
BioWare Corp.
http://www.bioware.com

BioWare Aurora Engine
Store Format

1. Introduction

1.1. Overview

A Store is an object that exchanges items and gold with the player. Stores contain the list of items they
have in their inventory, the buy/sell markup and whether it will purchase from the player items marked
as stolen. Note that merchants will buy any kind of item except those marked as Plot.

Stores are stored in the game and toolset using BioWare's Generic File Format (GFF), and it is assumed
that the reader of this document is familiar with GFF.

Stores can be blueprints or instances. Store blueprints are saved as GFF files having a UTM extension
and "UTM " as the FileType string in their header. Store instances are stored as Store Structs within a
module's GIT files.

2. Store Struct

The tables in this section describe the GFF Struct for a Store. Some Fields are only present on Instances
and others only on Blueprints.

For List Fields, the tables indicate the StructID used by the List elements.

2.1 Common Store Fields

2.1.1. Store Fields in All Stores

The Table below lists the Fields that are present in all Store Structs, regardless of whether they are
found in blueprints, instances, toolset data, or game data.

Table 2.1.1: Fields in all Store Structs
Label Type Description
BlackMarket BYTE 1 if blackmarket store. Blackmarket stores will

purchase items marked as stolen.
0 if normal store. Normal stores will not buy stolen
items.

BM_MarkDown INT If store is BlackMarket, this is the buy markdown
percentage for stolen items. The store will buy stolen
items for this percentage of their normal cost.

IdentifyPrice INT -1 if the store will not identify items.
0 or greater: store will identify items for the specified
price.

LocName CExoLocString Name of the Item as it appears on the toolset's Item
palette, in the Name field of the toolset's Item
Properties dialog, and in the game if it has been
Identified.

MarkDown INT Sell markdown percentage. Items sold from the store
are sold at their normal cost multiplied by this
percentage.

BioWare Corp.
http://www.bioware.com

Usually 100 or greater.
MarkUp INT Buy markup percentage. The store purchases items for

this percentage of their normal cost.
Usually 100 or less.

MaxBuyPrice INT -1 if the store has no limit to how much it will pay for
an item
0 or greater: maximum price that store will pay for an
item.

OnOpenStore CResRef OnOpenStore event.
To open a store for a player, use the OpenStore()
scripting function.

OnStoreClosed CResRef OnStoreClosed event.
ResRef CResRef For blueprints (UTM files), this should be the same as

the filename.
For instances, this is the ResRef of the blueprint that
the instance was created from.

StoreGold INT -1 if the store has infinite gold for buying items
0 or greater: amount of gold the store has. Buying items
from players will deduct from this amount. Selling
items to players will add to this amount. A store cannot
buy items it cannot afford.

StoreList List List of Store Container Structs (see Table 2.1.2 and
Table 2.1.3)

WillNotBuy List List of StoreBaseItem Structs (StructID 0x17E4D; see
Table 2.1.5). The Store will not buy any items that
have a BaseItem type included in this list. If the
WillNotBuy list contains any elements, then the
WillOnlyBuy list is ignored and assumed to be empty.

WillOnlyBuy List List of StoreBaseItem Structs (StructID 0x17E4D; see
Table 2.1.5) describing the only BaseItem types that
the store will buy. If the WillNotBuy list is empty, then
the WillOnlyBuy list is checked for elements.
Otherwise, this list is ignored and should be empty.

Tag CExoString Tag of the Item. Up to 32 characters.

The StoreList of a Store describes what items the Store has for sale. It contains several StoreContainer
Structs that contain lists of InventoryObject Structs (see Section 3 in the Items document for a
description of an InventoryObject). Each InventoryObject corresponds to an item that is available for
sale.

Every StoreList contains the StoreContainers listed in Table 2.1.2.

Table 2.1.2: StoreContainer Structs
StructID Description
0 Armor Items
1 Miscellaneous Items
2 Potions
3 Rings
4 Weapons

All Items have a BaseItem Field that serves as an index into baseitems.2da (see see Table 5.1 in the
Items document). In baseitems.2da, there is a StorePanel column that contains an integer value that
specifies a StoreContainer by StructID. When an Item is added to a store in the toolset, or sold to a store
ingame, an InventoryObject is created for that Item and added to the appropriate StoreContainer as
determined by the StorePanel for that Item's BaseItem.

BioWare Corp.
http://www.bioware.com

Each StoreContainer Struct contains a list of InventoryObjects that specify the ResRef of the Items
available for sale. Table 2.1.3 describes a StoreContainer.

Table 2.1.3: Fields in StoreContainer Structs (variable StructID)
Label Type Description
ItemList List list of InventoryObject Blueprints (see Section 3 in the

Items document), each having a StructID equal to its
index in the list.

Store Blueprints contain InventoryObject Blueprint Structs (see Section 3.2 in the Items document),
while Store Instances contain InventoryObject Instance Structs (see Section 3.3 in the Items
document). An InventoryObject in a Store may also contain additional Fields beyond those normally
found in an InventoryObject, as given in Table 2.1.4.

Table 2.1.4: Additional Fields in Store InventoryObject Structs (variable StructID)
Label Type Description
Infinite BYTE 1 if the item is available in infinite supply. The store

will always be able to sell this item no matter how
many are purchased
0 if the item disappears from the store after purchase. If
this Field is not present, the InventoryObject is treated
as if the Field value were 0.

A Store can have a list of restricted BaseItem types, referring to items that the Store will not buy or
items that the store will only buy. These restricted item lists contain StoreBaseItem Structs, detailed in
Table 2.1.5 below.

Table 2.1.5: Fields in StoreBaseItem Structs (StructID 0x17E4D)
Label Type Description
BaseItem INT Index into baseitems.2da to refer to a BaseItem type

2.2. Store Blueprint Fields

The Top-Level Struct in a UTM file contains all the Fields in Table 2.1.1 above, plus those in Table
2.2 below.

Table 2.2: Fields in Store Blueprint Structs
Label Type Description
Comment CExoString Module designer comment.
ID BYTE ID of the node that the Item Blueprint appears under in

the Store palette.
ResRef CResRef The filename of the UTM file itself. It is an error if this

is different. Certain applications check the value of this
Field instead of the ResRef of the actual file.
If you manually rename a UTM file outside of the
toolset, then you must also update the ResRef Field
inside it.

2.3. Store Instance Fields

A Store Instance Struct in a GIT file contains all the Fields in Table 2.1.1, plus those in Table 2.3
below.

BioWare Corp.
http://www.bioware.com

Table 2.3: Fields in Store Instance Structs
Label Type Description
TemplateResRef CResRef For instances, this is the ResRef of the blueprint that

the instance was created from.
XOrientation
YOrientation

FLOAT x,y vector pointing in the direction of the Store's
orientation

XPosition
YPosition
ZPosition

FLOAT (x,y,z) coordinates of the Store within the Area that it is
located in.

2.4. Store Game Instance Fields

After a GIT file has been saved by the game, the Store Instance Struct not only contains the Fields in
Table 2.1.1 and Table 2.3, it also contains the Fields in Table 2.4.

INVALID_OBJECT_ID is a special constant equal to 0x7f000000 in hex.

Table 2.4: Fields in Item Instance Structs in SaveGames
Label Type Description
ObjectId DWORD Object ID used by game for this object.
VarTable List List of scripting variables stored on this object.

StructID 0. See Section 3 of the Common GFF
Structs document.

