.  

1 Introduction 

The transition from monolithic to Open Hypermedia Systems (OHS) envisioned the 
provision of hypermedia functionality to third-party applications as well as 
interoperability among different hypermedia systems, in a distributed, heterogeneous 
environment. Much research and development work, lasting for many years, resulted 
in the realization that various hypermedia domains impose different requirements and 
need different abstractions. This led to common agreement that special protocols 
should be developed for each hypermedia domain.  

The specification and implementation of the Open Hypermedia Protocol (OHP) [2] 
was the first effective approach for supporting the well-known associative domain. 
New systems and protocols supporting structural abstractions of other domains, such 
as taxonomic [12] or spatial [6], had to be built from scratch. Inspired by the general 
trend in computing towards component-based, distributed, interoperable systems, 



Component-Based Open Hypermedia Systems (CB-OHS) emerged [10]. Driven by 
the philosophy of the “primacy of structure over data” [47], CB-OHS provide an open 
set of components, called structure servers, each one providing the foundations to 
support the structural abstractions of a single hypermedia domain in a convenient and 
efficient way [8]. Functionality that is common among all domains such as storage, 
versioning, naming and collaboration is regarded as part of the infrastructure. 

 
 

Besides providing appropriate abstractions of particular hypermedia domains, the 
CB-OHS approach may be useful in other situations as well. Sub-domains exist that 
may place constraints on an individual domain. As an example, the typed (or 
structured) navigational domain can be considered as a sub-domain or a 
specialization of the navigational domain. Moreover, some domains may be regarded 
as functional aggregations of other domains, such as the linguistic and the digital 
libraries domains where the taxonomic and the navigational domain have to co-exist 
and even interoperate at some levels [7, 11, 48]. Also, a wide number of applications 
need specific hypermedia functionality, not only generic link services. For example, a 
lexicographic application requires specific associative mechanisms to express 
relations among lemmata in a lexicon (hyponyms, hyperonyms, homonyms, 
synonyms, etc.)[7].   

CB-OHSs are one incarnation of structural computing, a philosophical view in   
which structure is regarded as more important than data. Structural computing forces 
a paradigm shift from data oriented solutions and systems to structure oriented ones.  
Such shift imposes new problems and requirements [13, 7, 3] and has implications in 
the design of CB-OHS many of which are not fully understood. One of these 
implications is the elevation of structure to a first class entity requiring from CB-OHS 
explicitly to recognize this in terms of structure oriented models and computations. 
Hypermedia domains appear thus as properly configured aspects of general structure 
management facilities. Yet, the way from general structure oriented facilities to 
hypermedia domain specific concepts is not obvious. In the establishment of such 
mechanism (i.e. from abstract to concrete), structure servers play an important role 
since they host the appropriate reification methods. Nevertheless, development of a 
structure server is a complicated project to be repeated from scratch every time a new 
domain, sub-domain or application has to be supported [49]. Thus, specific CB-OHS 
development tools are required to facilitate their development. Such software 
development tools for structure servers should include structure specification 
capabilities that will provide the fundamental elements upon which behavioral 
operations can be defined or programmed, such as traversal semantics, structure 
constraints and even presentation and transition effects.  

In this paper we present how structure servers are developed and operate in the 
Callimachus CB-OHS. Development of structure servers within Callimachus is based 
on the explicit specification of structure with the use of an atomic structural primitive 
called the structural element. The need to specify structure explicitly has already been 
pointed out [46]. Explicit structure specification eases the development of structure 
servers in CB-OHS, make such development less error prone and can provide the 
basis for tailoring domain specific abstractions. Patterns for structure are presented, 
called templates, that define the structural model upon which structure servers 



operate.  In Callimachus, the domain specific structural model (e.g., navigational, 
taxonomic) is perceived as a first class entity that can be formally defined through 
templates. This is in contrast to contemporary OHS, in which the structure model is 
closely coupled with the infrastructure or the individual structure servers. The 
interoperability level is thus raised from the infrastructure level (i.e. the storage) to the 
template level. The perception of templates is part of a larger effort towards the 
creation of software engineering tools and methodologies for the development of CB-
OHSs within the Callimachus framework.  

The paper is organized as follows. Sections 2, 3,4,5 discuss some hypermedia 
domains that have been reported in the literature focusing on prevailing abstractions 
and interaction styles. Section 6 compares the domains exhibiting common concepts. 
Section 7,8 introduce the Callimachus CB-OHS and describe its elementary 
constructs.  Section 9 analyses how structure servers use the elementary constructs to 
provide navigational services. Section 10 compares Callimachus to other generalized 
hypermedia approaches. Section 11 concludes the paper.  

2 Associative Domain: Navigational Hypermedia Systems 

The associative domain was one of the first domains implemented in early 
hypermedia systems, in which associations were provided between information. 
These associations – widely known as links – were to be made between semantically 
related information items, as Vannevar Bush envisioned in the Memex [17]. On the 
one hand, hypertext links condition the user to expect purposeful and important 
relationships between linked materials, whereas on the other hand the emphasis upon 
this linking stimulates and encourages habits of relational thinking in the user [18]. 

Inspired by Bush’s ideas, many researchers have investigated navigational 
hypertext in computer applications, resulting in many different hypertext systems. 
Engelbart’s NLS/Augment [19] and Nelson’s Xanadu [20] were the first approaches 
that proposed machines to relate pieces of information,. In NoteCards [21] editable 
information could be linked together by means of typed directional links, in 
Intermedia [22] the idea of the anchor came up, whereas in Microcosm [23], “generic 
links,” available dynamically, were an important contribution to link formulations. 

The evolution of navigational hypermedia systems continued with an arbitrary 
number of systems, each of them adopting different implementation strategies. 
However, as stated in the Dexter Open Hypermedia work [24], the basic node/link 
network structure is the essence of [navigational] hypertext. Moreover, fundamental 
to Open Hypermedia models like Dexter and Microcosm, the linking information is to 
be kept separate from documents to allow powerful link structures, such as bi-
directional or n-ary links [18, 26, 27, 9]. As a result, the navigational hypertext can be 
viewed as a  network of data containing “components” interconnected by relational 
“links” [24]. 

To support the navigational domain, many hypermedia researchers have adopted a 
fundamental entity that provides the node, link, anchor, and context abstractions [28, 
24, 29, 9, 30]. A node provides a wrapper for an arbitrary resource and may have 
several anchors associated with it, whereas an anchor can be bound to several links 



[27, 30]. A link of the navigational domain is defined as an association between 
anchors with its direction clearly stated [24, 27] and a context is a collection of object 
references (similar to hypertexts in Dexter [24] and to contexts in [31]), or even more 
specifically – as stated in HOSS [9] – is a set of link objects. The attribute/value pairs 
can be used to attach any arbitrary property and its value to a component. 

3 Classification Domain: Taxonomic Hypermedia Systems 

Taxonomic reasoning is a particular kind of reasoning task that deals with the 
comparison and classification of highly similar nodes, in which an analyst viewing 
one node thinks not in terms of linking it to another node, but of including it in or 
excluding it from a set of related nodes [12]. Taxonomic reasoning in combination 
with hypersets leads naturally to an a priori hierarchical, or tree-based, organization in 
the set of sets. The hierarchical structure is not a result of the data but is a way to 
structure the set of categories into which the artifacts are classified [32]. Therefore, 
users sort artifacts (the equivalent of nodes in graphs) into categories (sets) based on 
their characteristics. Different users (or different rules applied to the same nodes) may 
have different result sets for how the artifacts are partitioned [27]. 

In general, the task of taxonomic reasoning has the following characteristics [12]: 
• The information objects being manipulated are highly similar to one another 

along some dimensional attribute(s), so much so that the question of how to 
categorize or organize is not always immediately obvious. 

• Taxonomic reasoning develops descriptions of each item along a set of 
dimensions, but these dimensions are not fully defined when one begins the 
reasoning process. 

• The basic activities that need to be supported to facilitate taxonomic 
reasoning are essentially set operations, such as sorting objects into sets 
based on their characteristics, looking together at the members of a single 
set, examining the different sets of which a single item is a member and 
generating new sets from old ones. 

Eventually, the classification hierarchy that taxonomic reasoning entails is not a 
strict tree but rather a directed acyclic graph in which one node can have multiple 
parents. While a directed acyclic graph offers more navigational resources than does 
an arbitrary graph, a strict tree offers even more, including unique paths between 
nodes and thus unique distance metrics. A distance measure between artifacts is 
useful when we move beyond classification of artifacts to storing and retrieving them 
[32]. 

There are two basic routes to formalizing a classification hierarchy. The first one 
involves the lower-level sets that can be elements of higher ones while the second one 
comprises these sets as subsets of higher ones. The nodes in a classification hierarchy 
are of two very different sorts. On the one hand, some nodes allow the analyst to 
select a Perspective from which a given object is desired to be viewed. On the other 
hand, there are other nodes that require the analyst to sort the object into one of a set 
of disjoint Categories. Actually, Categories can be constructed in such a way that the 
structure remains a strict tree, and it is Perspectives that cause the hierarchy to deviate 



from a strict tree, since they permit a given artifact to descend from several branches 
[32]. Taxonomic perspectives, then, allow different views of the organizations of 
some set of nodes within a branch of hierarchy. Therefore, perspective can be 
regarded as an abstraction that is, in many ways, similar to that of “context” as used in 
some navigational hypertext systems [27]. Modeling perspectives, such as 
associations, not only has the interesting property of allowing users to move between 
the different views just as if you were following a link, but also provides a convenient 
way of choosing a view. 

A taxonomic reasoning contains three main primary abstractions, the specimen, the 
taxon and the taxonomy. A specimen has arbitrary content and attributes and 
represents the elements of the given data. A taxon, on the other hand, has no content 
but has arbitrary attributes that form a constructed descendant. It can have three sides: 
supertaxa, subtaxa and specimens. More specifically, a subtaxa can contain an 
arbitrary number of elements while a supertaxa or a specimen consists of exactly one 
element. Finally, a taxonomy contains an hierarchy of specimen and taxon. Apart 
from the primary abstractions, there are some secondary ones such as annotation, 
posited specimen and delta calculation. 

Generally, taxonomy has not been widely used in applications. However, the first 
application that used the notion of hierarchy and taxonomies was Hyperset [12]. 
Hypeset supported a full repertoire of set operations that generated new sets, 
including union, intersection, complement with respect to another set, and symmetric 
difference. It also provided editors with the ability to enter new artifacts and define 
new subsets. Another application is the TaxMan in HOSS [9]. It was particularly 
designed for addressing the problem of botanical taxonomic work. It used hierarchy in 
order to differentiate each species according to their characteristics and specified the 
degree of participation in each relationship between different species. 

4 Information Analysis Domain: Spatial Hypermedia Systems 

In the information analysis problem domain, the focus is on the process of structuring 
diverse material. Structuring and organization of information is a complicated 
intellectual process including activities such as collecting, comprehending and 
interpreting diverse types of information. During such activities, users tend to explore 
the structures they are creating and organize information by implicit and informal 
spatial methods formalizing incrementally their structures [33]. Traditional authoring 
systems were too restrictive to use for such tasks, because they required commitment 
to formal structure in very early stages. The issues of supporting construction of 
hypermedia structures through exploration and incremental formalization define the 
boundaries of the information analysis domain. 

To address problems in the information analysis domain new systems emerged 
emphasizing on the support of the structuring process at the user level. Taking 
advantage of the human perceptual system as well as spatial and geographic memory 
[6], these systems allow relationships to be expressed by spatial proximity and visual 
cues. Such expression of relationships achieves differentiation of implicit from 
explicit structure hence permitting a smooth shift from informal to formal structure. 



Hypermedia systems providing such paradigm to information organization are 
referred to as spatial hypermedia systems. 

Primary entities in spatial hypermedia systems include objects, collections and 
composites each usually appearing with a different visual symbol having different 
visual characteristics such as shape, color, border, text font etc. Objects represent 
wrappers for arbitrary types of data. Object types are supported by means of explicit 
visual characteristics. Collections contain arbitrary amount of objects or collections. 
Hierarchical ordering of collections is thus possible. A set of objects or composites in 
particular visual configuration form composites. 

Spatial hypermedia systems provide also visual and spatial means to denote 
relationships among entities. Consequently, these systems are able to recognize 
relationships by spatial arrangement, relationships by object type, relationships by 
collection and relationship by composite. A special structure-finding process – the 
spatial parser – is responsible for discovering such relationships and suggesting the 
creation of new collections and composites to the user. 

Navigation in spatial hypermedia systems is accomplished through “zoom-in” and 
“zoom-out” operations know as semantic zooming [50][51] applied on collections. 
Zoom-in operation effects in filling the whole application window with the content of 
the affected collection thus revealing a new navigation space. Zoom-out operation on 
a collection, effects in revealing the navigation space of its parent collection. 

Although initial concepts of spatial hypermedia where encountered in Notecards 
[21] and gIBIS [34], actual examples of spatial hypermedia systems include VIKI [6, 
35],CAOS [36], and more recently, VKB [25]. 

5 Hypermedia Modeling  

During hypermedia development the complex relations of subject specific 
information, for example museum applications or multimedia presentations, are 
captured in a clear and comprehensible way, making them accessible to the user. 
Users, often referred to as readers, come across hypermedia applications that enable 
them going through information by selecting paths to follow on the basis of interests 
emerging along the way [37]. Hypermedia systems provide environments to facilitate 
the creation of hypermedia applications. Although readers are unaware of how 
hypermedia applications are created, two other user groups are very much concerned 
about that issue; namely, hypermedia designers and authors. Designers, as well as 
authors, use services provided by hypermedia systems to create hypermedia 
applications engaging in an activity called hypermedia development. 

Hypermedia development is a complicated cognitive process that consists of 
recursive activities, like emergence of ideas, representation and structuring of ideas, 
evaluation and update [38], requiring a mental model of the target application domain. 
As it has been recognized, it is this complexity that roots the problems of cognitive 
overload and disorientation in hypermedia [38].  

Thus, much effort has been given in the creation of sophisticated tools and 
methodologies that will assist in developing hypermedia applications. 



Towards the better support of activities related to hypermedia design, systematic 
and structured development of hypermedia applications have been proposed [39, 40, 
29, 41, 42, 43]. These approaches differentiate between authoring-in-the-large, carried 
out by designers, aiming at the specification and design of global and structural 
aspects of a particular hypermedia application, and authoring-in-the-small, carried out 
by authors, referring to the development of the contents [44]. With regard to 
authoring-in-the-large, they provide convenient environments within the hypermedia 
system for hypermedia development, offering a suitable data model helping articulate 
structural designs. A rich set of abstractions including aggregation, 
generalization/specialization and the notion of constraints, facilitates the process of 
tailoring abstractions. Furthermore in these approaches, a hypermedia schema 
embodies structural designs leading to the notion of hypermedia modeling. 

The above kind of modeling is useful to hypermedia development because it can 
help designers to avoid structural inconsistencies and mistakes, and applications 
developed according to a model will result in very consistent and predictable 
representation structures [29]. Flexibility in definition of hypertext semantics, 
schemas and authoring of specific documents, is an important prerequisite in order to 
support the authoring mental process and to avoid “premature organization” problems 
[45]. Additionally, hypermedia modeling provides a framework in which authors can 
develop hypermedia applications at a high level of abstraction. It helps them to 
conceptualize these applications via an instantiation of a schema without too much 
regard to structural details. In general, one of the major goals in hypermedia modeling 
is to provide authors with the ability to customize knowledge structures for their 
specific tasks. 
 

6 Levels in Hypermedia: Common abstractions and Templates 
for Primitives 

In the previous sections we have considered several domains in hypermedia that 
represent a particular set of practices which foreground a particular set of operations. 
Navigation foregrounds links; spatial hypertext foregrounds associations; taxonomy 
foregrounds set and (hierarchical) graph operations and so on. In each case, however, 
we can see that these domains also share operations at a fundamental level. The 
taxonomic domain needs both to support links (navigation) and associative layout 
(spatial hypertext) while navigation itself is enhanced by supporting notions from 
taxonomy of sorting and set making for the creation of user-determined composites. 
Indeed, we suggest that what characterizes these as specifically hypermedia domains, 
rather than simply representing a page layout program, a taxonomy program or data 
management tools is that they must each have access to these shared set of 
hypermedia-based services.  
With so much overlap of core functionality, difference exists primarily at the domain 
level, and can largely be represented in terms of domain/service focus. We therefore 
require a way to conceptualize such services at several levels: at the domain level, at 
the service or middleware level, and at the fundamental architecture level. To this 



end, our goal has been to develop both structural primitives for our CB-OHS system 
Callimachus and the middle layer templates. The primitives allow us to conceptualize 
the fundamental architecture operational structure processes and the middle layer 
templates support the representation of those processes as particular domain services. 
In conceptualizing these structural primitives and service templates, we have found it 
useful to borrow the concept of levels from programming languages. The hypermedia 
domain specific abstractions, such as Taxonomic Hypertext or Spatial Hypertext are 
at the highest level. The structural elements, which each domain draws upon, are at 
the lowest level of hypermedia (we describe these in the following sections). High and 
low levels are determined by how suitable the abstraction is to solve a problem at 
hand. The domain level is therefore especially useful for highlighting possible 
contexts of use for combinations of services, such as aggregation, sorting, or 
association, and for determining any new primitives or combinations of primitives 
that must be made available to support these services.  

 Thus, while the structural element is not a suitable abstraction to solve 
navigational problems (due to its generality), we can, to continue to borrow from 
programming languages, transform or cast such elements into a higher level 
abstraction, based on what we can reason about the properties of a particular domain. 
To solve navigational problems, for instance, such casted elements would be the node, 
link, and anchor.  To continue the programming languages analogy, we can consider 
the structural element of structural computing as the assembly level language of 
hypermedia and the domain specific abstraction as a high level language such as 
Pascal, Java or C. One can write in assembly to implement a Travelling Salesman 
Problem algorithm, but it is more convenient to write this in a higher level language. 
Moreover, we can use a higher level language like C to write new languages to solve 
in a more convenient fashion certain cases of problems, similar to the way PHP or 
Python provide effective language tools for crafting Web cgi applications.  

 By thinking in terms of structural properties in particular, and by working from 
the domain level to a well-defined set of primitives, we have a model for determining 
when or if new tools need to be built, and we have a ready-made middleware 
architecture for reuse of existing primitives or primitive composites for new services. 

In the following sections, we do not claim to have defined the complete of core 
operations for hypermedia. To finish the programming languages analogy with 
relation to the concept of "computationally complete", the repertoire of core operation 
here is not "structurally complete;” one may come up with another set. That is our 
hope: that by presenting the reasoning we have defined for Callimachus primitives, 
others interested in this domain may use this  logic for expanding/extending the 
structures and service templates.  Indeed, a concern of structural computing in general 
is to define the assembly-level primitives for structural relations. A concern of CB-
OHS’s in general and of Callimachus in particular, is to define the rules to create the 
templates that will function as a middle-layer, higher-level abstraction between the 
assembly level and the domain level. We touch on both these aspects in the rest of the 
following sections of this paper. 
 



7 The Callimachus CB-OHS  

The Callimachus CB-OHS attempts to provide the framework in which the 
aforementioned hypermedia domains co-exist and structure servers – providing new 
abstractions and services - for new domains can be developed. Given the complexity 
of development of structure servers in new hypermedia domains, special attention has 
been given in the provision of suitable tools to facilitate such task. Within 
Callimachus these tools are part of a methodology i.e. a systematic, disciplined 
quantifiable approach in the construction of structure servers.  
One such tool are the structure templates of Callimachus. The aim of structure 
templates is to maintain the specifications of the structure model of hypermedia 
domains. Structure servers operate guided by these structure templates to provide 
domain specific abstractions and constraints. Figure 2 outlines the architecture of the 
Callimachus CB-OHS and the role of structure templates. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

 
 
 

Fig. 1. The role of structure templates in the Callimachus CB-OHS 

 
In the following we briefly illustrate the various parts of the architecture: 
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• Structure server: It consists of a structure model (structure template), structure 
cache and a set of behaviors that are used to deliver domain, sub-domain and 
application specific abstractions and services to clients. 

• Structure template: The formal specification of the abstractions that define a 
hypermedia domain, sub-domain or application.  

• Structure Cache: Provides an intermediate store for domain specific abstractions 
for structure servers. Inspired by [16], behaviors operate upon abstractions that 
have to be first loaded from the store into the structure cache.   

• Behavior: Behavior models the computational aspects of a domain, sub-domain 
or application. Behavior can be divided – depending on its purpose – into two 
main categories: services, which are available to clients through the use of a 
specific API and protocol (e.g., openNode, followLink, etc.), and internal 
operations that are used by the structure server internally for consistency reasons 
mainly (e.g., to affirm conditions and constraints or to interpret abstractions in a 
suitable manner). 

• Infrastructure: This includes the fundamental hypermedia functionalities that are 
available to all other entities. Functionalities, such as naming [14], persistent 
store and notification, constitute an essential part of the infrastructure. 

• Template repository: A storage place for structure templates. Its main purpose is 
to hold structure definition as well as to support reusability and extensibility of 
structure among structure servers. 

• Client: Any process that requests hypermedia functionality. Clients request 
hypermedia operations from one ore more structure servers with the use of the 
appropriate APIs.   

 
The methodology of developing structure servers within Callimachus, can be divided 
into two phases: the structural design phase and the behavioral design phase.  
 
During the structural model design phase, the abstractions of the target hypermedia 
domain as well as their complex interrelationships are captured and formally 
specified. Structure templates provide the mean to formalize such specifications. 
Devising structure specification formalism is a difficult task since it should be 
convenient to use it without compromising expressiveness. The formalism should be 
open to extensions, model-neutral and provide a common ground for cooperation. 
Such formalism deployed within the Callimachus framework is described in section 9. 
 
During the behavioral design phase, the computational aspects of structure servers in 
Callimachus are specified and developed. Such computational aspects indicate how 
structure servers function in order to realize a particular behavior e.g. following a link 
or affirm conditions. Although the specification of behavior is not in the scope of this 
paper we present a set of core operations upon which behaviors of structure servers 
can be built. 



8 Structure Elements 

In Callimachus, the methodology for defining the structure model of a domain, sub-
domain or application consists of the specification and inter-relation of structural 
types. A structural type is either an instantiation of a basic abstract class, the Abstract 
Structural Element (ASE), or a specialization of another existing structural type. The 
notion of the ASE is inspired by the structure object, proposed by Nürnberg [9] and is 
similar to the Object abstract class in the majority of the object-oriented programming 
languages. Structure servers operate on structural objects. The set of structural types 
and the relationships among them defined by the model-designer at the same context, 
establish the template of the domain, sub-domain or application. During the definition 
of a new structure model, already existing templates may be reused or extended. 

In the following subsections we describe the elementary constructs of the 
methodology, as well as the structure-model definition process. 

8.1 Elementary Constructs 

The Abstract Structural Element (ASE) is a meta-class that consists of two attributes: 
an identifier and a name. The instances of ASE are structural types that are identified 
by a system-defined unique structural type identification (sid) and a designer-
specified unique name. A structure type may have an arbitrary number of properties 
and endsets. The instances of a structural type are structural objects in the sense 
described in Nürnberg [9] but they are constrained by their structure type 
specification, regarding the endsets and properties. Each structural object is identified 
by a system-defined unique structural object identification (oid).  Figure 3 depicts an 
instance of an abstract structural element. 

The structure type properties are specified by a name, a data type and they may be 
single-valued or multi-valued. A special property, named content, may be defined in 
the context of a structural type. At the instantiation level, the value of this property is 
an address specification of an arbitrary amount of data. Since our purpose is to specify 
structure, not data, we do not define other semantics for that property (like within-
component layer in the Dexter hypertext reference model [5]). 

The endset of a structural object is a placeholder for oids of other structural 
objects. It is the most significant construct since it enables the grouping of related 
objects. An endset of a structure type has the following attributes: 

• Name: unique among the endsets of the same structural type, 
• Order number: an integer that designates the sequence of the endsets of a 

structural type, 
• Total participation indication: a [min, max] notation that indicates the 

minimum and maximum number of oids that can participate in the endset. 
• Multiplicity: a [min, max] notation that indicates the minimum and 

maximum number of occurrences of that endset that can participate in a 
structural object of that type. 

• Configuration: whether or not the members of the endset bear a particular 
functional or structural relationship to one another (e.g. may form a set, list, 
queue etc). 



Along an endset, a set of the structural types (sids) is defined, called s-set, which 
configures the structure types whose instances may be end-points of the endset. An s-
set may be inclusive or exclusive; an inclusive s-set specifies the allowed structure 
types, while an exclusive one specifies the forbidden structure types. A partial 
participation indication may be defined for each structure type in an inclusive s-set, 
indicating the minimum and maximum number of objects of this type that can 
participate in the endset.  

In addition, for each structural type in the s-set, a cardinality indication is specified  
(a [min, max] notation can be used for that) defining the number of structural objects 
(of the structural type that is currently defined) to which a structural object of that 
type is allowed to be related (through that endset). This is similar to the cardinality 
ratio ([4]) in the E-R diagrams that specifies the number of relationship instances that 
an entity instance can participate in. 

As a last notation, an endset with more that one structural types in its s-set, may be 
characterized as homogeneous or heterogeneous. At the instantiation level, a 
homogeneous endset can include structural objects of one type only, while a 
heterogeneous endset may point to structural objects of different types at the same 
time. 

 
 
 
 
 
 

 

8.2 Operations on Abstract Structural Elements 

In Callimachus structural objects are controlled by a core set of operations.  This 
set of operations form the basis for the specification of the computational aspects of 
structure servers: 

 
• createStructuralObject() : Instantiates a new untyped structural object. A 

unique system identification is given to the created structural object.  
 

• getType(s) : Returns a string indicating the structural type of structural 
object s. 

 
• addEndSet( s, endSetName ) :  Adds a new endset named EndSetName to 

the structural object s. 
 

• addEndSetAttribute( s, endSetName, endSetAttribute ) :  Adds a new 
attribute named endSetAttribute to the endset named EndSetName of the 
structural object s. 

 

Identification 

Endset 

Fig. 2: Structural Element with 3 endsets and identification.  



• setEndSetAttribute( s, endSetName, attributeName, attributeValue ): 
Sets the value of the attribute named attributeName of the endset 
EndSetName to the value attributeValue of the structural object s. 

 
• addStructuralObjectAttribute( s, attributeName ) :  Adds a new attribute 

named attributeName to the structural object s. 
 

• setStructuralObjectAttribute( s, attributeName, attributeValue) : Sets 
the value of the attribute attributeName of the structural object s to the value 
attributeValue. 

 
• addEndSetMember( s, targetS,  endSetName ): Adds the structural object 

s to the endset endSetName of the structural object targetS. This operation is 
graphically depicted as follows: 

 
 
 
 
 

 
 
 

• getEndSetMembers( s, endSetName ): Returns a list of the structural 
objects oids that are members of the endset endSetName of the structural 
object s. 

 
• filterEndsetMembers( s, endSetName, condition ): Returns a list of all 

structural objects that are members of the endset endSetName of structural 
object s satisfying the expression condition.  

 
• moveEndsetMembers( s, fromEndSetName, toEndsetName ) : moves all 

structural objects that are members of the endset fromEndSetName of 
structural object s to the endset toEndsetName of the same structural object s. 

 
 
 

 

 
 

• moveSingleEndsetMember( s, t, fromEndSetName, toEndSetName): 
moves the structural object t that is member of the endset named 
fromEndSetName of structural object s to the endset named toEndSetName 
of s.  

 

A B A 

B 

A B A B 



The store of Callimachus is able to load, save and query structural objects. It 
provides therefore the following operations: 

 
1. loadStructuralObject( id ): Loads a structural object  given its unique 

identification id from the store to structure cache. Successful completion of 
this operation will result in creating a new structural object, setting the 
appropriate values of the attributes of the structural object as well as setting 
the members (oids) of all of its endsets.  

2. saveStructuralObject( s ): Writes the  structural object s to the store. 
3. queryStructuralObject( s ): Returns a list of structural elements from the 

store that match the given structural element s. In this context, the structural 
object s2 is the result of the operation queryStructuralObject( s1 ) when the 
following conditions hold:  

a. The endset names of s1 are a subset of the endset names of s2. 
b. The attribute names of s1 are a subset of the attribute names of s2. 
c. The non-empty attributes of all endsets of s1 have the same values 

with the corresponding attributes of all endsets of s2. 
d. The members of each non-empty endset of s1 are a subset of the 

members of the corresponding endsets of s2. 
e. The s-sets of each endset of s1 are a subset of the s-sets of the 

corresponding endset of  s2.  
 
The identification of the structural object s is not taken into consideration 

during the queryStructuralObject operation. 
 

8.3 Customizing Structure Types 

Structure types capture the semantics of domains/sub-domains/applications. Often it 
is useful to customize structure types of a domain in order to support the structure 
requirements of a sub-domain or an application. One point of attention is the relation 
of the customized structure type to the original one and the ability to compare them. 
We claim that instances of customized types are in fact a subset of the instances of the 
original type. In this way, compatibility is established between the two types, and 
instances of customized types can be used in places where instances of the original 
type are expected. 

We define the extent of a structure type as the set of the possible instances of this 
type. The extent of a customized structure type is always a subset of the extent of its 
parent type, which means that it can take its place in applications without degrading 
their functionality. However, customization means different behavior. Customized 
types should support original behavior and extend it in order to accommodate 
additional functionality. 

Within Callimachus, customization of structure types is modeled using the is-a 
abstraction, which may connect two structural types to express that the one is a 
specialization of the other. The customized type inherits all the properties and endsets 
of the parent type. Moreover, new properties may be defined and the various 



constraints of the endsets (participation indication, s-sets, cardinality indication, 
homogeneity-heterogeneity, multiplicity) may be restricted. Nevertheless, it is not 
allowed to add or eliminate endsets, since this will change the physiognomy of the 
structure type. 
 

8.4 Templates 

As a template we define the container of the structure types specifications that 
model a domain, sub-domain or application. A template is modeled itself as a 
structural object. More specifically, a template-class is a system-defined structure 
type that consists of a single endset, with the purpose to group the sid(s) of one or 
more designer-specified structure types. When the designer specifies the structure 
types to define a structure model, in fact he creates an instance of the template-class 
(a template) and assigns a name to it. Templates are stored in a special part of the 
storage infrastructure, called template repository. 

A template may be created from scratch or by utilizing existing templates, stored in 
the repository. Each template may have a set of templates that inherits from. This set 
can be considered as an endset; the uses endset. All structure types described in the 
inherited templates are members of the uses endset.   

A question that arises is how useful is such multiple inheritance functionality? We 
identify the following situations: 

• A new structure model may be constructed that requires abstractions of 
two or more other structure models. The inherited structure types may 
be customized to express special needs (as long as the rules of the 
customization hold). 

• A new structure type may be defined that combines structure types from 
different templates, i.e. enabling its endsets to point to the inherited 
structure types. 

Templates could better be represented in a formal specification language, since 
they include various attributes and complex relationships. A visual representation 
would be easier to use, but it is not easy to visually express all the details of the 
specifications. XML is well suited for such a task, as it enables composition and 
arbitrary details. Furthermore, it is a well-known language and can be manipulated 
easily. 
 

9 Structure Servers 

As mentioned earlier, structure servers provide the basis for delivering hypermedia 
domain specific abstractions to clients. In particular, they operate on structural objects 
transforming them to useful abstractions and allowing clients to use them according to 
the domain specific restrictions. However, in order to operate upon a structural object 
it has to be first loaded into the structure cache. Templates provide structure servers 



with the necessary definitions of the modeling primitives with which structural 
objects are reified.  

During their startup, structure servers load the template of the domain they support 
from the template repository into their structure cache. In Callimachus, structure 
servers are internally layered with respect to how structural objects are managed. Two 
layers can be identified:  The Abstraction Factory Layer (AFL) which is responsible 
for reifying untyped structural objects to domain specific abstractions with the use of 
templates, and the Abstraction Utilization Layer (AUL) where the domain specific 
abstractions – once created – may be used by clients requesting hypermedia 
functionality.  

Within Callimachus, clients are separate processes from structure servers, 
understanding how to communicate with them (i.e. request hypermedia functionality 
using the appropriate protocol). Moreover, clients are “aware” of structural objects 
and possess a structure cache where structural objects, which are sent back from 
structure servers  (as a result of a request), are maintained.  

9.1 Associative Hypermedia Domain: Modeling Navigational Hypermedia 
Systems using ASE 

As outlined earlier, navigational hypermedia systems provide abstractions such as 
anchor, link, composite and context. The associative domain requires anchors to have 
one endset where arbitrary typed nodes can be contained and links with two endsets 
for source and destination nodes. Composites have only one endset keeping the oids 
of structural objects they aggregate. Context also has only one endset holding the 
links constituting it. For the navigational domain the following structure types could 
be defined in the repository: 

 
<template name=”Navigational” id=1 > 

 
<structure_type name=”node” endsets=0 id=2 /> 
<structure_type name=”anchor” endsets=1 id=3> 
  <properties> 
  <property multivalued=0> 

<name>LocSpec</name><type>string</type> 
  </property> 
 </properties> 
 <endset name=”nodes” configuration=”set” > 
  <s-set>  

<member type=2 min=1 max=1/>  
  </s-set>   
 </endset>   
</structure_type> 
 
<structure_type name=”link” endsets=2 id=4 > 
 <endset name=”source” configuration=”set” > 
  <s-set>  

<member type=3 min=1 max=1/>  
  </s-set>   
 </endset>   
 <endset name=”destination” configuration=”set” > 
  <s-set> 
   <member type=3 min=1 max=n/> 



  </s-set> 
 </endset>   
</structure_type> 
<structure_type name=”Composite” endsets=1 id=5> 
 <endset name=”nodes” configuration=”set” > 
  <s-set>  

<member type=2 min=1 max=n/>  
  </s-set>   
 </endset>   
</structure_type> 
<structure_type name=”Context” endsets=1 id=6> 
 <endset name=”links” configuration=”set” > 
  <s-set>  

<member type=4 min=1 max=n/>  
  </s-set>   
 </endset>   
</structure_type> 
 
</template> 

 
 
We will describe briefly the operations applied by structure servers upon structural 

objects in order to provide navigational services to clients. We will analyze the 
following operations: openNode, followLink. In Callimachus, these operations are 
expressed using the repertoire of operations applicable to structural objects as shown 
below.  
 

 
9.1.1 Opening  Nodes 

 
The openNode operation of the navigational structure server is called every time users 
view a document. The task of the openNode operation is to locate the anchors 
associated with chosen document and making them visible to the user. A unique 
identification of the opened document  (which might be its file name for example) is 
supplied to this operation. 

Once the structure server receives an openNode request, it issues a 
createStructuralObject() operation in order to create a structural object which is in 
turn transformed to an object of type anchor. That operation occurs at the AFL where 
the structural object becomes a type according to the loaded template. A set of 
addEndSet, and addStructuralObjectAttribute as well as addEndSetAttribute 
operations are applied, shaping the newly created structural object at that level 
according to the definition of the anchor as it has been recorded in the template 
modeling the navigational domain. Typing of all structural objects follows such 
procedure. At the AUL, the structure server issues an addEndsetMember operation in 
order to add the identification of the document to the endsets named “Nodes” of the 
newly created anchor. The store is queried with the queryStructuralObject operation 
supplying as argument the configured anchor. The result is a set of structural objects 
of type anchor having in their endset named “Nodes” the specified document 
identification. In order to check which of the returned anchors are source anchors, for 
each returned anchor (i.e. structural object) the following occurs: a structural object of 
type “Link” is created adding to its endset named source the oid of the structural 



element that were determined by the previous step. The structure server issues then a 
queryStructuralObject query to the store supplying the created structural object of 
type “Link” as argument. These anchors for which that operation does return an 
empty result set are removed from the initial result list whereas the remaining anchors 
(structural objects) are send back to the client. The client is responsible for displaying 
them to the user.  
 
 
9.1.2 Following Links  
 
The followLink operation is one of the most important operations in navigational 
hypermedia systems since it is this operation that gives users the impression of 
navigating an information space. The followLink operation is issued to the structure 
server whenever users select anchors that are displayed in the active document and 
can be divided into two phases: (a) the destination anchor resolution phase where the 
destination anchors are determined, and (b) the node resolution phase where the nodes 
to which the anchors of the previous phase belong are computed. Various versions of 
implementing traversal behavior is possible depending on who (client or structure 
server) is initiating each phase: client may initiate both phases, i.e. query structure 
servers to compute the destination anchors which are send back to clients which in 
turn can initiate the node resolution phase or the structure server initiates both phases 
(as a result of the followLink message) sending to clients the destination anchors as 
well as the nodes to which these anchors belong. In any case, a set of structural 
objects will be sent back to clients and placed in their structure cache. 

The oid of the structural object identifying the selected anchor is supplied to the 
followLink operation. Upon reception of the followLink message, the structure server 
issues a createStructuralElement() operation creating a new link object. The 
addEndsetMember operation is issued to insert the specified anchor oid to the endset 
named source of the newly created link. A queryStructuralElement operation will 
load into the structure cache a structural object of type link, having the specified 
anchor oid in its endset named source. Using the getEndSetMembers operation the 
members of the endset named destination will be returned.  The list of destination 
structural objects oid is now determined. For each oid in the list a 
loadStructuralObject operation is performed loading the structural objects into the 
structure cache. Since these structural objects represent anchors, applying 
getEndSetMember to the endset “nodes” of each anchor structural object will result in 
a set of oids denoting structural objects of type node to which these anchors belong. 
Since the oids of the target nodes are determined, a loadStructuralObject operation 
loads the information of nodes (attributes and their values) into the structure cache. 
The list of structural objects representing anchors and nodes are sent back to clients 
that are now responsible for displaying the nodes content to the user (fig. 4). The 
accompanied attributes of the structural object of the structure type node supply the 
information for node content. 
 
 
 
 
 



 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Link traversal steps 
 
 

 
 

 
9.1.3 Composites  
“Following” composite structures differs significantly from following links within 
Callimachus. The difference is manifested in the outcome of applying traversal 
operations on each structure type. While following links will result in a list of 
structural element denoting anchors and their respective nodes, following a composite 
will result in one structural object having in its endset the structural objects that are 
part of that composite (fig. 5). These different outcomes would be reflected in the 
client’s and structure server’s structure cache. Thus, it would not be possible to model 
composite structures using the structure type link. As a result, in Callimachus, 
composites are not followed but rather opened, through a specialized service named 
openComposite. 
 
 
 
 
 
 
 

Fig. 4: Result of “following” a composite. 
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10 Related Work 

Hypermedia systems providing general structure oriented facilities are just now 
emerging. Notably examples include HOSS [9], FOHM [50] and Construct [49, 52] 
that will be described within this section. 

In recent years, HOSS is among the first paradigms that realize the philosophy of 
structural computing. The conceptual design of HOSS includes the concepts of 
structure and structural computation models. The structure model supports sidedness, 
direction, depth, status (n-sided composable structure with direction) as well as the 
guarantees of resolvability, nonrecursivity and accessibility. The structural 
computation model provides optional permanence, constancy and temporal invariance 
guarantees (definitions of these notions can be found in [9]). The basic element of 
HOSS is the generic structure object that may have content, arbitrary attribute/multi-
value pairs, and arbitrary named and partitioned endsets. Customizing the structure 
object can specify various structural elements and masking away-unneeded 
functionality. In contrast to Callimachus, customization of structural objects to 
domain specific    

FOHM is a fundamental open hypertext model, which identifies data and permitted 
operations in a client/server style architecture. FOHM formalizes data and operations 
through the use of an abstract machine that models them by transitions. Its main scope 
is to represent all the structural abstractions and support the operations needed for the 
navigational, the taxonomic and the spatial domain. Furthermore, FOHM focuses on 
interoperability between domains, e.g. following links between navigational and 
taxonomic structures.  In contrast to Callimachus, FOHM does not provide developers 
with the ability to declare structural models. Thus, the development of new 
abstractions and operations upon them cannot be accomplished in a methodological 
manner. 

The Construct CB-OHS explicitly supports the development dimension in CB-
OHSs and endeavors to be fully compliant with the OHSWG standards. Construct 
provides development tools targeting the middleware layer of CB-OHSs allowing 
new hypermedia services to be developed and deployed within its environment.  
These services can be created from scratch, on top of or using other existing services. 
Through the use of UML diagrams services can be modeled and in conjunction with 
the Construct Service Compiler (CSC) service code skeletons can be produced. 
Nonetheless, generation of services is semi-automated since the developer has to fill 
in parts of the outcome. Callimachus and Construct share the need of providing 
mechanisms to facilitate the development of structure servers. However, each of them 
pays attention to different aspects of CB-OHSs. Namely, while Construct focuses on 
behavioral aspects of CB-OHSs, Callimachus converges on their structural aspects.  

11 Conclusions 

In this paper, we have presented the fundamental parts of the Callimachus CB-OHS 
and in particular we discussed how the structural model of a hypermedia domain is 
specified with the use of an atomic structural primitive called the structural element.  



Moreover, we have introduced a set of core operations upon the structural element 
forming the basis for the development of structure server behaviors. By the use of the 
structural model specification and the core operations the development of structure 
servers can be accomplished, during the structural as well as the behavioral design 
phase, in a methodological manner.  
OHSs in their move from domain-specific frameworks to cross-domain CB-OHSs, 
should clearly expose the primacy of structure and thus need the proper foundations 
and tools to handle structure as a first class entity. Towards such an evolution path, 
we outlined the implications of admitting first class structure in Callimachus. OHSs, 
in general, benefits from such structure handling facilities, mainly in the areas of 
reusability, interoperability and tool development.  

Future work of Callimachus includes evaluating whether the structural primitives 
as well as the set of operations are sufficient enough for the development of structure 
servers in less studied domains, such as hyperfiction and workflow. Furthermore, 
attention will be given to the formal specification of behaviors in terms of a structure 
behavioral language that can be based on the core set of the operations presented in 
this paper. Finally, the efficiency of the Callimachus system will be thoroughly 
assessed. The generality of the provided facilities degrades performance of structure 
servers. Thus, explicit support is needed to optimize performance for each domain.  
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