

Tutorials and Topics

JITTER

T

able of C

on

t

en

ts

Copyright and Trademark Notices . 9
Credits . 9
About Jitter . 10

Video . 10
2D/3D Graphics . 10
Ease of Use . 10
Matrices . 11
More Details . 11

How to Use The Jitter Documentation . 12

Matrices: What is a Matrix? . 13
A Video Screen is One Type of Matrix . 14
What is a Plane? . 16
The Data in a Matrix . 16

Attributes: Editing Jitter object parameters . 19
What are Attributes? . 19
Setting Attributes . 20
Jitter Object Arguments . 21
Querying Attributes and Object State . 22
Summary . 24

Tutorial 1: Playing a QuickTime Movie . 25
How Jitter Objects Communicate . 26
Causing Action by Jitter Objects . 26
Arguments in the Objects . 28
Summary . 29

Tutorial 2: Create a Matrix . 30
What's a Matrix? . 30
The jit.matrix object . 30
The jit.print Object . 31
Setting and Querying Values in a Matrix . 32
The jit.pwindow Object — . 34
Filling a Matrix Algorithmically . 35
Other jit.matrix Messages . 36
Summary . 36

Tutorial 3: Math Operations on a Matrix . 38
Operation @-Sign . 39
Math Operations on Multiple Planes of Data . 40
Modifying the Colors in an Image . 41
Sizing it Up . 43
Summary . 44
 1

T

able of C

on

t

en

ts

Tutorial 4: Controlling Movie Playback . 46
Obtaining Some Information About the Movie . 47
Starting, Stopping, and Slowing Down . 48
Time is on My Side . 49
Scrubbing and Looping . 50
Summary . 50

Tutorial 5: ARGB Color . 52
Color in Jitter . 52

Color Components: RGB . 52
The Alpha Channel . 52
Color Data: char, long, or float . 53

Isolating Planes of a Matrix . 53
Color Rotation . 55
Automated Color Changes . 57
Summary . 57

Tutorial 6: Adjust Color Levels . 59
The jit.scalebias Object . 59

Math with char Data . 59
Some More Examples of Math with char Data . 61
Adjust Color Levels of Images . 62
Adjust Planes Individually . 63

Reassign Planes of a Matrix . 64
Reading and Importing Images . 66
Summary . 66

Tutorial 7: Image Level Adjustment . 68
Brightness, Contrast, and Saturation . 69
Hue and Cry . 71
Summary . 72

Tutorial 8: Simple Mixing . 73
Mixing Two Video Sources . 73
The jit.xfade Object . 73
Automated Crossfade . 74
Summary . 75

Tutorial 9: More Mixing . 76
Mixing and Crossfading Made Explicit . 76

Mixing Revisited . 76
Combine Matrices Using Other Operators . 77
jit.scalebias vs. jit.op with the * Operator . 78
Summary . 79
2

T

able of C

on

t

en

ts

Tutorial 10: Chromakeying . 80
The jit.chromakey Object . 82
The suckah Object — . 83
The Blue Screen of Death . 84
Summary . 86

Tutorial 11: Lists and Matrices . 87
Matrix Names . 87
The jit.fill Object . 88

The offset Attribute . 88
Using the multislider Object . 89
Using the zl Object . 90
Using the jit.fill Object with Multiple-plane Matrices . 91
Using the jit.fill Object with 2D Matrices . 93

The jit.spill Object . 94
The jit.iter Object . 95
Summary . 96

Tutorial 12: Color Lookup Tables . 98
Lookup Tables . 99
Generating the Lookup Table .100
The jit.gradient Object .102
Summary .105

Tutorial 13: Scissors and Glue .106
Cut it Up .107
Routing the Matrices .108
The Glue That Keeps It Together .109
Summary .110

Tutorial 14: Matrix Positioning .111
Positioning Data in a Matrix .111
The jit.window Object .111
From One jit.matrix to Another .112
Interpolation .113
Isolate a Part of the Matrix .114
Flip the Image .116
Resize the Output Matrix .116
Moving the Image Data Around in the Matrix .118

Changing, Resizing, and Moving the Source Image .119
One More Word About Dimensions .119
Hue Rotation .120
Full Screen Display .121
Summary .122
 3

T

able of C

on

t

en

ts

Tutorial 15: Image Rotation .123
Rotating and Zooming with the jit.rota Object .123

Basic Rotation .123
Automated Rotation .124
Zoom In or Out .125
Beyond the Edge .126
Some Adjustments—Anchor Point and Offset .126
Rotary Control .127

Summary .129

Tutorial 16: Using Named Jitter Matrices .131
Order of Importance .132
What's in a Name? .133
The Destination Dimension .134
Jumping the Queue .136
Summary .137

Tutorial 17: Feedback Using Named Matrices .138
Jitter Matrix Feedback .139
The Game of Life .139
Summary .140

Tutorial 18: Iterative Processes and Matrix Re-Sampling .141
Getting Drunk .142
The Feedback Network .143
Downsampling and Upsampling .145
Summary .147

Tutorial 19: Recording QuickTime movies .148
Your Mileage May Vary .148
On the Clock .149
Off the Clock .152
Summary .154

Tutorial 20: Importing and Exporting Single Matrices .155
Import and Export From the jit.matrix Object .155

QuickTime Export and Import .155
Jitter Binary Export and Import .157

Import and Export From the jit.qt.movie Object .159
The exportimage Message .159
General Export From the jit.qt.movie Object .160

The jit.textfile Object .162
Summary .165
4

T

able of C

on

t

en

ts

Tutorial 21: Working With Live Video and Audio Input .166
The Basics of Sequence Grabbing .166

First Grab .167
Switching Between Inputs .168

Grabbing for Quality .169
Grabbing to Disk .172

Grabbing Video to Disk .173
Summary .175

Tutorial 22: Working With Video Output Components .176
End of the Line .176
Just Passing Through .179
Summary .180

Tutorial 23: Controlling Your FireWire Camera .181
Plug and Play .181

Basics .182
PLAY and WIND groups (VTR mode) .183
Avez-vous le Temps? .184
RECORD Group .185

Summary .186

Tutorial 24: QuickTime Effects .187
The Dialog Box Interface .187
To the Max .190

Listing and Loading Effects .190
Parameter Types .191
Listing Parameters .191

In Practice .192
Making Changes to Parameters .193
Tweening .195

Saving and Loading Parameter Files .196
Using QuickTime Effects in QuickTime Movies .197
Summary .199

Tutorial 25: Tracking the Position of a Color in a Movie .200
Color Tracking .200
The jit.findbounds Object .200
Tracking a Color in a Complex Image .202
Using the Location of an Object .204

Playing Notes .205
Playing Tones .207
Deriving More Information .208

Summary .208
 5

T

able of C

on

t

en

ts

Tutorial 26: MIDI Control of Video .210
The MIDI–Video Relationship .210
Mapping MIDI Data for Use as Video Control Parameters .211
Using send and receive .213
Using MIDI Notes to Trigger Video Clips .215
Routing Control Information .216

Routing Around (Bypassing) Parts of the Patch .217
User Control of Video Effects .219
Summary .221

Tutorial 27: Using MSP Audio in a Jitter Matrix .223
The Sound Output Component .224
Poke~ing Around .226
Sync or Swim .227
Putting it All Together .230
Summary .231

Tutorial 28: Audio Control of Video .232
Audio as a Control Source .232

Tracking Peak Amplitude of an Audio Signal .233
Using Decibels .233
Focusing on a Range of Amplitudes .234
Audio Event Detection .235
Using Audio Event Information .238

Summary .240

Tutorial 29: Using the Alpha Channel .241
The jit.lcd Object .242
Make Your Own Titles .244
The Alpha Channel .245
Summary .247

Tutorial 30: Drawing 3D text .249
Creating a Drawing Context .249
GL Objects in the Context .250
Common 3D Attributes .251
Summary .256

Tutorial 31: Rendering Destinations .257
Drawing and Swapping Buffers .257
Setting a jit.pwindow Destination .258
Setting a jit.matrix Destination .259
Multiple Renderers and Drawing Order .261
Summary .262
6

Table of Contents
Tutorial 32: Camera View .263
Summary .270

Tutorial 33: Polygon Modes, Colors and Blending .271
Wireframe Mode and Culling Faces .271
RGBA Colors .274
Erase Color and Trails .275
Blend Modes .276
Antialiasing .278
Summary .279

Tutorial 34: Using Textures .280
What is a Texture? .281
Creating a Texture .281
Textures and Color .282
Converting an Image or Video to a Texture .283
Interpolation and Texture size .284
Mapping Modes .285
Summary .287

Tutorial 35: Lighting and Fog .288
The OpenGL Lighting Model .288
Getting Started .289
Moving the Light .290
Specular Lighting .292
Diffuse Lighting .294
Ambient Lighting .295
That’s Ugly! .296
Directional vs. Positional Lighting .296
Fog .297
Summary .298

Tutorial 36: 3D Models .299
Review and Setup .299
Reading a Model File .299
Model Attributes .301

Lighting and Shading .301
Texture Mapping .302
Drawing Groups .304
Material Modes .304

Summary .307
 7

Table of Contents
Tutorial 37: Geometry Under the Hood .308
Matrix Output .308
Geometry Matrix Details .310
Processing the Geometry Matrix .310
Drawing Primitives .312
Summary .313

Appendix A: QuickTime Confidential .314
The Structure of QuickTime Movies .314
Time in QuickTime .315
Optimizing Movies for Playback in Jitter .316

Codecs .316
Audio Codecs .317
Video Codecs .317
Movie Dimensions and Frame Rate .318
Our Favorite Setting .319

 Summary .319

Appendix B: The OpenGL Matrix Format .320
Matrices, Video and OpenGL .320

When You Need This Reference .320
GL Matrix Reference .320

Message Format .320
Draw Primitive .321
The Connections Matrix .322
The Geometry Matrix .322

Appendix C: A Jitter Bibliography For Your Further Reading Pleasure:
Jitter Reference List .323

Video .323
Image Processing .323
OpenGL and 3D Graphics .323
2D Graphics and Vector Animation .324

Video Art .324
Generative Art .324
Linear Algebra and Mathematical Matrix Operations .324
Miscellaneous .324
8

9

Copyright and Trademark Notices

This manual is copyright © 2002-2004 Cycling ’74.

MSP is copyright © 1997-2004 Cycling ’74—All rights reserved. Portions of MSP are based on Pd
by Miller Puckette, © 1997 The Regents of the University of California. MSP and Pd are based on
ideas in FTS, an advanced DSP platform © IRCAM.

Max is copyright © 1990-2004 Cycling ’74/IRCAM, l’Institut de Récherche et Coordination
Acoustique/Musique.

Jitter is copyright © 2002-2004 Cycling ’74—All rights reserved.

Credits

Jitter Documentation and Reference pages: Jeremy Bernstein, Joshua Kit Clayton, Christopher
Dobrian, R. Luke DuBois, Randy Jones, and Gregory Taylor

Cover Design: Lilli Wessling Hart

Cover Photo: Sue Costabile

Graphic Design: Joshua Kit Clayton and Gregory Taylor

Video and image materials: Toni Dove, Susan Gladstone, and Mark McNamara

About Jitter

Jitter is a set of over 130 new video, matrix, and 3D graphics objects for the Max graphical pro-
gramming environment. The Jitter objects extend the functionality of Max4/MSP2 with flexible
means to generate and manipulate matrix data—any data that can be expressed in rows and col-
umns, such as video and still images, 3D geometry, as well as text, spreadsheet data, particle sys-
tems, voxels, or audio. Jitter is useful to anyone interested in real-time video processing, custom
effects, 2D/3D graphics, audio/visual interaction, data visualization, and analysis.

Since Jitter is built upon the Max/MSP programming environment, the limitations inherent in
fixed purpose applications is eliminated. You are able to build the programs you want to use,
rather than being forced to work around someone else's idea of how things should be done. This
power is not to be underestimated, so please use it wisely.

Video

Although the Jitter architecture is general, it is highly optimized for use with video data, and per-
forms with breathtaking speed. A robust set of mathematical operators, keying/compositing,
analysis, colorspace conversion and color correction, alpha channel processing, spatial warping,
convolution-based filters, and special effects deliver the building blocks for your own custom
video treatments.

Jitter includes extensive support for Apple's QuickTime architecture, such as the playback of all
QT supported file formats, real- or nonreal-time file creation, editing operations, import/export
capabilities, integrated real-time QT effects, video digitizing, QTVR, file format conversion, and
more. QuickTime audio may be routed into MSP to exploit MSP's powerful audio processing
capabilities. For the production environment, Jitter provides support for digital video (DV) cam-
era control as well as input and output via FireWire, and multiple monitor support for perfor-
mance situations.

2D/3D Graphics

Jitter's integrated 2D/3D graphics support provides the tools to use hardware accelerated
OpenGL graphics together with video, including the ability to texture 3D geometry with video
streams in real-time, convert audio and video streams directly into geometry data, and render
models, NURBS, 2D/3D text, and other common shapes. There is even low level access to geome-
try data and the majority of the OpenGL API for those who need to be closer to the machine.

Ease of Use

Jitter is tightly integrated with Cycling '74's Max/MSP graphical programming environment
which lets you visually connect data processing objects together with patch cords to create custom
applications in a similar manner to analog modular synthesizers.

This visual framework provides the power to build your own unique video effects, realtime video
mixers, audio visualizers, image to audio synthesizers, algorithmic image generators, batch con-
verter/processor programs, or whatever your heart desires. You can share the programs you
develop with other Max/MSP users and create standalone applications just as is currently possible

Important Note: Video Output Components support is only available for the Macintosh at the
present time.
10

Introduction

with Max/MSP. A free Runtime version is available that runs any application created with Max/
MSP/Jitter.

Matrices

Jitter's strength and flexibility comes from the use of a single generalized matrix data format when
working with video, 3D geometry, audio, text, or any other kind of data. Jitter matrices may be
composed of one of four data types: char (8 bit unsigned int), long (32 bit signed int), float32 (32
bit floating point), or float64 (64 bit floating point). Matrices may have up to 32 dimensions, and
may have up to 32 planes.

This common representation makes the transcoding of information effortless. You can experi-
ment with interpreting text as an image, converting video images to 3D geometry, turning audio
into a particle system, or playing video data as audio. The possibilities are unlimited.

Jitter has all the fundamental mathematical tools required to work with this numerical representa-
tion. The jit.op object alone provides over 60 arithmetic, bitwise, exponential, logical, and trigo-
nometric operators. The multitude of operators in jit.op are particularly useful for experimenting
with video compositing. And Jitter's support for linear algebra, particle systems, Fourier analysis
and resynthesis, string processing, cellular automata, and Lindenmeyer systems allows for even
further experimental possibilities.

More Details

Jitter objects also make available many aspects of their internal state in ways which will be new to
even the most seasoned Max/MSP veterans. Jitter introduces the notion of attributes, internal
variables which may be set and queried, thus permitting easier management of object state. As a
means of convenience, Jitter objects can be created with attribute arguments of the form
“@<attribute-name> <attribute-value>”—greatly reducing the need for excessive use of the loadbang
object. Jitter objects can work with matrices of arbitrary size and are designed so that they can
adapt to the type and size of data that they receive. A single program may have many objects work-
ing with different types and sizes of data at once, and there are tools to easily convert from one
type or size to another.

All matrices that are passed between objects are named entities similar to the buffer~ object in
MSP. Referenced by name, a single matrix may be accessed by multiple objects, allowing for cre-
ative feedback networks, in-place processing, and memory conservation. There is a publicly avail-
able Jitter SDK with the source code of over 30 objects taken directly from the Jitter object set, so
third party developers can extend the already overwhelming possibilities Jitter provides. This kind
of extensibility is one of the strength's Max/MSP is already known for.

We hope that you have as wonderful an experience using Jitter as we had making it. Please do not
hesitate to let us know how we can make it better.

Enjoy,

The Jitter Team
11

Introduction

How to Use The Jitter Documentation

• The Jitter documentation assumes you understand the basic Max concepts such as object,
message, patcher, symbol etc. as described in the Max tutorials.

• This manual contains 37 tutorials that you can use to explore some of the basic capabilities of
the software.

• The documentation begins with a basic introduction to the features of Jitter, followed by an
introduction to two fundamental concepts in the software: matrices and attributes. If you like
getting into things immediately, you can start learning Jitter by skipping to the tutorials, but
these two Topics provide a thorough grounding that may be very useful to your understand-
ing.

• Each tutorial is accompanied by a Max patcher found in the Jitter Tutorial folder. The idea is to
explore the tutorial patcher as you read the chapter in this manual.

• For an in-depth examination of the features of each Jitter object, you can use the Jitter Refer-
ence folder in HTML format. The Jitter Reference is located in the JitterReference folder,
located in the patches folder in your Max/MSP folder. You can also launch the Jitter Reference
by choosing JitterReferenceLauncher from the Max/MSP Extras menu.

There is a also help file for each object, and you can launch the object's reference page within
the help file. Before delving into the reference materials, you may wish to read the guide to the
object reference linked to at the top of the main Object Reference page. This guide is located in
the following places:

Macintosh: /Applications/MaxMSP 4.3/patches/JitterReference/reference-guide.html

Windows: C:\Program Files\Cycling ‘74\MaxMSP 4.3\patches\JitterReference\reference-guide.html

• The appendices in this manual provide additional information about QuickTime formats, the
OpenGL matrix format, and a list of sources for further reading
 12

Matrices
What is a Matrix?

A matrix is a grid, with each location in the grid containing some information. For example, a
chess board is a matrix in which every square contains a specific item of information: a particular
chess piece, or the lack of a chess piece.

White has just moved a pawn from matrix location e2 to location e4.

For the sake of this discussion, though, let's assume that the “information” at each location in a
matrix is numeric data (numbers). Here's a matrix with a number at each grid location.

A spreadsheet is an example of a two-dimensional matrix.

We'll call each horizontal line of data a row, and each vertical line of data a column. On roadmaps,
or on chessboards, or in spreadsheet software, one often labels columns with letters and rows with
numbers. That enables us to refer to any grid location on the map by referring to its column and its
row. In spreadsheets, a grid location is called a cell. So, in the example above, the numeric value at
cell C3 is 0.319.

The two pictures shown above are examples of matrices that have two dimensions, (horizontal)
width and (vertical) height. In Jitter, a matrix can have any number of dimensions from 1 to 32. (A
one-dimensional matrix is comparable to what programmers call an array. Max already has some
objects that are good for storing arrays of numbers, such as table and multislider. There might be
cases, though, when a one-dimensional matrix in Jitter would be more useful.) Although it's a bit
harder to depict on paper, one could certainly imagine a matrix with three dimensions, as a cube
 13

Matrices What is a Matrix?
having width, height, and depth. (For example, a matrix 3 cells wide by 3 cells high by 3 cells deep
would have 3x3x3=27 cells total.)

A 3x3x3 matrix has 27 cells.

And, although it challenges our visual imagination and our descriptive vocabulary, theoretically
(and in Jitter) one can even have matrices of four or more dimensions. For these tutorials,
however, we'll restrict ourselves to two-dimensional matrices.

A Video Screen is One Type of Matrix

A video screen is made up of tiny individual pixels (picture elements), each of which displays a
specific color. On a computer monitor, the resolution of the screen is usually some size like 1024
pixels wide by 768 pixels high, or perhaps 800x600 or 640x480. On a television monitor (and in
most conventional video images), the resolution of the screen is approximately 640x480, and on
computers is typically treated as such. Notice that in all of these cases the so-called aspect ratio of
width to height is 4:3. In the wider DV format, the aspect ratio is 3:2, and the image is generally
720x480 pixels. High-Definition Television (HDTV) specifies yet another aspect ratio—16:9. In

19 20 21

22 23 24

25 26 27

10 11 12

13 14 15

16 17 18

1 2

4 5

7 8 9

3

6

 14

Matrices What is a Matrix?
these tutorials we'll usually work with an aspect ratio of 4:3, and most commonly with smaller-
than-normal pixel dimensions 320x240 or even 160x120, just to save space in the Max patch.

Relative sizes of different common pixel dimensions

A single frame of standard video (i.e., a single video image at a given moment) is composed of
640x480=307,200 pixels. Each pixel displays a color. In order to represent the color of each pixel
numerically, with enough variety to satisfy our eyes, we need a very large range of different
possible color values.

There are many different ways to represent colors digitally. A standard way to describe the color of
each pixel in computers is to break the color down into its three different color components —red,
green, and blue (a.k.a. RGB)—and an additional transparency/opacity component (known as the
alpha channel). Most computer programs therefore store the color of a single pixel as four separate
numbers, representing the alpha, red, green, and blue components (or channels). This four-
channel color representation scheme is commonly called ARGB or RGBA, depending upon how
the pixels are arranged in memory.

Jitter is no exception in this regard. In order for each cell of a matrix to represent one color pixel,
each cell actually has to hold four numerical values (alpha, red, green, and blue), not just one. So, a
matrix that stores the data for a frame of video will actually contain four values in each cell.

Each cell of a matrix may contain more than one number.

A frame of video is thus represented in Jitter as a two-dimensional matrix, with each cell
representing a pixel of the frame, and each cell containing four values representing alpha, red,

A: 255
R: 218
G: 111
B: 218

A: 255
R: 218
G: 111
B: 218

A: 254
R: 218
G: 112
B: 217

etc.

A: 255
R: 218
G: 111
B: 217

A: 255
R: 218
G: 111
B: 217

A: 254
R: 218
G: 112
B: 217

etc.

etc. etc. etc. etc.

160 320 640

720

800

1024

120

240

480

600

768
15

Matrices What is a Matrix?
green, and blue on a scale from 0 to 255. In order to keep this concept of multiple-numbers-per-
cell (which is essential for digital video) separate from the concept of dimensions in a matrix, Jitter
introduces the idea of planes.

What is a Plane?

When allocating memory for the numbers in a matrix, Jitter needs to know the extent of each
dimension—for example, 320x240—and also the number of values to be held in each cell. In
order to keep track of the different values in a cell, Jitter uses the idea of each one existing on a
separate plane. Each of the values in a cell exists on a particular plane, so we can think of a video
frame as being a two-dimensional matrix of four interleaved planes of data.

The values in each cell of this matrix can be thought of as existing on four virtual planes.

Using this conceptual framework, we can treat each plane (and thus each channel of the color
information) individually when we need to. For example, if we want to increase the redness of an
image, we can simply increase all the values in the red plane of the matrix, and leave the others
unchanged.

The normal case for representing video in Jitter is to have a 2D matrix with four planes of data—
alpha, red, green, and blue. The planes are numbered from 0 to 3, so the alpha channel is in plane
0, and the RGB channels are in planes 1, 2, and 3.

The Data in a Matrix

Computers have different internal formats for storing numbers. If we know the kind of number we
will want to store in a particular place, we can save memory by allocating only as much memory
space as we really need for each number. For example, if we are going to store Western alphabetic
characters according to the ASCII standard of representation, we only need a range from 0 to 255,

so we only need 8 bits of storage space to store each character (because 28 = 256 different possible
values). If we want to store a larger range of numbers, we might use 32 bits, which would give us
integer numbers in a range from -2,147,483,648 to 2,147,483,647. To represent numbers with a
decimal part, such as 3.1416, we use what is called a floating point binary system, in which some of

A
R

G
B

 16

Matrices What is a Matrix?
the bits of a 32-bit or 64-bit number represent the mantissa of the value and other bits represent
the exponent.

Much of the time when you are programming in Max (for example, if you're just working with
MIDI data) you might not need to know how Max is storing the numbers. However, when you're
programming digital audio in MSP it helps to be aware that MSP uses floating point numbers.
(You will encounter math errors if you accidentally use integer storage when you mean to store
decimal fractions.) In Jitter, too, it is very helpful to be aware of the different types of number
storage the computer uses, to avoid possible math errors.

A Jitter matrix can store numbers as 8-bit integers (char), 32-bit integers (long), 32-bit floating-
point (float32) or 64-bit floating-point (float64). Some Jitter objects store their numerical values
in only one of these possible formats, while others can store their values in several, or all, of them.

By default, nearly every Jitter object automatically adapts its internal matrices to the format (size
and type) of any matrix sent to its left inlet, assuming that it supports that format. For instance, the
jit.op object will accept any format matrix, so if you send a 4x3 float32 matrix to a jit.op object, it
will adapt its internal matrices to match that incoming matrix. This default behavior is called
adapt mode.

If an object doesn’t support the format of the incoming matrix, it will return an error. The
jit.scalebias object only accepts 4 plane char matrices, so if you send it that 4x3 float32 matrix, it
will return an error because it can’t adapt to a float32 matrix. However, in adapt mode, the
jit.scalebias object would adapt its internal matrices to match the size of an incoming 4 plane char
matrix.

Adapt mode facilitates the construction of Jitter patches that are type, planecount and dimension
independent—the same network of Jitter objects can process data of all formats. There may be
times, though, when you want to restrict your patch to a single data format.

To override adapt mode, you can do one of two things:

1. You can create an object with typed-in arguments that specify its format, which will disable
adapt mode. For instance, the object jit.op 2 float32 3 3 will only accept 2 dimensional, 2 plane
float32 matrices, and will return errors if you try to send it anything else.

2. You can send the message adapt 0 to an adaptive object. This “freezes” the object’s internal
matrices at their current state, and disables adaptation.

When an object is non-adaptive, it will continue to process matrices that are of the same format,
but which have differently-sized dimensions (e.g. our jit.op 2 float32 3 3 object will process a 2 plane

Note that adaptation is based only on matrices received in an object’s left inlet.

Technical note: You can use the jit.matrix object to easily convert data from one matrix format
to another. In the case described above, sending our 4x3 float32 matrix through a jit.matrix 4
char 4 3 object will convert it to a matrix format compatible with the jit.scalebias object. This
point is covered in more detail in the Tutorials.
17

Matrices What is a Matrix?
float32 5x5 matrix). In this case, though, it will respond to that incoming matrix as follows: If the
incoming matrix is larger than the object’s internal matrix, only the portion of the matrix that
overlaps the internal matrix will be processed. If the incoming matrix is smaller, any cells outside
of the bounds of the incoming matrix will be set to 0. The illustration below should clarify this
point:

The consequences of non-adaptation

While adapt mode is off, you can manually adjust the planecount, type or dimensions of an
object’s internal matrices by sending planecount, type and dim messages to the object. For additional
information about these messages, refer to the Object Reference entry for “group-mop”.

To (re-)enable adaptation, simply send the message adapt 1 to a non-adaptive object.

Important concept: In cases where we're using Jitter to manipulate video, perhaps the most
significant thing to know about data storage in Jitter matrices is the following. When a matrix is
holding video data—as in the examples in the preceding paragraphs—it assumes that the data
is being represented in ARGB format, and that each cell is thus likely to contain values that
range from 0 to 255 (often in four planes). For this reason, the most common data storage type
is char. Even though the values being stored are usually numeric (not alphabetic characters), we
only need 256 different possible values for each one, so the 8 bits of a char are sufficient. Since a
video frame contains so many pixels, and each cell may contain four values, it makes sense for
Jitter to conserve on storage space when dealing with so many values. Since manipulation of
video data is the primary activity of many of the Jitter objects, most matrix objects use the char
storage type by default.For monochrome (grayscale) images or video, a single plane of char
data is sufficient.
 18

Attributes
Editing Jitter object parameters

What are Attributes?

Attributes are a new way to specify the behavior of Max objects. Most Jitter objects use attributes
for the different variables that make up their current internal state.

The good old Max counter object

Many Max objects, such as the counter object shown above, take a number of arguments to
determine how they behave. The order of these arguments after the object's name determines how
the object interprets them. In the example above, the first argument to counter sets the direction in
which the object counts; the second and third arguments determine the minimum and maximum
values that the object counts between. Since these values are simply given to the object as
numbers, their ordering is important. With some Max objects (counter is one of them) the
number of arguments you give has some effect on the way in which they are interpreted. If you
supply counter with only two arguments, they will be understood by the object as the minimum
and maximum count, not the direction and minimum count. Because the position and number of
arguments are crucial, there is no way, for example, to create a counter object with a predefined
direction and maximum count using only two arguments.

The arguments to an object are often seen as initial values, and Max objects typically have ways to
modify those values through additional inlets to the object or special messages you send the
object. You can change the direction and maximum count of a counter object by sending integers
into its second and fifth inlets, respectively. These will override the default values supplied by the
arguments. Similarly, you can change the minimum count of the object by sending the message
min followed by an integer into the left inlet.

While this system works well when a Max object only has two or three variables that define its
behavior, Jitter objects often have many, many more variables (sometimes dozens). If all of these
variables depended on the order of inlets and object arguments, you would spend all day
searching the reference manual and never have time to do any work with Jitter!
 19

Attributes Editing Jitter object parameters
Setting Attributes

Jitter objects, unlike Max objects, can be told how to behave by using attributes. You can type
attributes into an object box along with the Jitter object's name, or you can set (and retrieve)
attributes through Max messages after the object is created.

A Jitter object with attributes after the object name

The Jitter object shown above, called jit.brcosa, has three typed-in attributes. Typed-in attributes
are set in object boxes by using the @ symbol followed by the name of the attribute and one or
more arguments (which could be any kind of Max data: ints, floats, symbols, or lists). You can
enter as many attributes as the object recognizes, in any order, after the object's name. While you
may not know what the jit.brcosa object does yet, you can infer a little bit about the object based on
the names of the attributes and what type of data they have assigned to them.

As with Max objects, the information you give a Jitter object to set its initial behavior is generally
something you can change after the object is created. Attributes can be changed at any time by
sending messages to the object as shown below.

Attributes can be changed with Max messages

This jit.brcosa object has its brightness attribute set to 1.1 initially, but we've changed it to 1.0 by
sending the message brightness 1 into the object's left inlet. You can change virtually any attribute by
sending a message with the attribute's name, followed by the relevant arguments, into a Jitter
object's left inlet.

As with Max objects, Jitter objects have default values for their parameters. The jit.brcosa object
above only has typed-in attributes initializing its brightness value, but other attributes are set to
their default values. We’ll show you how to find out what attributes an object uses below. In the

Important: There is no space between the @ sign and the name of the typed-in attribute you
want to set. The @ character tells the Jitter object to interpret the word attached to it as an
attribute name instead of an argument value for a previous attribute.

Also Important: Jitter objects can have both typed-in attributes and typed-in arguments. See
the Jitter Object Arguments section below for details.
 20

Attributes Editing Jitter object parameters
example above, we can change the values of the object's contrast and saturation attributes using
messages, overriding whatever default values the object has supplied.

Jitter Object Arguments

There are four pieces of information that most Jitter objects use that can be entered either as
typed-in attributes or typed-in arguments. In fact, they are always attributes, but Jitter objects
automatically handle them correctly when they are used as arguments.

Jitter objects can have arguments, too!

The jit.rota object, shown above, clearly has one attribute initialized: theta. But what does the other
stuff mean?

If you supply arguments for a Jitter object that processes Jitter matrix data (and most Jitter objects
do), the arguments are interpreted as:

1. The planecount of the output matrix.

2. The type of the output matrix.

3. The size, or dimension list (dim), of the output matrix.

Now that we know this, we can determine that the jit.rota object above will output a matrix that is
made up of 4 planes of char (8-bit integer) data with two dimensions of 320 by 240 cells.

These arguments can also be set by attributes that are consistent for all Jitter objects that output
matrix data: planecount, type, and dim. They can be set as unordered typed-in attributes or changed
with messages. The three objects below, for example, are identical.

Arguments or attributes? You decide.

Important: Jitter object arguments, if used, must appear before any attributes are set. Other-
wise the Jitter object will misinterpret the arguments as values for the attribute, not arguments
to the object.
21

Attributes Editing Jitter object parameters
The first object has its output matrix attributes set using typed-in arguments. The second object
has the planecount and type set using typed-in arguments, but uses a typed-in attribute for the
dimension list. The third object uses typed-in attributes to set everything.

If you prefer, you can initialize an object’s attributes using messages triggered from a loadbang
object as shown below.

Yet another way to initialize your attributes

Querying Attributes and Object State

An additional (and very useful) feature of attributes is that you can ask a Jitter object to tell you
what value it currently has stored for any given attribute. You do this by querying the attribute with
the Max message get followed (with no space) by the name of the attribute you want to know
about. The resulting value is output by the Jitter object as a message (beginning with the attribute's
name), sent out the object's right outlet.

Querying an attribute for a Jitter object

Using get to find the values of attributes lets you discover the current value of an attribute, even if
you never set the attribute in the first place. For example, the patch below discovers some of the
 22

Attributes Editing Jitter object parameters
default values of the jit.plur object. The Max route object lets you easily separate the values for each
of the attributes.

Finding out the default values of object attributes

Two messages you can send to any Jitter object, getattributes and getstate, output all the attributes
used by the object.

Finding out your options…

The getattributes message causes the Jitter object to output the message attributes followed by a list of
all the attribute symbols that Jitter object understands. Experimenting with a few Jitter objects will
quickly show you that many of these, such as outputmode, type and dim, are fairly standard. Others
(such as mask in the jit.brass object) will have special meaning for the object that uses them.
23

Attributes Editing Jitter object parameters
The getstate message dumps out all the attributes for the Jitter object as if every conceivable
attribute query had been performed all at once.

Finding an object's state

You can then use route, unpack, and other Max objects to extract the attributes as you need them.
Later in the tutorials, you will encounter several Jitter objects where the attributes change based on
calculations performed on the input matrix (or a file that has just been opened by the object).
Querying the relevant attributes is how you can find out the result of the object's calculation.

Summary

Jitter attributes are a powerful tool for managing the parameters of complex objects. You can use
attributes to initialize, change, and find out the current values stored in Jitter objects, and the
attachment of each value to a fixed attribute name eliminates the need to remember typed-in
argument ordering or the role of each inlet in a complex object.
 24

Tutorial 1
Playing a QuickTime Movie

This first tutorial demonstrates one of the simplest yet most useful tasks you can perform with
Jitter: playing a QuickTime movie in a window.

• Open the tutorial patch 01jPlayAMovie.pat in the Jitter Tutorial folder.

There are two Jitter objects in this patch: jit.qt.movie and jit.window. The jit.window object
automatically opens a window on your computer screen. The jit.qt.movie object allows you to
open an existing QuickTime movie, and begins to play it.

• Click on the message box containing the message read countdown.mov. This causes the
jit.qt.movie object to open the QuickTime movie file countdown.mov and begin reading from
it.

The read message opens a QuickTime movie file.

By default a the jit.qt.movie object will begin playing a movie as soon as it opens it. (Alternatively,
you can alter that behavior by sending the jit.qt.movie object an autostart 0 message before opening
the file, but for now the default behavior is fine.) Notice, however, that even though we've said that
the jit.qt.movie object is playing the movie, the movie is not being shown in the Movie window.
Here's why:

Each object in Jitter does a particular task. The task might be very simple or might be rather
complicated. What we casually think of as “playing a QuickTime movie” is actually broken down
by Jitter into two tasks:

1. Reading each frame of movie data into RAM from the file on the hard disk

2. Getting data that's in RAM and showing it as colored pixels on the screen.
 25

Tutorial 1 Playing a QuickTime Movie
The first task is performed by the jit.qt.movie object, and the second by the jit.window object. But
in order for the jit.window object to know what to display, these two objects need to communicate.

How Jitter Objects Communicate

We've said that jit.qt.movie object's primary job is to open a QuickTime movie and read each
frame, one after another, into RAM for easy access by other Jitter objects. To do this, the
jit.qt.movie object claims a particular portion of the Max application's allotted memory, and
consistently uses that one location in memory. Jitter keeps track of locations in RAM by assigning
each one a name. (You don't always need to know the actual name of the location in memory, but
Jitter objects do need to know them in order to find the information that's being held there.)

Causing Action by Jitter Objects

What causes one Jitter object to send a jit_matrix message to another object? Most Jitter objects
send out a jit_matrix message when they receive the message outputmatrix or bang. (These two
messages have the same effect in most Jitter objects.) The other time that an object sends out a
jit_matrix message is when it has received such a message itself, and has modified the data in some
way; it then automatically sends out a jit_matrix message to inform other objects of the name of the
matrix containing the new data.

To restate the previous paragraph, when an object receives a jit_matrix message, it does something
and sends out a jit_matrix message of its own. When an object receives outputmatrix or bang, it sends
out a jit_matrix message without doing anything else.

Important Concept: The most important thing that Jitter objects communicate to each other is
a name, referring to a matrix—a place in memory where data is stored. (We'll explain the
meaning of the word “matrix” in more detail in the next tutorial chapter.) Jitter objects output a
message that only other Jitter objects understand. That message is the word jit_matrix followed
by a space and the name of a matrix where data is stored. This message is communicated from
one Jitter object to another through a patch cord in the normal Max manner. (But, just as MSP
objects' patch cords look different from other Max patch cords, the patch cords from Jitter
objects' outlets that send the jit_matrix message have their own unique look.) The receiving Jitter
object receives the message in its inlet (most commonly the left inlet), gets the data from the
specified place in memory, modifies the data in some way, and sends the name of the modified
data out its left outlet to all connected Jitter objects. In this way, tasks are performed by each
object without necessarily knowing what the other objects are doing, and each object gets the
data it needs by looking at the appropriate place in memory. Most Jitter objects don't really do
anything until they get a jit_matrix message from another Jitter object, telling them to look at that
matrix and do something with the data there.

In many cases a Jitter object will generate a unique name for its matrix on its own. In other
cases, it is possible (and even desirable) to tell an object what name to use for a matrix. By
explicitly naming a matrix, we can cause objects to use that same memory space. You will see
examples of this in future tutorial chapters.
 26

Tutorial 1 Playing a QuickTime Movie
So, in our example patch, the jit.qt.movie object is “playing” the QuickTime movie, constantly
storing the current frame of video, but the jit.window object will only display something when it
receives a jit_matrix message from the jit.qt.movie object. And that will only happen when the
jit.qt.movie object receives the message bang (or outputmatrix). At that time, jit.window will display
whatever frame of video happens to be currently playing in the movie (that is, the frame that's
currently stored by the jit.qt.movie object).

In order to make jit.window update its display at the desired rate to show a continuously
progressing video, we need to send the message bang to the jit.qt.movie object at that rate.

The movie is playing in the jit.qt.movie object,
but we need to send it a bang message each time we want to display a frame.

• Click on the toggle object marked “Play” to start the metro object. This will send out bang at
the rate of 25 times per second (every 40 milliseconds). That should be fast enough to display
every frame of this video. As long as the bang messages continue, you will see the movie
displayed in the Movie window.

jit.window displays the contents of a matrix: in this case a frame of a QuickTime movie.

• Click on the toggle to stop the metro object. The jit.window object stops updating the Movie
window, so you will now just see a still image of whatever frame was last displayed. The movie
is still “playing”—and the jit.qt.movie object is still updating its memory frame-by-frame—
but jit.window is now oblivious because the jit.qt.movie object is no longer sending messages.
27

Tutorial 1 Playing a QuickTime Movie
• You can verify that the movie is still progressing by clicking on the button object just below the
metro object. The will cause the jit.qt.movie object to send a jit_matrix message to jit.window,
which will update the Movie window with the current frame. If you do this a few times, you
will see that the movie has progressed in between clicks of the mouse. (The movie is a ten-
second countdown, playing in a continuous loop.)

To summarize, the jit.qt.movie object is continually reading in one video frame of the QuickTime
movie, frame by frame at the movie's normal rate. When the jit.qt.movie object receives a bang
message, it communicates the location of that data (that single frame of video) to jit.window, so
whatever frame the jit.qt.movie object contains when it receives a bang message is the data that will
be displayed by jit.window.

Arguments in the Objects

The jit.qt.movie object in this tutorial patch has two typed-in arguments: 320 240. These numbers
specify the horizontal and vertical (width and height) dimensions the object will use in order to
keep a single frame of video in memory. It will claim enough RAM to store a frame with those
dimensions. So, in the simplest case, it makes sense to type in the dimensions of the movie you
expect to read in with the read message. In this case (since we made the movie in question
ourselves) we happen to know that the dimensions of the QuickTime movie countdown.mov are
320x240.

If we type in dimension arguments smaller than the dimensions of the movie we read in, the
jit.qt.movie object will not have claimed enough memory space and will be obliged to ignore some
of the pixels of each frame of the movie. Conversely, if we type in dimension arguments larger than
the dimensions of the movie we read in, there will not be enough pixels in each frame of the movie
to fill all the memory space that's been allocated, so the jit.qt.movie object will distribute the data it
does get evenly and will fill its additional memory with duplicate data.

The jit.window object has five typed-in arguments: Movie 5 41 325 281. The first argument is a name
that will be given to the matrix of data that jit.window displays. That name will also appear in the
title bar of the movie window. It can be any single word, or it can be more than one word if the full
name is enclosed between “single smart quote” characters. (single smart quotes are the characters
‘and’, obtained by typing option-] and shift-option-].) The next two arguments indicate the x, y
screen coordinates of the upper-left corner of the display region of the movie window, and the last
two arguments provide the x, y coordinates of the lower-right corner of the display region.
(Another way to think of these four numbers is to remember them as the coordinates meaning
“left”, “top”, “right”, and “bottom”.) We have chosen these particular numbers because a) they
describe a display region that is 320x240 pixels, the same size as the movie we intend to display,
and b) when we take into account the dimensions of the window borders, title bar, and menu bar
that the Operating System imposes, the entire window will be neatly tucked in the upper-left
corner of our usable desktop. (It's possible to make the window borders and title bar disappear
with a border 0 message to jit.window, but the default borders are OK for now.)

We have typed the value of 40 in as an argument to metro to cause it to send out 25 bang messages
per second. The QuickTime movie actually has a frame rate of exactly 24 frames per second, so
 28

Tutorial 1 Playing a QuickTime Movie
this metro will trigger the jit.qt.movie object frequently enough to ensure that every frame is made
available to jit.window and we'll get to see every frame.

The jit.qt.movie object actually understands many more messages besides just bang (way too many
to try to explain here). In the upper-right corner of the Patcher window, we've included an
example of one more message, simply to demonstrate that the progress of the QuickTime movie
can be controlled in the jit.qt.movie object independently of the rate at which the metro object is
sending it bang messages. The message time, followed by a number, causes the jit.qt.movie object to
jump immediately to a specific time location in the movie.

• Click on the button object labeled “Restart”. This sends a message of time 0 to the jit.qt.movie
object. causing it to jump to the beginning of the QuickTime movie, and then sends a 1
message to the toggle to start the metro object and begin displaying the movie.

Summary

To play a QuickTime movie, use the jit.qt.movie object to open the file and read successive frames
of the video into RAM, and use the jit.window object to display the movie in a separate window.
Use typed-in arguments to specify the dimensions of the movie, and the precise coordinates of the
display area on your screen.

Jitter objects communicate the information about a particular frame of video by sending each
other the name of a matrix—a place in memory where that information is located. When a Jitter
object gets a matrix name, it performs its designated task using the data at that location, then
sends out the name of the modified data to other Jitter objects. Almost all Jitter objects send out a
name (in a jit_matrix message) when they receive the message bang (or outputmatrix). Thus, to show
successive frames of a video, send bang messages at the desired rate to a jit.qt.movie object
connected to a jit.window object.

Tracing the messages and roles of each object
29

Tutorial 2
Create a Matrix

What's a Matrix?

This tutorial chapter demonstrates some ways to manage numerical data in a matrix.

If you are in doubt about what a matrix is, please first read the chapter titled “What's a Matrix?” in
the Topics section. To summarize here, a matrix is a scheme for storing and modifying large sets of
numerical data, by placing the values in a virtual grid. By storing data in a matrix, we can easily
identify a particular value by its location in the grid, and we can modify many values at once by
referring to all or part of a matrix.

In the previous tutorial chapter, we used the jit.window object to open a window and display the
contents of a matrix as colored pixels. The matrix being displayed was from the jit.qt.movie object,
an object that continually fills its matrix with the current frame of a QuickTime video. The fact
that jit.window was displaying a video, however, was just because that happened to be the contents
of the matrix it was being told to display; but in fact any numerical values in a matrix can be
visualized similarly. The example patch for this tutorial will show an even simpler example that
should help strengthen your understanding of a matrix, the central idea of Jitter.

The jit.matrix object

• Open the tutorial patch 02jCreateAMatrix.pat in the Jitter Tutorial folder.

Create a 16x12 storage space for single 8-bit values.

The jit.matrix object simply creates a matrix, a storage space in memory. We can then store and
retrieve numerical values in the matrix, and we can use other objects to print the values or display
them visually. The arguments for the jit.matrix object are an optional [name] argument (not
included in this example), the [planecount] (how many values will be stored in each cell of the
matrix), the [type] of data (how many bytes to use to represent each number), and then the [dim]
(short for “dimensions”, describing how large the matrix will be). We use the brackets [] to indicate
that this is not the actual word you type in as an argument, but rather a description of the meaning
of the argument. The object in this example will create a matrix with 1 plane (one number in each
 30

Tutorial 2 Create a Matrix
matrix location), using the char data type (single-byte values), with dimensions 16x12 (which
equals 192 cells). From this we can deduce that the matrix is capable of holding 192 individual
numerical values, with each value ranging from 0 to 255 (that's the range of a single byte).

We've connected a button object to the inlet of the jit.matrix object. You'll recall that Jitter objects
send out their matrix name when they receive a bang message in their left inlet, so this button will
permit us to trigger the jit.matrix object to send out its matrix name (in the form of a jit_matrix
message).

The jit.print Object

Create a 16x12 storage space for single 8-bit values.

Beneath the jit.matrix object there is another new Jitter object, jit.print. This object accepts a
matrix name (i.e., a jit_matrix message) in its inlet, and formats the values of the matrix—the sheer
number of which can be pretty unwieldy—for printing in the Max window. It prints the formatted
values directly to the Max window, much like Max's print object, and then passes the matrix name
out its left outlet in a jit_matrix message (in the normal manner for Jitter objects).

• Click on the button object marked “output”. This causes the jit.matrix object to communicate
its matrix name to a jit.print object that formats the values and prints them in the Max
window.

In the Max window you will now see the text left: jit_matrix [somename]. The word left shows us that
this was printed by the print left object, so we can see that that is what came out of the outlet of the
jit.matrix object. Because we didn't choose a name for that matrix (we didn't provide a name as the
first typed-in argument to the jit.matrix object), jit.matrix assigned a name of its own choosing. It
tries to generate a unique name that's not likely to be used elsewhere, so it usually chooses

Note: We always describe the dimensions of a two-dimensional matrix in x,y (width, height)
format, meaning that we first state the extent of the horizontal dimension, then the vertical
dimension. This column major convention is consistent with the way these dimensions are com-
monly discussed in video and computer screen layout (a 640x480 video image, for example).
An alternative way to think of this is that we first state the number of (vertical) columns of data,
then the number of (horizontal) rows. You might want to note, however, if you're applying
matrix techniques of linear algebra in Jitter, that this column major format is different from the
way matrices are commonly described in linear algebra, which states rows first, then columns
(i.e., row major).
31

Tutorial 2 Create a Matrix
something strange like “u330000007”. In this case we don't really care what the name is, but it does
tell the jit.print object what matrix of data to format for printing.

Below that, you will see all of the values in this particular matrix, formatted neatly in 16 columns
and 12 rows. Those came from the jit.print object. They're really 0 right now, because we haven't
placed anything else in the matrix yet.

Setting and Querying Values in a Matrix

In the previous chapter we saw how an entire matrix could be filled automatically with frames of
color data from a QuickTime movie. It is also possible to place numerical values in specific
individual cells of the matrix, and retrieve values from specific locations. The objects immediately
above jit.matrix in this example show a few messages you can use for setting and getting values in a
matrix.

The messages setcell and getcell allow you to access specific values in a matrix.

You can store values in a particular matrix location with the setcell message. The syntax for doing
so is: setcell [cell coordinates] val [value(s)]. For example, the message setcell 0 0 val 127 to our jit.matrix
would set the value of the very first cell of the matrix (i.e., the cell in the upper-left corner) to 127.
This is because we number the cell coordinates in each dimension starting with 0 and going up to
1 less than the extent of that dimension. So, in this matrix, locations in the x dimension are
numbered from 0 to 15 and locations in the y dimension are numbered 0 to 11. Thus, the cell in
the lower right corner would be described with the cell coordinates 15 11.

• The combination of the pack 0 0 0 object and the message box helps us to format a proper setcell
message for the jit.matrix object. First we set the x and y positions where we want to store the
value, then we specify a value to be stored there. With the x and y positions at 0 0, use the
 32

Tutorial 2 Create a Matrix
number box labeled “value” to send the number 127 into the left inlet of pack 0 0 0. This will
cause the message setcell 0 0 val 127 to be sent from the message box to the jit.matrix.

The message setcell 0 0 val 127 sets the value of cell position 0, 0 to 127.

(If there were more than one plane in this matrix, we could set the values in a particular plane of a
cell, or in all planes of the cell. However, this matrix has only one plane, so we'll leave that for
another time.)

• Just to demonstrate what we said earlier about the numbering of cell positions, try sending the
message setcell 15 11 val 255 to the jit.matrix. First enter the number 15 into the “x position”
number box and the number 11 into the “y position”, then enter the number 255 in via the
“value” number box. Now click on the button marked “output” to see how the matrix has been
changed. Once again the entire matrix will be printed in the Max window via jit.print. Notice
that the values in cell positions 0, 0 and 15, 11 have been changed to 127 and 255.

The message setcell 15 11 val 255 sets the value of cell position 15, 11 to 255.
33

Tutorial 2 Create a Matrix
The jit.pwindow Object —

In your Patcher window you may have noticed a change in the black rectangular region. The
upper-left and lower-right corners of it have changed. (If you covered it with your Max window,
you may have to click the “output” button once more to see this change.)

The jit.pwindow object displays numerical values as colors (or grayscale values).

This region is a user interface object called jit.pwindow. In the object palette it appears like this:

The jit.pwindow cursor in the object palette

When you choose this object from the palette and click in the Patcher window, it creates a small
rectangular object. (You can click in the grow bar in the lower-right corner of the object to adjust
its dimensions.) This object is pretty much equivalent in function to the jit.window object, but it
displays matrix data inside the Patcher window, rather than in a separate window.

So, here we see quite literally the display of numerical values (in this case, char data in the range
from 0 to 255) as color. Because there is only one plane in this matrix we're displaying, the display
is monochrome—that is, grayscale. The 0 values are totally black, and the other values are some
level of gray, up to 255 which is totally white. Thus, the 255 value at cell 15, 11 is displayed as white,
and the 127 value at 0, 0 is displayed as a 50% gray, halfway between black and white.

You might say, “That's all very well, but it will be pretty tedious to fill a large matrix this way.” And
you'd be right. But of course Max allows us to write another part of the program that will automate
the process.
 34

Tutorial 2 Create a Matrix
Filling a Matrix Algorithmically

• Double-click on the patcher fillmatrix object to open the subpatcher window fillmatrix. This
subpatcher generates 192 different values, one for each position in the matrix, by feeding
different numbers into a mathematical expression.

You can generate values algorithmically to fill the cells of a matrix.

When the Uzi 12 object receives a bang message, (from the button labeled “fill” in the main Patcher
window) it quickly counts from 1 to 12 out its right outlet and sends a bang message for each count
out its left outlet. Those bang messages trigger the Uzi 16 object, so that it sends out numbers from 1
to 16 each time. We subtract 1 from these numbers so that they actually go from 0 to 11 and from
0 to 15, and we use the resulting numbers as y and x positions in the matrix. For each of the 12 y
positions, the Uzi 16 object specifies all the x positions, and then uses those numbers in a
mathematical expression (in expr) to calculate the value to be stored at that position. These
numbers are sent out the outlets, and are used to create well-formed setcell messages in the main
patch, just as we did by hand earlier.

The mathematical expression here is relatively unimportant. It could be any formula that
generates an interesting pattern of data. In this case we have chosen a formula that will produce a
sinusoidal gradation of brightness in each column, and the will cause the overall brightness of the
columns to increase from left to right (i.e., as x increases).

• Close the fillmatrix subpatch window and click on the button labeled “fill”. The matrix is filled
with values (generated by the Uzi objects in the subpatch) in a single tick of Max's scheduler.
Now click on the button labeled “output” to view the contents of the matrix. The numerical
values will be printed in the Max window, and displayed in the jit.pwindow.

Even for a small 16x12 matrix like this, it's tough for us to perceive a trend in numerical data just
by looking at a printout of numbers in the Max window. However, the display in the jit.pwindow
gives us a very clear and immediate idea of how the values vary within the matrix. This
demonstrates one of the benefits of visualization of numerical data.
35

Tutorial 2 Create a Matrix
You can no doubt imagine other ways to fill a matrix algorithmically in Max, and in fact we'll
demonstrate other ways in later tutorial chapters.

Other jit.matrix Messages

There are many other messages understood by jit.matrix, more than we can demonstrate fully
here. On the right side of the Patcher we show a couple of other handy messages for filling a
jit.matrix instantly with all the same values. The clear message to the jit.matrix object sets all its
values to 0, and the setall message (the word setall followed by a value) sets every position in the
matrix to that value.

We also demonstrate the getcell message. The word getcell followed by a location in the matrix (x
and y positions) will cause jit.matrix to send the cell coordinates and value of that position out its
right outlet.

• Enter a y value and then an x value into the number box objects above the getcell $1 $2 message
box, and observe what is printed in the Max window. Note that the value at that matrix
position is reported out the right outlet of the jit.matrix object.

Query the value(s) at matrix position 8, 6; reports cell 8 6 val [value(s)]

In future tutorial chapters you will see various ways to use values retrieved from a matrix.

Summary

The jit.matrix object creates a storage space for a named matrix of data, with whatever dimensions,
planes, and data type you specify. This matrix can be filled with data from another Jitter object
(such as jit.qt.movie), or by messages such as setall [value] to set the value in all cells or setcell [position]
val [value(s)] to set a specific cell. You can use an algorithm elsewhere in the patch to fill the matrix
according to a formula or a set of rules.

To get the data in a specific cell, you can use the getcell [position] message. To see all of the numerical
data printed out in the Max window, use the jit.print object to format the matrix data and print it.
 36

Tutorial 2 Create a Matrix
To see the matrix data displayed as colors, use the jit.pwindow object. This is similar to the use of
the jit.window object demonstrated in Tutorial 1.

In this tutorial we viewed numerical data that we generated ourselves, rather than digital video as
in the preceding chapter. The principle of storage is the same in both cases. Whether a matrix is
used to store color information for each pixel from a frame of digital video, or abstract numbers
which we wish to view as color, the numbers in both chapters are stored in a two-dimensional
matrix and are easily displayed in a jit.window or jit.pwindow.
37

Tutorial 3
Math Operations on a Matrix

This tutorial shows how you can perform simple mathematical operations on the data stored in a
Jitter matrix. We'll show you how to use the jit.op object to perform arithmetic scaling of matrix
cells, or of individual planes within those cells.

• Open the tutorial patch 01jMathOperations.pat in the Jitter Tutorial folder.

The tutorial patch is split into three simple examples of mathematical operations you can perform
with the jit.op object. The jit.op object performs mathematical operations on entire matrices of
data at a time rather than individual numbers.

Adding a constant value to all cells in a matrix.

The first example shows a jit.matrix object hooked up to a jit.op whose output is viewable by a
jit.pwindow object. Every time you change the number box hooked up to the right inlet of the jit.op
object a bang message will cause a new matrix to be sent out from the jit.matrix object. As you can
see from its arguments, the jit.matrix object is generating a 4x3 matrix of single-plane char data
(i.e. data in the range 0-255). The jit.pwindow object will visualize this matrix for you as a
grayscale image. Dragging the number box will change the level of grey shown in the jit.pwindow
from black (0) to white (255).

It's important to realize that the jit.matrix object is putting out a Jitter matrix that has all its cells set
to 0. If you were to connect the jit.matrix and jit.pwindow objects together and bypass the jit.op,
you would see a black image, no matter how many times you send a bang message to the jit.matrix
object. The jit.op object is adding a value (as defined by the number box) to all the cells in the Jitter
matrix sent between the jit.matrix and the jit.op objects.
 38

Tutorial 3 Math Operations on a Matrix
Operation @-Sign

We said above that the jit.op object adds a value to all the cells in its input matrix. The jit.op object
adds a value (rather than, say, dividing or multiplying) because of the value of its op attribute. The
op attribute is a symbol (or a list of symbols, as we'll see in a moment) that defines what math the
jit.op performs on its input matrix. In this case, we can see that the op attribute is set to the value of
+, which means that it performs simple addition on any matrix that arrives in its left inlet. The
integer value in the right inlet is added to all the cells in the matrix. This value is referred to as a
scalar, because it adds the same value to the entire matrix (in Tutorial 9 we show how jit.op can do
math using two Jitter matrices as well).

The scalar value can also be supplied as a constant by using the val attribute of jit.op. For example,
if we always wanted to add 134 to all the cells of an incoming Jitter matrix, we could use this object
and dispense with the number box:

Setting a scalar as an attribute.

Similarly, if we wanted to change the mathematical operation performed by any given jit.op object,
we could send the message op followed by the relevant mathematical symbol into the object's left
inlet.

Important note: Changing the scalar value in the right inlet of the jit.op object does not output
a new matrix. If you were to disconnect the patch cord between the number box and the button
object, the jit.pwindow object would stop showing you anything new. The reason for this is that
as with most Max objects, most Jitter objects only output data when something comes into
their leftmost inlet. In the case above, each time you change the number box, the jit.op object
stores the new scalar value. As soon as that happens, the button object sends a bang message to
the jit.matrix object, causing it to send a new Jitter matrix (with all its values set to 0) into the left
inlet of the jit.op object, triggering an output matrix which you can see. If you choose the
Enable command from the Trace menu, and then step through the message order with the Step
command, you will see how this plays out. (See the “Debugging” chapter of the Max 4.0 Tutori-
als and Topics manual for details about how to trace Max messages with the Trace feature.)
39

Tutorial 3 Math Operations on a Matrix
Math Operations on Multiple Planes of Data

The second example shows a more complicated instance of using jit.op to add values to an
incoming matrix.

Using separate scalars for each plane of a matrix

This patch is similar to the first one, with the important difference that we are now working with a
4-plane matrix. This is shown by the first argument to the jit.matrix object that generates the
matrix we're using. The jit.pwindow now shows things in color, interpreting the four planes of
Jitter matrix data as separate color channels of alpha, red, green, and blue. Our jit.op object in this
example has a list of four symbols for its op attribute: each symbol sets the mathematical operation
for one plane of the incoming matrix. In this patch we're going to pass the first (alpha) plane
through unchanged, and add numbers to each of the other planes. (You can mix and match
operators like this to your heart's content.)

The pak object feeding the right inlet of our jit.op object takes four integers and packs them into a
list. The only difference between pak and the Max pack object is that pak will output a new list
when any number is changed (unlike the pack object, which needs a new number or a bang
message in the left inlet to output a new list). The four numbers in the list generated by pak
determine the scalars for each plane of the matrix coming into the jit.op object. In the example
above, plane 0 will have nothing added to it (the first argument of the op attribute is pass). Planes
1, 2, and 3, will have 161, 26, and 254 added to them, respectively. Our jit.pwindow object will
interpret the cells of the output matrix as lovely shades of magenta (even though we see only one
color, there are in fact 12 different cells in the matrix, all set to the same values).

Important Note: If we decided to use only one value for the op attribute of the jit.op object above
(and only used one number as a scalar), jit.op would use that mathematical operator and scalar
value for all planes of the incoming matrix.
 40

Tutorial 3 Math Operations on a Matrix
Modifying the Colors in an Image

The third example shows a use of the jit.op object on a matrix that already has relevant data stored
in it:

Multiplying individual planes with scalars

• Click the message box importmovie colorbars.pict. The importmovie message to the jit.matrix object
loads a single frame of an image from a picture or QuickTime movie file into the Jitter matrix
stored by the object. It will scale the picture on the disk to the dimensions of its own matrix (in
this case, 320 by 240).
41

Tutorial 3 Math Operations on a Matrix
Clicking the button object shows you image calibration color bars in the jit.pwindow on the right of
the patch. In this case, our jit.op object has its arithmetic operators set to pass for the alpha plane
and * (multiply) for the other planes. Since we're working with a 4-plane image, we set each of the
scalars using a list of 4 floating-point numbers. Values of 1. in planes 1 through 3 will show you the
image as it appears originally:

All scalars at 1.

If you set the scalars to 0., 1., 0., and 0., you should see the following image:

The mean reds.

All of the planes (except plane 1) of the matrix containing the color bars have been multiplied by
0. This will eliminate the alpha, green, and blue planes of the matrix, leaving only the red (plane 1)
behind.
 42

Tutorial 3 Math Operations on a Matrix
Setting intermediate values (such as 0., 0., 1. and 0.5) as the scalars for the jit.op object will give
you an image where the color bars look different:

Pretty, isn't it?

In this case, the alpha channel is ignored and the red channel is zeroed. The blue plane's values are
all half of what they were. The green channel (plane 2) is left untouched.

If you experiment with the scalar values you will see that you can easily make some of the color
bars disappear or merge with neighboring bars. This is because the color bars are all set to
standard color values with similar ranges. If you show only one channel at a time (by setting all
planes but one to 0), four of the seven bars along the top will show color.

We have demonstrated the + and * operators in this tutorial, but in fact the jit.op object can
perform a great many other math operations. For a complete list of the possible operators, see the
reference page, or double-click on the p op_list subpatch in the jit.op help file.

Sizing it Up

When you create a jit.pwindow object, it will appear in the Max window as 80 pixels wide by 60
pixels tall. You can change its size using its grow box, just like many of the user interface objects in

Important Note: Some mathematical scalars in jit.op are expressed as floating-point numbers,
and some are expressed as integers. This depends on the relevant operator (defined by the op
attribute), as well as the type of the input matrix. Since all the examples in this tutorial use char
matrices, it makes sense to use integers when adding to them (any floating-point numbers will
be truncated, as the matrix data needs to remain as integers in the range 0-255). If we were
using a float32 matrix as our input, it would make perfect sense to add floating-point numbers to
it. Similarly, it's reasonable to multiply a char matrix by a floating-point scalar (240 * 0.5 = 120,
an integer). However, since the matrix output by jit.op will still be a char matrix (see note
below), you will still only get values in the range of 0-255.
43

Tutorial 3 Math Operations on a Matrix
Max. If you want to change its size precisely, you can do so using its Inspector or by sending it the
size message followed by a width and height, in pixels:

Changing the size of a jit.pwindow

If you send a jit.pwindow object of a certain size (in pixels) a matrix with a different size (in cells),
the jit.pwindow object will scale the incoming matrix to show you the entire matrix. If you send a
very small matrix to a very large jit.pwindow, you will see pixelation (rectangular regions in the
image where the color stays exactly the same). If you send a small jit.pwindow a large matrix,
varying degrees of detail may be lost in what you see.

Summary

The jit.op object lets you perform mathematical operations on all the data in a Jitter matrix at once.
You can perform calculations on the matrix cells in their entirety or on each plane separately. The
mathematical operation that jit.op will perform is determined by its op attribute, which can be
typed in as an @op [operator] attribute argument or provided by an op [operator] message in the left
inlet. For multiple-plane matrices (such as color pictures and video), you can specify the
operation for each plane by providing a list of operators (e.g. op pass * * *), and you can provide

Important Note: in the example above, our jit.matrix holding the color bars had a size (specified
by its dim list) of 320 by 240 cells, a planecount of 4, and a type of char. The jit.op object (and most
Jitter objects you will encounter) recognizes that information and adapts to perform its calcula-
tion on the entire matrix and output a matrix of the same specifications. If we were to change
the jit.matrix object to some different size, the jit.op object would instantly recognize the change
and re-adapt. The jit.pwindow object also adapts to the incoming matrix, but in a slightly differ-
ent way. If the incoming matrix is smaller than its own dimensions, it uses duplicate data to fill
all of its pixels. (This results in the pixelation effect described in the previous paragraph.) If the
incoming matrix is larger than its own dimensions, it will be obliged to ignore some of the data,
and will only display what it can. So, even though the jit.pwindow objects in the tutorial patch
never match the size (in cells) of their matrix input, they do their best to adapt to the size of the
jit.op object's matrix. The jit.pwindow in the last example shows you as much as it can of the
entire matrix output by the jit.op object, but it has to ignore every other row and column in
order to fit the 320x240 matrix it receives into its own 160x120 display area.
 44

Tutorial 3 Math Operations on a Matrix
different scalar values for each plane. In Tutorial 9 you will see how you can use a second Jitter
matrix to act in place of a simple scalar.

You can set the size of a jit.pwindow object with a size [width] [height] message. The jit.pwindow will
do its best to adapt to the size of any matrix it receives. It will duplicate data if the incoming matrix
is smaller than its dimensions, and it will ignore some data if the incoming matrix is larger than its
own dimensions. Most Jitter objects do their best to adapt to the dimensions, type, and
planecount of the matrix they receive. In the case of jit.op, it does not have specified dimensions of
its own, so it adapts to characteristics of the incoming matrix.
45

Tutorial 4
Controlling Movie Playback

This tutorial expands on what we've learned thus far about playing back QuickTime movies in
Jitter. We'll learn how to get some useful information about the movie that you're playing, as well
as how to manipulate the playback of the movie by changing its speed, volume, and loop points.

• Open the tutorial patch 04jControllingMoviePlayback.pat in the Jitter Tutorial folder.

The two Jitter objects in this patch should already be familiar to you: jit.qt.movie and jit.pwindow.
The rest of the patch will let you experiment with changing the playback behavior of the movie
you have loaded into the jit.qt.movie object.

The left side of the patch should seem very familiar to you from the very first tutorial:

Open and play the movie.
 46

Tutorial 4 Controlling Movie Playback
• Open the file crashtest.mov by clicking the message box that says read crashtest.mov.

The movie clip should begin playing as soon as it is read into the jit.qt.movie object. Since this
movie has a soundtrack, you should begin to hear some music as soon as the movie is loaded. The
movie soundtrack will come out of the Sound Manager. If you normally use an ASIO driver with
MSP, you will need to connect and set up your Sound Manager outputs so that you can hear them.

You won't see anything in the jit.pwindow because, even though the movie is playing, the
jit.qt.movie object needs a bang message to send a matrix out to the jit.pwindow. Start the metro
object by clicking on the toggle box connected to its inlet. You will see the movie's image appear in
the jit.pwindow object. Don't worry about the gettime message yet; we'll get to that below.

Obtaining Some Information About the Movie

The first thing we want to do with this QuickTime movie is get some information about it. The
Jitter attribute system lets us query information about Jitter objects at any time, and use that
information in our Max patch. Attribute information is always retrieved by sending get messages
to a Jitter object's left inlet. We then parse the Max messages the object sends out its rightmost
outlet in response (see What Are Attributes? for more details).

Automatically querying the jit.qt.movie object.

The middle of the tutorial patch contains a Max route object connected to the right outlet of the
jit.qt.movie object in our patch. Jitter attributes are always output by objects in the same format
that you would set them with in your patch: the name of the attribute followed by whatever
information the object needs to set that attribute.
47

Tutorial 4 Controlling Movie Playback
When you tell a jit.qt.movie object to open a movie for playback (by sending it the read message),
the object sends a message out its right outlet to tell you that it has found your movie and
understood how to play it. If you were to connect a print object to the right outlet of the jit.qt.movie
object in the patch and reload the movie in the patch, you would see the following printed in the
Max window:

read crashtest.mov 1

If for some reason the object can't locate the crashtest.mov file, you will see a number other than 1
after the name of the file. This message has two purposes: first, to let you know that the movie file
has been successfully located and opened; second, so that you can use this message to trigger
subsequent actions in the Max patch.

If we look at the first argument to the route object, you will see that we've told it to look for a
message that begins with read. The rest of that message is sent to an unpack object which splits up
the remaining list of a symbol (containing the name of the movie) and a number, which indicates
success (1) or failure (-1 or 0) in opening the movie. The select object then sends out a bang message
if the movie is opened successfully. The bang then triggers the message box above it, which is in
turn connected back to the jit.qt.movie object.

The message box contains the following list of attribute queries, which are parsed by the same
route object that dealt with the read message described above: getfps, gettimescale, getduration,
getrate, getvol. This series of messages will find out the current values stored in the jit.qt.movie
object for the attributes fps, timescale, duration, rate, and vol. We don't know what those mean yet,
but we now have a mechanism by which we can get these attributes every time we successfully load
a new movie into the jit.qt.movie object.

Starting, Stopping, and Slowing Down

Some simple movie playback controls

The top of the tutorial patch contains some controls to change the playback behavior of the
jit.qt.movie object. Sending a stop message to the jit.qt.movie objects will freeze the movie's
playback at the current point in the movie. Sending a start message will resume playback where
you last left off. Any soundtrack that exists in the movie file will stop playing when the movie's
playback is halted. Stopping and starting the movie has no effect on the jit.qt.movie object's matrix
output, which is still controlled by the metro object. If you stop the movie with the metro object on,
you will still receive a new matrix at the rate of the metro object (in this case, 25 times per second),
even though all the matrices will be the same.
 48

Tutorial 4 Controlling Movie Playback
Changing the rate of the movie will change the speed at which it plays back its video and audio
content. Positive rate values will make the movie go forward, with a value of 1 signifying normal
playback speed. Negative values will make the movie go backwards. A rate of 0 will stop the movie.
The jit.qt.movie object takes a floating-point number as the argument to its rate attribute, so a value
of 0.5 will make the movie play at half speed, and a value of -2.3 will make the movie play
backwards at a bit more than double speed. If you play around with this value, you will note that
the soundtrack will speed up, slow down, and play backwards to remain in sync with the video.
Once the movie reaches its last frame (or first frame, if you're playing it backwards), it will loop to
the opposite end of the file. This behavior can be changed by setting the loop attribute of the
jit.qt.movie object with a value of 0 (no looping), 1 (regular looping), or 2 (palindrome looping).

The vol attribute controls the volume (loudness) of any soundtrack component the movie has. A
value of 1 equals full volume, and a value of 0 will turn the sound off.

In this patch, both the rate and the vol attributes are initialized by the message box in the middle of
the patch when the film is loaded. This way they will reflect the values stored in each new
QuickTime movie (see below).

Time is on My Side

When a jit.qt.movie object opens a new movie, it reads in a lot of information (contained in the
movie's header) about the movie, including how long it is, how many frames of video are in the
movie, and how fast it is meant to be played. We use this metadata to control the movie's playback.

The first three attributes we queried, duration, timescale, and fps, tell us about how the movie file
deals with timing. The duration attribute tells us the total length of the movie. This value is not
expressed in milliseconds or frames, but in QuickTime time units. The actual length of each time
unit depends on the timescale of the movie. The movie's timescale is the timing resolution of the
movie per second. Dividing the duration of a movie by its timescale will tell you the approximate
length of the movie, in seconds. Our crashtest.mov file, for example, has a duration of 2836 time
units and a timescale of 600. The movie should run for about 4.73 seconds. If we want to move two
seconds into the movie, we could set the jit.qt.movie object the message time 1200 (1200 time units
divided by a timescale of 600 units/second gives us 2 seconds).

The fps, or frames per second, of a movie tells us how many individual video images exist in the
movie every second. The higher the fps of a movie, the smoother the apparent motion of the movie
will be (assuming, that is, that the individual frames are all in some way unique). Some common
fps rates are 15, 24, 29.97, and 30. Our movie file in this example runs at 15 frames per second,
which works out to a new frame of video every 40 time units, or about every 66.7 milliseconds. If
we divide the duration of crashtest.mov by the number of time units per frame in the movie, we
can determine that the movie file has 70 frames. If we wanted to, we could get the total number of

Important note: unlike many Jitter attributes, which are set either by you or the object itself,
many attributes used by the jit.qt.movie object are dependent on the current movie file. Differ-
ent movie files will generate different settings for many of the attributes discussed in this tuto-
rial.
49

Tutorial 4 Controlling Movie Playback
frames in the movie by querying the jit.qt.movie object with the getframecount message, but then we
wouldn't get to do the fun math!

Scrubbing and Looping

Displaying and setting the current playback frame

The area at the bottom of the patch contains two controls for further manipulating the movie's
playback. The number box on the left displays the frame that the movie is currently playing. This
value is being updated by the gettime message sent into the jit.qt.movie object by the metro object at
the top of the patch; each time a new frame is output the time is updated. If you stop the movie's
transport (by sending jit.qt.movie a stop message), you can “scrub” through the movie by dragging
on the number box. The movie will jump to the frame specified as an argument to the frame
message.

Setting loop points in a movie

Loop points (pairs of time values which specify the beginning and end of a loop) can be sent to a
jit.qt.movie object by setting the looppoints attribute with two integer arguments. The rslider in the
tutorial patch lets you select regions of the movie that the jit.qt.movie object will loop between.
The size of the rslider has been set to the duration of the movie through the attribute query we
performed when the movie was loaded. You can reset loop points by sending the jit.qt.movie
object a looppoints message with no arguments (an example of this is at the top of the patch, along
with a query message that highlights the entire rslider).

Summary

The jit.qt.movie object offers a number of simple attributes that allow you to change the way
QuickTime content is played. You can stop and start movie playback with those messages. The rate
 50

Tutorial 4 Controlling Movie Playback
attribute lets you change the speed and direction of movie playback. You can control the volume of
a movie's soundtrack with the vol attribute.

You can get important information about the current movie loaded into the jit.qt.movie object by
querying attributes such as duration, timescale, and fps. You can go to specific frames in a movie with
the frame message, and you can set and retrieve looppoints for the movie. You can query the current
time position of a movie by sending the jit.qt.movie object a gettime message.

More powerful functions, such as editing and saving movies, can be accomplished and will be
discussed in later tutorials.
51

Tutorial 5
ARGB Color

Color in Jitter

In this chapter we'll discuss how color is handled in Jitter. We'll focus on the numerical
representation of a color, and conversely the visualization of numbers as color. A thorough
discussion of color theory—knowledge of how light and matter produce our sensation of color—
is well beyond the scope of this tutorial, as is a discussion of the many ways to represent color
information digitally. If you wish to learn more about color theory and/or digital representations
of color, you can find some other sources of information listed in the Bibliography.

Here we present one method of representing color and how that representation is handled in Jitter
matrices.

Color Components: RGB

It's possible to produce any desired color by blending three colors of light—red, green, and blue—
each with its own intensity. This is known as additive synthesis—generating a color by adding
unique amounts of three “primary” colors of light. (The opposite of this is subtractive synthesis:
mixing colored pigments, such as paint, which absorb certain colors of light and reflect the rest.)
Thus, we can describe any colored light in terms of its intensity at the three frequencies that
correspond to the specific colors red, green, and blue.

In Jitter, this is the most common way to describe a color: as a combination of exact intensities of
red, green, and blue. For each pixel of an image—be it a video, a picture, or any other 2D
matrix—we need at least three values, one for each of the three basic colors. Therefore, for
onscreen color images, we most commonly use a 2D matrix with at least three planes.

The Alpha Channel

A fourth plane is often useful for what is known as the alpha channel—a channel that stores
information about how transparent a pixel should be when overlaid on another image. We won't
deal with the alpha channel specifically in this tutorial chapter, but we mention it here because its
inclusion is standard in most Jitter objects that deal specifically with representations of color. In
most cases, the alpha channel is stored in the first plane (which is plane 0, because planes of a
matrix are numbered starting from 0), and the RGB values are in planes 1, 2, and 3.

Tutorial 5 ARGB Color
Color Data: char, long, or float

It's fairly standard in computer applications to use 8 bits of information per basic color value. 8
bits gives us the ability to express 256 (2 to the 8th power) different values. This means that if we

use 8 bits for red, 8 for green, and 8 for blue, we can express 16,777,216 (224) different colors.
That's a sufficient variety of colors to cover pretty thoroughly all the gradations we're able to
distinguish.

So, if we only need 8 bits of resolution to represent each basic color value, that means that the 8-bit
char data type is sufficient to represent the value in each plane of a four-plane matrix of color
information. We could use the long, float32, or float64 data type, and Jitter will certainly let us do
that, but we'd be using much larger data types than we really need. Since a full-frame video image
can contain a very large number of pixels (a 640x480 image has 307,200 pixels), it often makes
most sense—in order to conserve memory and speed up processing—to use the char data type.

When a matrix contains 8-bit char data, we can think of those 8 bits as representing numbers from
0 to 255, or we can think of them as representing gradations between 0 and 1 (i.e. as a fixed-point
fractional number). When a Jitter object containing char data receives numerical values from
other Max objects, it usually expects to receive them in the form of floats in the range 0 to 1. It will
make the internal calculations necessary to convert a float from Max into the proper char value.
(There are a few exceptions to this rule. For example the jit.op object can accept either floats in the
range 0-1 or ints in the range 0-255 in its right inlet, as demonstrated in Tutorial 3.) For more on
the use of the char data type in Jitter matrices, see the manual chapter “What's a Matrix?”.

Isolating Planes of a Matrix

• Open the tutorial patch 05jARGBcolor.pat in the Jitter Tutorial folder.

At the top of the patch you are given two different colorful source materials. One is a video of an
arcade game, and the other is the standard set of color bars for used for video calibration. You can
choose to see one or the other by turning on the one of the metro objects (to repeatedly sending
bang messages to the object containing the matrix you want to see).

View a video or a still image

• Click on the toggle marked “Show movie” above the metro 30 object to view the video.
53

Tutorial 5 ARGB Color
This example patch breaks up a 4-plane matrix of color information into four 1-plane matrices, in
order to allow you to see—and modify—each plane individually. We achieve this with an object
called jit.unpack. Just as the Max object unpack breaks a list into individual numbers, jit.unpack
breaks a multi-plane matrix into individual 1-plane matrices. You can type in an argument to tell
jit.unpack how many planes to expect in the incoming matrix, but by default it expects four planes
since that's the norm for color data. We're interested in seeing the contents of the red, green, and
blue planes, so we send planes 1, 2 and 3 to individual jit.pwindow objects. In this case we're not
interested in the alpha channel, so we don't bother to display plane 0.

Unpacking a multi-plane matrix as single-plane matrices

Here you can see the content of each color plane, in the form of three monochrome images. The
lighter pixels indicate higher values for that color. By sending each matrix to a jit.op object, we
obtain individual control over the strength of each color, and can alter the color balance. We then
send the individual (altered) matrices to a jit.pack object to recombine them as a 4-plane matrix,
for display in the jit.pwindow.
 54

Tutorial 5 ARGB Color
• Try, for example, reducing the intensity of green and blue to 0.12, to create a redder image.

Reducing the intensity of certain colors to alter the color balance

Color Rotation

To demonstrate another color trick, we've sent each color plane through a gate object, so that each
matrix can be routed to a different inlet (color plane) of jit.pack. In this way, the meaning of each
plane can be reassigned, and we can try all the permutations of possible color assignments by
choosing a setting from the coll object on the left side of the patch.

• Drag on the number box marked “Rotate RGB planes” to try different reassignments of the
three color planes. (Note that plane 0 is sent directly through from jit.unpack to jit.pack; it's the
55

Tutorial 5 ARGB Color
jit_matrix message coming in the left inlet of jit.pack that triggers output of the matrix to the
jit.pwindow.) If you choose item 3 in the coll, you get the result shown below.

The individual color planes are reassigned; the red and green planes are swapped here.

The example above shows the original green and blue planes reduced by a factor of 0.12, and the
gates are set so that the red and green planes are swapped when they're sent to jit.pack, resulting in
an image with more green in it. The coll object contains all the possible permutations of
assignments of the RGB planes.

• Double-click on the coll object to see its contents.

0, 0 0 0;
1, 1 2 3;
2, 1 3 2;
3, 2 1 3;
4, 2 3 1;
5, 3 1 2;
6, 3 2 1;

Permutations of RGB plane assignments

The elements in the list coming out of the coll are unpacked and sent to assign the outlets of the
three gate objects. The number sent into coll is also sent to a umenu (in Label mode) to show the
color rotation in words—in this case “Green-Red-Blue”.
 56

Tutorial 5 ARGB Color
Automated Color Changes

For one more exercise in color modification, we've made an automated process for continually
changing the scaling and rotation of colors.

• Click on the toggle marked “Automate color changes”. The scaling factors for the three color
planes all change continually. Double-click on the patcher colorgames object to see the contents
of the subpatch.

[colorgames] subpatch

The subpatch uses line objects to send values that progress from 0.5 to 1 for each of the color
scaling factors. The red factor changes over the course of 3 seconds, green in 4 seconds, and blue
every 5 seconds. (The three line objects thus come into sync once every 60 seconds.) Every 60
seconds, a new color rotation is selected by the metro-counter combination.

• Close the [colorgames] subpatch window. You can try all of these same color modifications on
different source material. Click on the toggle marked “Show movie” to stop the metro object.
(Note that we also use this toggle to start and stop the movie playing in the jit.qt.movie object.
There's no reason to keep the movie playing if we're not even watching it.) Now click on the
toggle marked “Show colorbars” to display the color bars. Experiment with changing the
scaling factors and rotation on this image.

Summary

When a jit.window or jit.pwindow receives a single-plane 2D matrix, it displays the values as a
monochrome (grayscale) image. When it receives a 4-plane 2D matrix, it interprets the planes as
alpha, red, green, and blue values, and displays the resulting colors accordingly. This ARGB
representation in a 4-plane matrix is the most common way of representing colors in Jitter.

Because each of the basic colors only requires 8 bits of precision to represent its full range, it's
common in Jitter to use the char data type for color data. Thus, most of the QuickTime-related
objects (such as jit.qt.movie) and many of the objects specifically designed for manipulating colors
57

Tutorial 5 ARGB Color
(such as jit.brcosa and jit.colorspace, which are demonstrated in later tutorial chapters) expect to
receive 4-plane 2D matrices of char data. (Many other objects adapt readily to other types of data,
though. Check the reference documentation for the object in question when you're in doubt.) You
can think of the char data as representing values 0 to 255, or you can think of them as representing
fractional values from 0 to 1. Most of the time, objects that contain char data expect to receive
numerical values from other Max objects specified as floats in the range 0 to 1.

The jit.unpack object splits a multi-plane matrix into individual single-plane matrices. The jit.pack
object combines single-plane matrices into a single multi-plane matrix. By treating each plane
separately, you can control the color balance of an image, or even reassign the meaning of the
individual planes.
 58

Tutorial 6
Adjust Color Levels

The jit.scalebias Object

This tutorial elaborates on the color discussion of the previous chapter, and introduces an object
that is specially designed for modifying the ARGB color planes of a matrix: jit.scalebias.

The term scale in this instance refers to the process of scaling values by a certain factor; that is,
multiplying them by a given amount. The term bias refers to offsetting values by adding an
amount to them. By combining the processes of multiplication and addition, you can achieve a
linear mapping of input values to output values.

Because jit.scalebias is concerned with modifying ARGB color information in an image, it handles
only 4-plane matrices of the char data type. (See Tutorial 5 for a discussion of ARGB color and
char data.)

Math with char Data

As mentioned in the previous chapter, 8-bit char data can be represented as whole number values
from 0 to 255 or as fractional values from 0 to 1. In Tutorial 2, for example, we saw that the jit.print
object reports char data as integer values from 0 to 255. However, in many cases where we modify
char values within a matrix (by changing one of its attributes), the Jitter object will expect to
receive the attribute value as a float. Because this can be a little confusing, we've provided a
demonstration in this tutorial patch.
 59

Tutorial 6 Adjust Color Levels
• Open the tutorial patch 06jAdjustColorLevels.pat in the Jitter Tutorial folder. Click on the
patcher explain_scalebias object in the middle of the patch to see the contents of the subpatch
[explain_scalebias].

A demonstration of float math on char data.

In the above example, we have created a very small matrix. It has 4 planes of char data, but it has
only a single cell. This will to allow us focus on what happens to a single numerical value in the
matrix. You can see that we have set the value in plane 2 (the green plane) to 100. At the left side of
the example, you can see how this whole number value would be represented as a fractional value
between 0 and 1: in this case it's 0.392, which is 100/255 of the way from 0 to 1.

The jit.scalebias object will multiply the values by a certain amount—specified by the scale
attribute—and then will add a certain amount to the values—specified by the bias attribute. When
that matrix is altered by the jit.scalebias object, all of the values will be treated as floats for purposes
of calculation, then will be re-stored in the matrix as char data.

The scale and bias attributes are set here with the scale 2.0 and bias 0.2 messages. The scaling factor
(the multiplier) is 2.0 in this case, and the bias (the offset that gets added afterward) is 0.2. So, to
understand what is going on inside jit.scalebias, we have to think of the green value as 0.392 times
2.0 plus 0.2, which equals 0.984. The jit.iter object reports the values in each plane of each cell
(there's only one cell in this matrix), and we can see that the value (when stored in the matrix as a
char) is 251 (or 0.984 on a scale from 0 to 1).
 60

Tutorial 6 Adjust Color Levels
(Just as a mental exercise, can you calculate the values jit.scalebias will produce in the red and blue
planes in the above example? Since the values in those planes in the original matrix are 0, the
values in the resultant matrix will be 0 times 2.0 plus 0.2, which equals 0.2, which is equal to 51 on
a scale from 0 to 255. So the RGB values being displayed by the jit.pwindow object at the bottom
are 51 251 51.)

Some More Examples of Math with char Data

If the preceding explanation was crystal clear to you, you might want to skip over these additional
examples. But in case you're still not totally clear on how math operations with char data (and
jit.scalebias in particular) work, here are a few more examples.

• One by one, click on each of the presets in the preset object, proceeding from left to right. In
the paragraphs below we explain each of the preset examples.

1. The value in the green plane of the original matrix is 255. (This is equal to 1.0 on a scale from
0 to 1.) The jit.scalebias object multiplies this by 0.5, which results in an internal value of
127.5; however, when storing the value as a char, jit.scalebias truncates (chops off) the
fractional part, and stores the value as 127.

This yields a rather imprecise result. (127 on a scale from 0 to 255 is equal to 0.498 on a scale from
0 to 1, as opposed to the 0.5 we would expect.) But that's the best we can do with 8-bit char data.
In cases where you need greater precision than that, char data is not for you. You would need to use
a matrix of long, float32, or float64 data, and use jit.op @op * and jit.op @op + objects instead.

2. The original value is 100, and we double it (scaling factor 2.0) and get the expected result of
200. There is no loss of precision in this case.

3. The original value is 100 (0.392). We scale it by a factor of 1.0, which leaves it unchanged, then
we add -0.2 to it—that is, we subtract 0.2 from it—to get a result of 49 (that is, 0.192).

4. 0.392 times 2.0 plus 0.2 = 0.984. On a scale from 0 to 255, that's 251.

5. This example and the next one show what happens when the result of the multiplication and
addition operations exceeds the capacity of an 8-bit char. jit.scalebias will simply clip (limit)
the result to the maximum or minimum limit of a char. Here, 0.392 times 4.0 equals 1.568
(that is, 100 times 4 equals 400), so the result is set to the maximum allowable, 255.

6. In the other direction, 0.392 minus 0.5 equals -0.108, so the result is set to 0.

7. It's noteworthy that these imprecisions and limits only occur at the point when the result is re-
stored as a char. Up until then, the values are calculated internally as floats, so the precision is
retained. Even though the multiplication takes the internal value beyond the 0-1 range, no
limiting occurs internally, and the addition operation can bring it back into range. Here, 0.392
times 3.0 (= 1.176) minus 0.5 equals 0.676. When this is stored as a char, however, a small
imprecision occurs. 0.676 on a scale from 0 to 255 equals 172.38, but the fractional part is
truncated and the stored value is 172 (i.e., 0.675).
61

Tutorial 6 Adjust Color Levels
8. For no change, the scaling factor should be 1 and the bias offset should be 0.

• Try some more values yourself, until you're satisfied that you understand jit.scalebias and the
results that occur with 8-bit char data. When you have finished, close the [explain_scalebias]
window.

Adjust Color Levels of Images

Now let's apply jit.scalebias to color images. In the top left corner of the tutorial patch, you can see
a familiar configuration: a jit.qt.movie object with a message box to load in a movie and a metro
object to trigger jit_matrix messages from the jit.qt.movie object. In this patch we'll modify the
matrices with multiplications and additions in jit.scalebias.

Load in a picture or a movie.

• Click on the message box read chilis.jpg to read in a JPEG picture. Note that we're reading a still
image—not a video—into the jit.qt.movie object. QuickTime can handle a wide variety of
media formats, including still images in PICT or JPEG format. The jit.qt.movie object treats
still images just as if they were 1-frame-long videos.

The output of jit.qt.movie will go to jit.scalebias for processing, and will then be displayed in the
jit.pwindow. (You can ignore the jit.matrix object for now. We'll discuss its use later in this chapter.)
The scale and bias values can be changed by modifying the scale and bias attributes of the
jit.scalebias object.

• Click on the toggle to start the metro object. Try dragging on the number box above the scale $1
message box, to increase the value of the scale attribute to 1.25.

Boost the brightness of the image; with scale, higher values get boosted more.

This will increase all non-zero values in all four planes of the image by a factor of 1.25 (a 25%
increase). Note that multiplication has the effect of increasing larger values by a greater amount
 62

Tutorial 6 Adjust Color Levels
than smaller values. For example, if the red value of a particular cell in the original matrix is 200, it
will be increased to 250 (a net increase of 50), while the blue value of the same cell might be 30 and
would be increased to 37 (a net increase of 7).

• Try increasing the scale attribute to a very large value, such as 20. Values that were 13 or greater
in the original matrix will be pushed to the maximum of 255 (and even the very small values
will be increased to a visible level), creating an artificially “overexposed” look.

• Try decreasing the scale attribute to a value between 0 and 1. As you would expect, this darkens
the image. A scale value of 0 or less will set all values to 0.

• Return the scale attribute to 1. Now try adjusting the bias attribute. This adds a constant
amount to all values in the matrix. Positive values lighten the image, and negative values
darken it.

Boost (or reduce) the level of all values by a constant amount.

• Here are a couple of more extreme scale and bias settings you might want to try. Set the scale
value to 40 and the bias value to -20. This has the effect of pushing almost all values to either
255 or 0, leaving only a few colors other than white or black. Now try setting the scale value to -
1 and the bias value to 1. This has the effect of inverting the color scheme by making all high
values low and all low values high. Reducing the scale value even further (to, say, -4 or -8)
creates a similar inversion, but only values that were low in the original will be boosted back
into the 0-1 range by the positive bias value.

Adjust Planes Individually

You can adjust the levels in each plane individually in a jit.scalebiasobject, using the attributes
ascale, abias, rscale, rbias, etc.

• Set the scale value back to 1 and the bias value back to 0. Then experiment with adjusting each
color plane independently by providing new values for the appropriate attributes.

Adjust levels for each color plane
63

Tutorial 6 Adjust Color Levels
We've made the process a bit more “interactive” by giving you a controller that lets you adjust the
scaling of all three color planes at once. When you click or drag in the swatch object, it sends out a
three-item list representing the RGB color values at the point where your mouse is located. Those
values are expressed on a scale from 0 to 255, so we use the vexpr object to change all values in the
list to the 0 to 1 range. We then use an unpack object to break that list into three separate floats, and
we use those values to alter the rscale, gscale, and bscale attributes of the jit.scalebiasobject.

Values from a swatch used as attribute values for the jit.scalebiasobject

• Drag on the swatch object to scale the RGB planes all at the same time. (Since this produces
scaling values in the range 0 to 1, you're effectively reducing all the levels, so this will generally
darken the resulting image somewhat.)

• You can try all of these operations on different images. Read in some other colorful images
such as colorswatch.pict or wheel.mov (or any other image) and experiment with adjusting the
color levels.

Reassign Planes of a Matrix

In the previous tutorial we used jit.unpack and jit.pack objects to reassign the planes of a matrix.
There is another way to do that, using the planemap attribute of the jit.matrix object. In this
 64

Tutorial 6 Adjust Color Levels
example, we pass the matrix output of the jit.qt.movie object through a jit.matrix object just so that
we can demonstrate the planemap attribute.

We can reassign the planes of a matrix as it goes through jit.matrix

The planemap attribute of the jit.matrix object allows us to “map” (assign) any plane of the incoming
matrix to any plane of the outgoing matrix. The word planemap is followed by as many numbers as
there are planes in the matrix (four in this case). Each place in the list stands for an output plane
(the first place stands for output plane 0, the second place for output plane 1, etc.), and the value of
that number states the input plane that will be assigned to it. By default, the planemap values are 0 1
2 3 (etc.), so that each plane in the input matrix is assigned to the same plane in the output matrix.
But we can change those assignments as we like. For example, if we send the jit.matrix object the
message planemap 0 3 2 1, we are assigning input plane 3 to output plane 1 (since the value 3 is in the
list location for output plane 1), and input plane 1 to output plane 3. Effectively, we're swapping
the red and blue color planes of the image.

• Click on the message box read wheel.mov and start the metro object to display the movie. (Set
the scale attribute of the jit.scalebias object to 1 and the bias attribute to 0, so that you're seeing
an unaltered image in the jit.pwindow.) Now, in the bottom right portion of the patch, click on
the message box planemap 0 3 2 1 to swap the red and blue planes in the matrix. Click on the
message box planemap 0 1 2 3 to go back to the normal plane mapping.

If we set all three of the RGB output planes to the same input plane, we get equal values in all three
RGB planes, resulting in a grayscale image.

• Click on the message box planemap 0 1 1 1 to see this effect. The value 1 is in the list location for
each of the three RGB planes, so the red plane of the original is used for all three RGB planes of
the output matrix.

To rotate through all of the different color plane rotations, we've filled a coll object with various
plane mappings (similarly to the way we did in the previous chapter), and we will send those
assignments to the jit.matrix object to change the settings of its planemap attribute.
65

Tutorial 6 Adjust Color Levels
• Double-click on the patcher rotatecolorplanes object to see the contents of the subpatch. It simply
counts from 1 to 6, to step through the different mappings stored in the coll object in the main
patch. (And when it's turned off it sends out the number 1 to reset to the default plane
mapping.) Close the [rotatecolorplanes] window.

• Click on the toggle above the patcher rotatecolorplanes object to step through the different plane
mappings at the rate of one setting per second. Change the rate number box above the right
inlet to a smaller value (say, 80) to see a flickering effect from rapid plane reassignment.

In the next tutorial chapter, you'll see how to rotate image hue in a subtler way, using jit.hue, and
you'll see other ways to adjust color levels with the jit.brcosa object.

Reading and Importing Images

In this tutorial patch, we loaded three different kinds of images into the jit.qt.movie object: PICT
and JPEG still images, and a QuickTime movie. It may seem a little strange to read still images into
an object made for playing movies, but in fact QuickTime can read many types of media files, and
the jit.qt.movie object knows how to read them all. (You could even read an AIFF audio file into a
jit.qt.movie object, listen to it with start and stop messages, jump to different locations with the time
attribute, etc.! Of course, you won't see any visual matrix info in that case.)

For still images, it's just as easy to load them directly into a jit.matrix object with the importmovie
message, as demonstrated in Tutorial 3. If you import a QuickTime movie that way, only one
frame of the movie will be stored in the jit.matrix.

In this patch, we used a jit.qt.movie object to load in all the images. The first reason is because one
of the things we wanted to load was a movie (not just one frame of the movie). The second reason
is because we wanted to demonstrate the planemap attribute of the jit.matrix object. The planemap
attribute is only appropriate if there is an actual input matrix (a jit_matrix message coming in the
left inlet). If we imported the images directly into a jit.matrix with importmovie, the planemap
attribute would have no effect.

Summary

The jit.scalebias object uses multiplication and addition to modify all the values in a particular
plane of a 4-plane char matrix—or all planes at the same time. The scale attribute is a factor by
which each value in the matrix will be multiplied; the bias attribute is an amount to be added to
each value after the multiplication takes place. The scale and bias attributes affect all four planes of
the matrix. To affect only one plane at a time, use the attributes for that particular plane, such as
ascale, abias, rscale, rbias, etc.

You must supply the values for these attributes as floats (numbers containing a decimal point). To
perform the multiplication and addition operations, jit.scalebias treats the char values as fractional
values in the range 0 to 1, performs the math with floats, then converts the results back to chars
 66

Tutorial 6 Adjust Color Levels
(whole numbers from 0 to 255) when re-storing them. Results that exceed the range 0 to 1 will be
limited to 0 or 1 before being converted back to char.

You can reassign planes of a matrix using the planemap attribute of the jit.matrix object. The
arguments to planemap are the output planes listed in order, and the values in the list are the input
planes to be assigned to each output plane. So, for example to assign the plane 1 of an input matrix
to all four planes of the output matrix, the attribute setting should be planemap 1 1 1 1.

The jit.scalebias object provides a powerful tool for adjusting color levels in a 4-plane char (ARGB
color) matrix. More such tools are presented in the next tutorial chapter.
67

Tutorial 7
Image Level Adjustment

This tutorial shows how to adjust levels of brightness, contrast, and saturation in Jitter matrices
that contain image data. We will also look at the concept of hue and hue rotation.

• Open the tutorial patch 07jImageAdjustment.pat in the Jitter Tutorial folder.

The tutorial patch has two new objects in it: jit.brcosa, which allows you to control brightness,
contrast, and saturation of an image stored in a Jitter matrix, and jit.hue, which lets you rotate the
hue of an image:

Open and view the image.

• Open the file colorwheel.pct by clicking the message box that says read colorwheel.pct. View the
movie by clicking the toggle box to start the metro object.

You should see a color wheel appear in the jit.pwindow at the bottom of the patch:

The Color Wheel of Fortune

The jit.pwindow object shows us the image after it has passed through our two new objects. We'll
talk about jit.brcosa first, and then get to jit.hue.
 68

Tutorial 7 Image Level Adjustment
Brightness, Contrast, and Saturation

The jit.brcosa object takes a 4-plane char Jitter matrix and, treating it as ARGB image data, allows
you to alter the brightness, contrast, and saturation of the processed matrix. The three attributes
are called, not surprisingly, brightness, contrast, and saturation. The default values of 1.0 for the three
attributes result in the matrix passing out of the object unchanged:

Using the jit.brcosa object

• Change the attributes of the jit.brcosa object and observe how the output matrix changes.

The brightness of an image refers to its overall lightness or darkness when compared to a
reference color (usually black). Changing the brightness attribute is equivalent to multiplying the
values in the matrix by that value. A brightness value of 0 will turn the image to black; values above
1.0 will gradually increase all non-0 cell values until they clip at white (255). A value of 0.5 will
significantly darken the image, reducing its natural range of 0-255 to 0-127. Some brightness
values are shown below on the color wheel:

The color wheel with brightness values of 0.5, 1.5, and 10, respectively

Note that cell values clip at 0 and 255 when altered in this way. This is why the rightmost image,
with a brightness of 10, is mostly white, with color showing only in areas where one or more of the
visible color planes (RGB, or planes 1, 2, and 3) are 0 in the original matrix.

Image contrast can be expressed as the amount the colors in an image deviate from the average
luminosity of the entire original image (see below). As the contrast attribute of jit.brcosa is increased
above 1.0, cell values above the average luminosity of the entire matrix are lightened (increased),
and values below the average are darkened (decreased). The result is a dynamic expansion of the
69

Tutorial 7 Image Level Adjustment
matrix image so that light values get lighter and dark values get darker. Settings for contrast below
1.0 reverse the process, with darker tones getting lighter and lighter tones getting darker until, at a
contrast value of 0.0, you only retain the average grey luminosity of the entire image. Negative values
invert the color of the image with the same amount of overall contrast.

Here are some example contrast settings:

The color wheel with contrast settings of 0.3, 2, -1, and 100

The first example shows the color wheel with its contrast drastically reduced (the cell values are all
close the average luminosity of the matrix). The second example shows an increased contrast. Note
how the lighter shades in the middle of the color wheel begin to approach white. The third
example shows a negative contrast setting. The colors are inverted from the original, but the average
luminosity of the matrix is the same as in the original. The last example shows the result of a
massive contrast boost. Cell values in this example are polarized to 0 or 255.

Image saturation reflects the ratio of the dominant color in a cell to the less dominant colors in
that cell. As saturation values decrease below 1.0, all color values in a cell will become more similar
and thus de-saturate towards grayscale. Values above 1.0 will push the colors farther away from one

Technical Detail: The average luminosity of a matrix can be computed by averaging the values
of all the cells in the matrix, keeping the planes separate (so you get individual averages for
Alpha, Red, Green, and Blue). The three visible planes are then multiplied by the formula:

L = .299*Red + .587*Green + .114*Blue

The value L will give you the average luminance of the entire matrix, and is used by jit.brcosa to
determine the threshold value to expand from when adjusting contrast.
 70

Tutorial 7 Image Level Adjustment
another, exaggerating the dominant color of the cell. As with contrast, a negative value for the
saturation attribute will invert the colors but retain the same luminosity relationship to the original.

The color wheel with saturation values of 0.2, 2 and -1

The first image is de-saturated, so each cell value in the matrix is being drawn toward the value of
the luminosity of that cell. The second image is over-saturated, so the individual colors are much
brighter (or darker) than their originals. The third image maintains the original luminosity of the
color wheel but inverts the colors.

Hue and Cry

The jit.hue object allows you to rotate the hue of the input matrix. Setting the hue_angle attribute
rotates the hue of the input matrix a specified amount in degrees:

The hue_angle attribute rotates the hue of the input matrix.

The hue of a matrix cell can be thought of as its basic color (e.g. magenta). Image hue is visualized
as a rainbow (or a color wheel like the one we've been using) which goes from red to green to blue
and back to red again. This value (which is specified in degrees from 0-360), along with the
saturation and lightness of the image, can be used to describe a unique color, much in the same
way that a specific series of RGB values also describe a unique color. By rotating the hue of an
image forward, we shift the red part of the color spectrum so that it appears green, the green part
of the spectrum to blue, and the blue part to red. A negative hue rotation shifts red into blue, etc.
71

Tutorial 7 Image Level Adjustment
Hue rotations in increments of 120 degrees will transpose an image exactly one (or more) color
planes off from the original hue of the image.

• Click the toggle box to automate the hue_angle of the color wheel. Note that when the hue_angle
reaches 360 degrees, the original matrix image is restored.

Our color wheel at various hue rotations (0-360 degrees)

Summary

The jit.brcosa and jit.hue objects allow you to modify the brightness, contrast, saturation, and hue
of an input matrix. You use the two objects to perform tasks such as dynamic level adjustment (e.g.
autoexposure), color correction, or idiosyncratic hue displacement.

Technical Detail: Our eyes perceive color through specialized receptors in our retina called
cones (another type of receptor exists that responds to low levels of light but doesn't distinguish
color—these receptors are called rods). Cones in our eyes are differentiated by the wavelength
of light they respond to, and fall into three categories: L-sensitive receptors which respond to
long wavelength light (red), M-sensitive receptors which respond to medium wavelength light
(green), and S-sensitive receptors which respond to short wavelength light (blue). Just as our
auditory system is weighted to be more perceptive to frequencies that are within the range of
human speech, the distribution of cones in our eyes is weighted towards the middle wave-
lengths which are most crucial to perceiving our environment. As a result, we have roughly
twice as many green receptors in our eyes as the other two colors. This explains why the lumi-
nance formula (above) allocates almost 60% of perceived luminosity to the amount of green in
an image. Camera technology has been developed to emulate the physiology of our eyes, so
cameras (and film) are also more sensitive to green light than other colors.
 72

Tutorial 8
Simple Mixing

Mixing Two Video Sources

One of the most common and useful things to do with video is to mix two images together.

The simplest form of video mixing is achieved by just adding the two images together, with the
intensity of each of the two images adjusted in whatever proportion you desire. By fading one
image up in intensity while fading the other down, you can create a smooth crossfade from one
image to the other.

Jitter provides an object that accomplishes mixing and crossfading for you, called jit.xfade.

The jit.xfade Object

The jit.xfade object takes a matrix in each of its two inlets, scales the values of each matrix by a
certain amount, adds the two matrices together, and sends out a matrix that contains the resulting
mix. The scaling factor for each of the two input matrices is determined by the object's xfade
attribute. The xfade value is a single (float) number between 0 and 1ß. That value determines the
scaling factor for the matrix coming in the right inlet. The matrix coming in the left inlet is scaled
by a factor of 1-xfade. So, if you gradually increase the xfade value from 0 to 1, the output matrix
will crossfade from the left input to the right input.

• Open the tutorial patch 08jSimpleMixing.pat in the Jitter Tutorial folder. Two source videos are
read in automatically by the loadbang object. Start the metro object. You'll see only the left

Technical Detail: This type of mixing involves adding each value in one matrix to the corre-
sponding value in the other matrix—cell-by-cell and plane-by-plane—and outputting a
matrix that contains all the sums. If we just did that, however, we would get an output image in
which all the values are greater than in either of the input images, so the result would be lighter
than the originals (and some of the values might even clip at 255 if the matrices contain char
data). Therefore, it's normal to scale down the intensity of one or both of the images before
adding them together. For example, to get an equal mix of the two images, we would scale them
both down by an equal amount (say, by a factor of 0.5) before adding them.
 73

Tutorial 8 Simple Mixing
video at first. Drag on the hslider to change the xfade value, which will give you a mix of the left
and right matrices.

A value of 0.5 gives an equal mix of left and right matrices

Automated Crossfade

A crossfade is one of the most common ways of making a transition from one image to another. It
might be very gradual—over the course of several seconds—or it might be quite rapid, lasting a
fraction of a second, to make a sudden transition that is slightly smoother than a jump cut.

In the upper left portion of the patch, we've made an automated fader from video A to video B (or
vice versa). The crossfade can take any amount of time; you can specify the transition time with
the number box.

Automated process to send a continuously changing xfade value

• Using the number box, set a slow transition time (say, 5000 ms) so that you can see the effect of
the crossfader. Click on right side of the Go To switch to fade to video B.

The Go To switch is actually a small hslider with a range of 2 and a multiplier of 100, so the only
two values it can send out are 0 and 100. Clicking on the right side of the switch sends out the value
100, the pack object sends out the message 100 5000, and the line object sends out continuous values
 74

Tutorial 8 Simple Mixing
from 0 to 100 (one new value every 50 ms) over the course of five seconds. Those values are then
multiplied by 0.01 to give a smoothly changing xfade value from 0 to 1.

Summary

Adding two matrices together is the simplest way to do A-B mixing of video images. To achieve the
desired balance of the two images, you first scale each matrix by a certain factor. You can crossfade
from one image to another by decreasing the scaling factor of one image from 1 to 0 as you
increase the scaling factor of the other image from 0 to 1.

The jit.xfade object makes it easy to mix and/or crossfade two matrices. Its xfade attribute
determines the balance between the two matrices. Changing the xfade value continuously from 0 to
1 performs a smooth A-B crossfade. You can use the line object or any other Max timing object to
automate crossfades.
75

Tutorial 9
More Mixing

Mixing and Crossfading Made Explicit

In the previous chapter we explained how the jit.xfade object uses scaling (multiplication) and
addition to mix two matrices together in varying proportions. In this tutorial we'll use the
jit.scalebias and jit.op objects to perform those mathematical operations ourselves.

This will provide us with a few advantages. First, it will allow us to demonstrate the mathematics
of mixing and crossfading explicitly. Second, it will allow us to demonstrate how jit.op can
perform math operations using two matrices as its inputs. (In Tutorial 3 we showed jit.op in action
with scalar values operating on a single matrix.) Third, it will allow us to specify balance settings
(scaling factors) for the two matrices independently, providing more flexibility than the jit.xfade
object. Finally, because jit.op can implement so many different kinds of math operations, we can
try other means of combining matrices to see different visual effects.

Mixing Revisited

• Open the tutorial patch 09jMoreMixing.pat in the Jitter Tutorial folder.

Multiplication and addition to mix /crossfade matrices (replicating jit.xfade)

Here you see each of two different videos being scaled down (darkened) by some factor between 0
and 1 with jit.scalebias. Below that, you see a slightly new wrinkle in the use of jit.op: the input to
both inlets is a matrix. When we do this, jit.op performs the specified math operation on every
 76

Tutorial 9 More Mixing
single value individually, pairing each value in the left matrix with the corresponding value in the
right matrix. This lets us add all the values in the two matrices, effectively mixing the images.

The result of these multiplications and this addition is comparable to what the jit.xfade object
performs internally. You can verify this by using the controls in the top right part of the patch—
which are nearly identical to those of the previous chapter—to crossfade the videos.

• Start the metro object and use the Mixer slider to perform a crossfade from video A to video B.

Note that we send the crossfade value directly as the scale attribute for the B video, and at the same
time we use a !- 1 object to scale the A video by 1 minus that value. That way, the sum of the two
scaling factors always equals 1, as it does in jit.xfade.

Combine Matrices Using Other Operators

Addition is perhaps the most obvious operation to perform with two matrices, but it's not the only
one possible. By changing the op attribute of the jit.op object, we can try out many other
operations to see what kind of visual effect they create.

• Set a very gradual crossfade time in the Transition Time number box (say, 10000 ms). Choose an
operator other than + in the Operator pop-up menu. Now click on the Go To switch to begin
the crossfade. You can see how that particular operator looks when implemented with two
video matrices.

The pop-up menu contains a few of the many operators provided by jit.op. Here's a brief
description of each operator in the menu.

Note: In cases where the dimensions, planecount and data type of the two matrices are not the
same, the jit.op object uses the attributes of the matrix that's coming in the left inlet. If the
matrix in the right inlet is larger or smaller than the matrix in the left inlet (has greater or fewer
dimension or planes, or cells in a particular dimension), it will be automatically resampled to
the size of the matrix in the left inlet. If the data type of the matrix in the right inlet does not
match the data type of the matrix in the left inlet, values in the right inlet's matrix will be con-
verted before calculations are performed. (For example, if the right matrix is of type float32 and
the left matrix is of type long, value in the right matrix will have their fractional part truncated
before calculations are performed.

This is the general behavior of multiple-inlet objects in Jitter, including jit.op. Be aware, though,
that a small number of objects do not link their non-left inlets to the left inlet. This will be noted
in the Object Reference entry for these objects.

Another note: In MSP you can add to audio signals together simply by sending them in the
same inlet, because all audio signal inlets perform an automatic addition of signal vectors inter-
nally when more than one signal patch cord is attached to an inlet. This is not the case with Jitter
matrix inlets. Therefore, if you want to add two matrices cell-by-cell, as we're doing in this
example, you should use a jit.op object with the op attribute set to +.
77

Tutorial 9 More Mixing
+ Add the values of B to A.

-m Subtract the values of B from A, then perform a modulo operation to wrap the result back
into the desired range.

max Use whichever value is greater, A or B.

absdiff Subtract the values of B from A, then use the absolute value of that difference.

| “Bitwise Or”; using binary number values, whenever a bit is 1 in either A or B, set it to 1 in
the result.

^ “Bitwise Exclusive Or”; using binary number values, whenever the bits of A and B are not
the same, set that bit to 1 in the result, otherwise set the bit to 0.

> If the value in A is greater than the value in B, set the result to 1 (or char 255), otherwise set
it to 0.

< If the value in A is less than the value in B, set the result to 1 (or char 255), otherwise set it
to 0.

>p If the value in A is greater than the value in B, use the A value in the result, otherwise set it
to 0.

<p If the value in A is less than the value in B, use the A value in the result, otherwise set it to 0.

If you want to see what other operators are available, check the Object Reference documentation for
the jit.op object.

• If you'd like, you can drag directly on the number box objects above the jit.scalebias objects, to
set the balance levels independently (i.e. differently from the way our crossfade scheme sets
them). You can also try values that exceed the 0 to 1 range.

jit.scalebias vs. jit.op with the * Operator

We chose to use the jit.scalebias object in this patch to perform the scaling multiplications instead
of using jit.op with the * operator. Why? When jit.op is performing operations on char data (as we
are doing in this patch), it limits its val attribute to the range 0.-1. (when specified as a float) or 0-
255 (when specified as an int). In cases where we want to multiply char data by some amount from
0. to 1., jit.op is just fine. But if we want to multiply char data by some other amount, then
jit.scalebias is the correct object to use because it permits scale factors that exceed the 0 to 1 range.
jit.scalebias is only for handling 4-plane char matrices, but that's OK because that's what we're
scaling in this example. So, in this patch, since we're operating on 4-plane char matrices, and since
we want you to have the ability to try scaling factors that exceed the 0 to 1 range, we have used
jit.scalebias.
 78

Tutorial 9 More Mixing
Summary

You can use the jit.op object to perform various math operations using the values from two
different matrices. jit.op performs the specified math operation on every value individually,
pairing each value in the left matrix with the corresponding value in the right matrix. When the
dim, planecount, and type attributes of the two matrices differ, jit.op uses the attributes of the matrix
in the left inlet. Different math operators can create a variety of visual effects when used to
combine two video images.
79

Tutorial 10
Chromakeying

This tutorial explains how to perform chromakeying with two source movies using the
jit.chromakey object. We will also learn how to find out the color of any pixel on the screen.

• Open the tutorial patch 10jChromakey.pat in the Jitter Tutorial folder.

When you open the tutorial patch, Max will automatically read two movies (oh.mov and
traffic.mov) into two jit.qt.movie objects by sending appropriate read messages to those objects with
a loadbang object:

Initializing the patch via loadbang.

Additional parameters we need for this patch are also initialized by the loadbang, which is
connected to the message box on the right of the patch. The message box initializes the rest of the
patch by sending messages to named receive objects elsewhere in the patch (see Tutorial 25:
Managing Messages, in the Max4TutorialsAndTopics.pdf).

• Click the toggle box to start the metro object. You should see images appear in the three
jit.pwindow objects in the patch. Note that the toggle box not only starts and stops the metro
object, but also starts and stops the movie transport of the two jit.qt.movie objects.
 80

Tutorial 10 Chromakeying
The lower half of the tutorial patch (with two of the three jit.pwindow objects) looks something
like this:

The jit.chromakey object

• Click with the mouse on the blue region of the left-hand jit.pwindow object (i.e. the area
behind the man's head in the movie).

The third jit.pwindow object (in the lower-right hand of the patch) will look like this:

How the heck did he get in front of that fence?
81

Tutorial 10 Chromakeying
The jit.chromakey Object

Chromakeying—the process of superimposing one image on top of another by selective
replacement of color—is accomplished in Jitter by the jit.chromakey object. By specifying a color
and a few other parameters, jit.chromakey detects cells containing that color in the first (left-hand)
matrix and replaces them with the equivalent cells in the second (right-hand) matrix when it
constructs the output matrix. The result is that cells from the first matrix are superimposed onto
the second.

• Since any color is fair game for the chromakey, try clicking elsewhere in the lefthand
jit.pwindow. Different colors will be knocked out of the man's face to reveal the traffic.

The disappearing face trick (part one)

The jit.chromakey object uses the color attribute to define the center color to in the chromakey
(called the reference color). This attribute is set as a list of values for as many planes as exist in the
matrices that are being keyed. The tol attribute specifies a range of values around the key color.
Colors within this range will be keyed as well. When using jit.chromakey with char matrices (e.g.
video), the attributes are specified in a floating point range 0 to1, which is then mapped to the 0-
255 range necessary for char data. To set the color attribute for a solid green chromakey, therefore,
you would set the attribute as color 0 0 1.0 0, not 0 0 255 0. A tol range of 0.5 will key all values within
half of the chromatic distance from the reference color (computed as the sum of the magnitudes of

Historical note: Bluescreen compositing, or the process of shooting live footage against a blue
matte background only to replace the blue with a separate image later, has been around since
the late 1930s. Originally a very expensive film process involving expensive lithographic color
separation, bluescreen (and its slightly less common sibling, greenscreen) has evolved into the
most commonplace (and effective) special effect in film, television, and video. The ability to
perform chromakeying (the technical term for the process) using analog (and later digital)
video superimposition has only made it more ubiquitous. Video chromakeying is often referred
to in the television industry as CSO (Color Separation Overlay), the name given to the process
by the BBC team that developed it in the 1960s. Petro Vlahos, a bluescreen innovator in the
1960s, was awarded a Lifetime Achievement Award by the Academy of Motion Picture Arts and
Sciences in 1994, an acknowledgment of how indispensable the technology had become.
 82

Tutorial 10 Chromakeying
difference in each plane between the reference color and the actual cell value). A tol range of 0 will
treat only the exact reference color as part of the chromakey.

• Try clicking on the blue region in the lefthand movie again, and play with the tol attribute to
see how the chromakey output changes. At low tolerance, some of the bluescreen in the left
image will remain in the keyed output. At a very high tolerance, parts of the man's face may
disappear.

The suckah Object —

In the tutorial patch, the color attribute to jit.chromakey is set by clicking on an invisible object. If
you unlock the patch, you will see a region of concentric red squares that sit on top of the left-hand
jit.pwindow object:

The suckah object

The region is a Max user interface object called suckah, which appears on the object palette like
this:

The suckah object in the object palette

The suckah object reports the RGB values of any pixel on the screen that the suckah object overlays.
It reports these values as a list of integers out its outlet when you click in the object in a locked
patch. For example, clicking on a region of solid blue that has a suckah on top of it will cause the
suckah to send out the list 0 0 255.
83

Tutorial 10 Chromakeying
To set the color attribute for our jit.chromakey object, we take the RGB list that comes out of the
suckah object and send it through a prepend 0, which adds an alpha value of 0 to the front of the list.
The resulting ARGB list is then divided by 255 using the vexpr object to scale it to the range of 0-1.
The message is then completed by the prepend color. The final message is then sent to jit.chromakey.

The Blue Screen of Death

The jit.chromakey object has additional attributes: minkey, maxkey, and fade. When a matrix arrives in
the left inlet, jit.chromakey creates a grayscale (1-plane) mask internally, based on that matrix.
Cells in the incoming matrix that have color values within the tolerance (tol) range are set to the
maxkey attribute's value (the default is 1) in the mask. Regions outside the tolerance range are
multiplied by the minkey attribute (default is 0). If the minkey and maxkey are set to 0 and 1, the
resulting image should look white where the keying should take place, and black where the
original image is to be retained.

The resulting mask and its inverse are then multiplied by the right and left matrices, respectively.
The results of the multiplication are then added to form the composite image. The following
diagram shows you a pictorial overview of the process:

The two sources, their masks (with minkey at 0 and maxkey at 1) and the composite chromakey.
 84

Tutorial 10 Chromakeying
As you can see, the maxkey attribute sets the strength of the righthand matrix in the output, while
the minkey attribute sets the strength of the lefthand matrix. If we were to reverse the minkey and
maxkey attributes, the chromakey would be reversed, and the following would happen:

The composite effect with the minkey at 1 and the maxkey at 0 (reverse chromakey).

The fade attribute allows for an amount of interpolation between the area being keyed and the area
not being keyed. This lets you create a soft edge to the chromakey effect. Colors in the left matrix
that are slightly out of bounds of the key tolerance range, yet that are within the range of tol + fade
from the reference color, are interpolated between their original (unkeyed) color and the color in
the same cell of the right matrix. The amount of interpolation is based on how great the fade value
is, and how far the color in question lies outside the tolerance range.

• Try experimenting with different tol, fade, minkey, and maxkey values for different colors. Watch
how the five attributes interact for different keying effects, and how the minkey and maxkey
values complement one another.

Accurate chromakeying can be a challenging process. Correct values for the tol and fade attributes
are essential to make sure that the correct regions in the first image are keyed to the second image.
In general, very detailed key images will show slight aliasing in spots where the colors rapidly
move between keyed and non-keyed regions. In addition, a single key color (e.g. blue) almost
never suffices for a complete key, so a range of values must always be used. You will often find,
however, that the color you want keyed out of part of the image is somewhat present in the region
you want to retain! Balancing all of these factors to get the most convincing effect is the hardest
part of using the jit.chromakey object.
85

Tutorial 10 Chromakeying
Summary

The jit.chromakey object lets you do two-source chromakeying in Jitter. You can set a color range
for the key using the color and tol attributes, and use the fade, minkey, and maxkey values to define how
the two matrices work in a composite. The suckah user interface object allows you to easily select
colors as they appear on the screen by setting the object over a jit.pwindow. Clicking the suckah
object will give you the color of the pixel just clicked on the screen.
 86

Tutorial 11
Lists and Matrices

This tutorial shows how to use Max lists to fill all or part of a matrix, and how to retrieve all or part
of a matrix's contents as a list. We will also demonstrate the use of matrix names to access the
contents of a matrix remotely, a concept that will be demonstrated further in Tutorials 12, 16, and
17.

Matrix Names

• Open the tutorial patch 11jListsAndMatrices.pat in the Jitter Tutorial folder.

In the yellow region in the upper left corner of the patch, you'll see a blue jit.matrix object. The first
argument gives the matrix a specific name, smallbox. The remaining arguments say that the matrix
will have 1 plane of char data, and that the matrix will have only one dimension with 12 cells.

This matrix has a unique name: smallbox.

In Tutorial 2 we explained that every matrix has a name. If we don't give a matrix a name explicitly,
Jitter will choose a name arbitrarily (usually something strange like “u040000114”, so that the
name will be unique). The name is used to refer to the place in the computer's memory where the
matrix's contents are stored. So, why give a name of our own to a matrix? That way we'll know the
name, and we can easily tell other objects how to find the matrix's contents. By referring to the
name of a matrix, objects can share the same data, and can access the matrix's contents remotely,
without actually receiving a jit_matrix message.

Jitter's use of the matrix name to refer to its memory location is analogous to the way Max's
value object works. You can have many value objects with the same name, and you can store a
numeric value in any one of them and retrieve the same value from any other one of them. But
there is really only one memory location for that name, so they are all sharing the same data. In
a like manner, you can have more than one jit.matrix object with the same name, and they will
all share the same data. Some other objects, such as jit.fill, can access the contents of that matrix
just by knowing its name.
 87

Tutorial 11 Lists and Matrices
The jit.fill Object

In Tutorial 2 we showed how to place a numeric value in a particular matrix location using the
setcell message, and how to retrieve the contents of a location with the getcell message. Now we will
show how to use the jit.fill object to place a whole list of values in a matrix. (Later in this chapter
we'll also show how to retrieve many values at once from a matrix.)

In the upper left corner of the patch there is a message box containing a list of twelve numeric
values. It's attached to a jit.fill smallbox object. The smallbox argument refers to a matrix name.

jit.fill puts a list of values in the named matrix

• Click on the message box to send the list of values to the jit.fill smallbox object. The jit.fill
smallbox object places those values in the matrix named “smallbox”. To verify that this is true,
click on the button above the jit.matrix smallbox object to display the contents of the “smallbox”
matrix. The values are printed in the Max window by jit.print, and displayed as levels of gray
by jit.pwindow.

In this example, the list was exactly the right length to fill the entire matrix. That need not be the
case, however. We can place a list of any length in any contiguous portion of a 1D or 2D matrix.

The offset Attribute

By default, jit.fill places the list of values at the very beginning of the matrix. You can direct the list
to any location in the matrix, though, by setting jit.fill's offset attribute. The portion of the patch
numbered 2 demonstrates the use of the offset feature.

First specify the offset, then provide the list
 88

Tutorial 11 Lists and Matrices
This example chooses a cell index at random, uses that random number as the argument to an
offset message to the jit.fill graybox object, then sends a 16-element list to be stored starting at that
index in the graybox matrix.

• Click on the toggle to start the metro object. Every half-second, the 16-element list will be
written to a new location in the “graybox” matrix. Find the jit.matrix graybox 1 char 256 object in
the center of the window. Click on the button above it to display its contents in the jit.pwindow.

The list has been written to four locations in the “graybox” matrix

• You can use the clear message to zero the contents of the “graybox” matrix, then display it again
as the metro object writes the list into new random locations. When you're done, turn off the
metro object.

Using the multislider Object

So far we've shown how to put a predetermined list of values into a matrix. When you want to
generate such a list of numbers interactively in Max and place them in a matrix in real time, you'll
need to use a Max object designed for building lists. We'll look at two such objects: multislider, and
zl.

The multislider object displays a set of individual sliders, and it sends out the position of all of its
sliders at once as a list of values. It sends out the whole list when you click in the window to move
any of the sliders, and it sends the list again when you release the mouse button. In part 3 of this
patch, we've set up a multislider to contain 256 sliders that send values from 0 to 255, so it's just
right for sending a list of 256 char values to the jit.fill graybox object.

• Use the mouse to draw in the multislider, setting its 256 sliders. When you release the mouse
button, the list of 256 values is sent out to the jit.fill graybox object. Notice how the brightness of
the matrix cells corresponds to the height of the sliders.

As soon as jit.fill receives a list in its inlet, it writes the values into the named matrix (at the position
specified by the offset attribute). As soon as this is done, jit.fill sends a bang message out its left
outlet. You can use that bang message to trigger another action, such as displaying the matrix.

In the first two examples we deliberately avoided using the bang from the left outlet of jit.fill, in
order to make it quite clear that jit.fill writes into the named matrix remotely without being
physically connected to the jit.matrix object. The bang out of jit.fill's left outlet is convenient,
though, for triggering the output of the matrix as soon as it has been filled.
89

Tutorial 11 Lists and Matrices
Using the zl Object

In some situations you might want to use a matrix to store numeric messages that have occurred
somewhere in the patch: MIDI messages, numbers from a user interface object, etc. The setcell and
getcell messages to jit.matrix are useful for that, but another way to do it is to collect the messages
into a list and then place them in the matrix all at once with jit.fill.

The zl object is a versatile list-processing object that can help you collect individual numbers into a
list. It has many possible modes of behavior, depending on its first argument. When its first
argument is group, it collects the messages received in its left inlet until it has amassed a certain
number of them, then sends the numbers out as a single list. (The values are grouped in the order
in which they were received.) So, in part 4 of the patch, we have placed a zl group 256 object that will
collect 256 values in its left inlet, and when it has received 256 of them it will send them out its left
outlet as a list (and clear its own memory).

• Move the uslider up and down to generate 256 input values for the zl object. When zl has
received 256 numbers, it sends them as a list to jit.fill graybox —which writes them into the
“graybox” matrix—then sends a bang message to the jit.matrix graybox 1 char 256 object to
display the matrix.

zl sends a 256-element list into the “graybox” matrix, then ends a bang message to the jit.matrix object
to display the result
 90

Tutorial 11 Lists and Matrices
• If you have a MIDI keyboard controller attached to your computer, you can use the
modulation wheel of the MIDI keyboard to move the uslider. (The interaction between MIDI
and Jitter is explored in detail in later tutorial chapters.)

Values are doubled to occupy the range 0-254, making them useful as char data for the matrix

You can change the length of the list that zl collects, by sending a new list length in the right inlet
from the List Length number box. And you can say where in the matrix you want to put it, by
sending an offset message to jit.fill from the Location number box. By varying the list length and
location, you can put any number of values into any contiguous region of the matrix.

• Try changing the List Length of zl (to, say, 100) and setting the Location of jit.fill's offset
attribute (to, say 50), then move the uslider some more to put a list of values into that particular
location in the matrix.

• You can combine parts 2, 3, and 4 of the patch to fill the “graybox” matrix in different ways.

Using the jit.fill Object with Multiple-plane Matrices

jit.fill works fine with multiple-plane matrices, but it can only fill one plane at a time. The plane
that jit.fill will access is specified in its plane attribute. In part 5 of the patch, we've created another

The Macintosh OS comes equipped with a built-in MIDI system called CoreMIDI. You can use
the Audio MIDI Setup application found in /Applications/Utilities to specify the ports, interfaces
and MIDI devices in your MIDI setup.

On the Windows OS, all MIDI devices which are installed correctly on your system and appear
in the Sounds and Audio Devices Properties (Start - Settings - Sounds and Audio Devices) are
available to Max/MSP for MIDI I/O.
91

Tutorial 11 Lists and Matrices
matrix, with four planes of char data this time, named colorbox. We've set up three multisliders and
three jit.fill objects, each one addressing a different color plane of the “colorbox” matrix.

Filling each plane independently

• Drag on the three colored multislider objects to fill each of the three color planes.

This is a convenient way to generate different curves of intensity in the RGB planes of a matrix.
The jit.pwindow that's showing the matrix is actually 256 pixels wide, so each of the 64 cells of the
matrix is displayed as a 4-pixel-wide band. If you turn on the interp attribute of the jit.pwindow, the
differences between adjacent bands will be smoothed by interpolation.

• Click on the toggle above the interp $1 message box to send the message interp 1 to jit.pwindow.
(Note that this also sends a bang message to the jit.matrix object to re-display its contents.

The same as the previous example, but with interpolation turned on in jit.pwindow
 92

Tutorial 11 Lists and Matrices
Using the jit.fill Object with 2D Matrices

So far, all of our examples have involved one-dimensional matrices. What happens when you use a
list (which is a one-dimensional array) to fill a two-dimensional matrix via jit.fill? The jit.fill object
will use the list to fill as far as it can in the first dimension (i.e. it will go as far as it can the specified
row), then it will wrap around to the next row and continue at the beginning of that row. We've
made it possible for you to see this wrapping effect in action.

• Click on the button labeled 2D. This will change the jit.matrix colorbox object to contain a two-
dimensional 8x8 matrix, and will also resize the jit.pwindow to a more appropriate shape.
Whenever you change the dimensions of a matrix, it loses its contents, so you will need to click
in the three multisliders again to fill the matrix anew. You are still sending a 64-element list to
each of the jit.fill objects, and they fill each of the eight rows of the matrix with eight elements.

The same example, with each list wrapped around in an 8x8 matrix (shown uninterpolated)

Important: Although we don't demonstrate the use of the offset attribute with a 2D matrix in
this patch, it's worth mentioning that when the name attribute of jit.fill names a 2D matrix, the
offset attribute requires two arguments: one for the x offset and one for the y offset.

jit.fill only works for 1D and 2D matrices.
93

Tutorial 11 Lists and Matrices
The same example, displayed with interpolation

The jit.spill Object

The complementary object to jit.fill is jit.spill. It takes a jit_matrix message in its inlet, and sends the
matrix values out its left outlet as a Max list. You may have noticed that while you were using part 5
 94

Tutorial 11 Lists and Matrices
of the patch, the jit.spill object in part 6 was sending the values of plane 1 (red) out its left outlet
and setting the contents of a message box.

The contents of plane 1 of the “colorbox” matrix, displayed as a Max list

If you need to have the values as an immediate series of individual number messages rather than as
a single list message, you can send the list to the Max iter object.

Get a few values from the matrix and make them into separate messages

The jit.iter Object

For times when you need to retrieve every value in a matrix, there is an object called jit.iter. When
it receives a jit_matrix message in its inlet, it sends out an as-fast-as-possible sequence of messages:
the cell index (out its middle outlet) followed by the value(s) in that cell (out its left outlet) for
every cell of the matrix in order. For a large matrix, this can be an awful lot of Max messages to try
to send out in a single tick of Max's scheduler, so when it's done reporting all of the values in a
matrix jit.iter sends a done message out its right outlet.

Although not demonstrated in the patch, jit.spill also has listlength and offset attributes that let
you specify exactly how many values you want to list, and from exactly what location in the
matrix.
95

Tutorial 11 Lists and Matrices
In part 7 of the patch there is a jit.iter object which receives the matrix information from the
jit.matrix graybox 1 char 256 object. We use a swap object to switch the order of the cell index (coming
out the middle outlet of jit.iter) and the cell value (coming out the left outlet of jit.iter). We then
use the value of that cell as the y-value we want to store in the table object, and we use the cell index
as the x-axis index for the table.

• Click on the multislider object to send its contents to jit.fill (which will in turn bang the
jit.matrix object and communicate its contents to jit.iter. Then double-click the table object to
open its graphic window and see that it contains the same values as the “graybox” matrix.

Note that this technique of using jit.iter to fill a table works well with a modest-sized one-
dimensional one-plane matrix because a table is a one-dimensional array. However, the matrix of
a jit.qt.movie object, for example, has two dimensions and four planes, so in that case the output of
jit.iter's middle (cell index) outlet would be a two-element list, and the output of the left (value)
outlet would be a four-element list.

What are ya gonna do with all those numbers?

Still, for one-dimensional matrices, or small 2D matrices, or even for searching for a particular
value or pattern in a larger matrix, jit.iter is useful for scanning an entire matrix.

Summary

For placing individual values in a matrix, or retrieving individual values from a matrix, you can
use the setcell and getcell messages to jit.matrix (as was demonstrated in Tutorial 2). For placing a
whole list of values in a matrix, or retrieving a list of values from a matrix, use the objects jit.fill and
jit.spill. These objects work well for addressing any plane of a 1D or 2D matrix, and they allow you
to address any list length at any starting cell location in the matrix.

The multislider and zl objects are useful for building Max list messages in real time. With multislider
you can “draw” a list by dragging on the sliders with the mouse. With zl group you can collect many
individual numeric values into a single list, then send them all to jit.fill at one time.

You specify the starting cell location in the matrix by setting the offset attribute of jit.fill (or jit.spill).
The jit.fill object requires that you set its name attribute (either by sending it a name [name] message
 96

Tutorial 11 Lists and Matrices
or by typing in a [name] argument), specifying the name of the matrix it will fill. It accesses the
matrix using this name, and sends a bang message out its outlet whenever it has written a list into
the matrix. You can use that bang message to trigger other actions. In Tutorials 12, 16, and 17 we
show some practical uses of accessing a matrix by its name.

To output every value in an entire matrix, you can send the matrix to jit.iter.
97

Tutorial 12
Color Lookup Tables

In this tutorial we will explore how to use color lookup tables to remap data inside a Jitter matrix.
We'll also look at different strategies for generating lookup tables as matrices.

Lookup tables are simply arrays of numbers where an input number is treated as an address (or
position) in the array. The table then outputs the number stored at that address. Any function—a
graph where each x value (address) has a corresponding y value (output)—can be used as a
lookup table. Max objects such as funbuff, table, and the MSP buffer~ object are common
candidates for use as lookup tables. In this tutorial, we'll be using Jitter matrices in much the same
way.

• Open the tutorial patch 12jColorLookup.pat in the Jitter Tutorial folder.

The tutorial patch shows two new objects: jit.charmap, which maps input cell values to new output
values according to a lookup table matrix, and jit.gradient, which generates color gradients.

Read the images
 98

Tutorial 12 Color Lookup Tables
The top left of the patch shows a jit.qt.movie object in which you can read two different files. The
object is initialized (via loadbang) with the file colorwheel.pct loaded into it. You can also load in
the movie rain.mov by clicking on the message box that says read rain.mov. You should feel free to
alternate between the two image sources throughout the tutorial.

• Start the metro object by clicking the toggle box at the top of the patch. You will see the color
wheel appear in both the jit.pwindow at the top and the jit.pwindow at the bottom of the patch.
In addition, you will see a gradient appear in a third (rectangular) jit.pwindow at the bottom.

The output of jit.charmap and the lookup table matrix

The bottom of the patch contains the jit.charmap object, which we will use in this tutorial to remap
cell values in the image. The object has two inlets, the left one of which is connected from our
jit.qt.movie object at the top of the patch. The right inlet has a one-dimensional, four-plane char
jit.matrix connected to it with a name (colortable) and a width of 256 cells. This is the lookup table
that jit.charmap uses to remap the color values of the cells in the lefthand matrix. The receive object
(abbreviated r) with the name ctable receives data from elsewhere in the patch and sends it to the
jit.matrix. For example, at the top of the patch, turning on the toggle box will send a bang message
to the jit.matrix, causing it to send out its matrix message (jit_matrix colortable) to both the
jit.pwindow and the right inlet of jit.charmap.

Lookup Tables

Lookup tables (which are often called transfer functions) are arrays of numbers where an input
number is ‘looked up’ as an index in the table. The number stored at that index (or address, or
position) is then retrieved to replace the original number. The jit.charmap object replaces every
99

Tutorial 12 Color Lookup Tables
value in every plane in every cell of its (leftmost) input matrix with values stored at the relevant
indices in the lookup table that arrives as a matrix in its right inlet.

For example, assume that the matrix we send to jit.charmap contains a cell with the values 100 50 35
20 in its four planes. The object looks up each plane individually at the relevant position in its
lookup table matrix and replaces it. If our lookup table has the value 73 at cell 100 in the first plane,
25 at cell 50 in the second plane, 0 at cell 35 in the third plane, and 203 at cell 20 in the fourth plane,
our output cell will contain the values 73 25 0 203.

Lookup tables for a jit.charmap object should be one-dimensional matrices of 256 cells with the
same number of planes as the matrix you want to remap. This is because the possible range of
values for char matrices is 0-255, so 256 numbers are need to cover the full range of the lookup
table.

Generating the Lookup Table

The upper-right side of the tutorial patch contains three multislider objects that let you design the
transfer functions for planes 1-3 of the lookup table matrix colortable:

Filling the lookup table matrix with values from a multislider

The multislider objects (which have 256 integer sliders in the range 0-255) send their lists to the
jit.fill objects below them. These objects replace the values currently stored in planes 1-3 (i.e. Red,
Green, and Blue) of the matrix colortable with the values from the multislider objects. (See Tutorial
11.) When the matrix has been edited with the new values, the jit.fill objects send out a bang
message, which we send to the jit.matrix on the right of the patch that connects to the right inlet of
jit.charmap. We're ignoring plane 0 in this tutorial because it only contains Alpha values when we
treat 4-plane Jitter matrices as video.

The jit.matrix and jit.fill objects in our patch share the same name (colortable). As a result, the two
objects read from and write to the same matrix, allowing one object (jit.fill) to generate data that
the other object (jit.matrix) can read from without having to copy data between two separate
 100

Tutorial 12 Color Lookup Tables
matrices. This is similar to how many MSP objects (e.g. peek~, play~, groove~) can share sample
data stored in a single buffer~. See Tutorials 11, 16, and 17 for more information on using named
matrices.

• Do some freehand drawing in the multislider objects, to see how this affects both the lookup
table (the smaller of the jit.pwindow objects) and the output image from the jit.qt.movie object.
Remember to switch back and forth between the two image sources.

If you want to reset any of the planes to a y=x transfer function (i.e. a straight ascending line that
leaves all the values unchanged), you can click the button object above the relevant multislider
object. The subpatchers called p clear initialize the multislider objects with an Uzi.

Here are some lookup tables and their results:

Three sets of multislider objects and their resulting color lookup tables and output color wheels

In the first example, the red and blue transfer functions are approximately inverted while the green
is normal. The result is that high values of red and blue in the input image yield low values on the
output, and vice versa. This is why the white background of the color wheel now looks green (the
cell values of 0 255 255 255 have been mapped to 0 0 255 0).

The second example has the green plane completely zeroed (the transfer function set to 0 across
the entire span of input values). The red and blue planes are also set to 0 up to a threshold, at which
point they ramp up suddenly (the red more suddenly than the blue). As a result the majority of the
colorwheel is black (especially in the ‘green’ area). The red plane only becomes visible in very high
values (i.e. the magenta in the background of the color wheel).

The third example has the red plane mapped normally. The green plane has a parabolic shape to it,
where the extreme values are mapped high and the medium shades are mapped low. The blue
plane is normal except for a range in the midtones, where it is zeroed. This nonlinearity is visible
as a red ‘fault line’ across the top and down the right side of the colorwheel.

As you can see, there are infinite ways to remap the cell values of these matrices. We'll now
investigate another object, which lets us remap the color values in a more precise manner.

Important note: Like many Max objects, Jitter objects retain matrices stored in one inlet even if
a new matrix arrives in another inlet. The metro object in this patch, therefore, only needs to
trigger the jit.qt.movie object. The jit.matrix that contains the lookup table to jit.charmap only
needs to output its value to the object when the data stored in it actually changes.
101

Tutorial 12 Color Lookup Tables
The jit.gradient Object

The lower right area of the tutorial patch shows a method for generating lookup tables using the
jit.gradient object:

Using the jit.gradient object

The jit.gradient object generates single dimension char matrices that transition smoothly between
two specified cell values. The start and end attributes are lists that specify these cell values. For
example, a start attribute of 0 0 0 0 and an end attribute of 0 0.5 1.0 0.5 will generate a gradient that
goes from black (at cell 0 in the matrix) to pale green (at the last cell in the matrix). We've given our
jit.gradient object the relevant arguments to make it 256 cells wide, so that it can be stored in our
colortable jit.matrix when it changes. Note that jit.gradient takes floating point numbers in its
attribute lists to specify char values (i.e. a value of 1.0 in the attribute specifies a char value of 255).

The attributes are formatted by taking the RGB list output of the Max swatch objects and
converting them to ARGB floats. After the attribute has been sent to the jit.gradient object, the
object is given a bang message from the trigger object to cause it to output its matrix into the
jit.matrix object on the left of the patch.

• Try selecting some colors in the swatch objects. The start and end attributes will specify the
boundaries of the lookup table, so values in the input image will have a duotone appearance,
 102

Tutorial 12 Color Lookup Tables
morphing between those two colors. The multislider objects at the top of the patch will reflect
the correct lookup tables generated by the jit.gradient object.

Using color gradients as lookup tables

The first example shows an inverted image. The start of the lookup table is white (start 0 1.0 1.0 1.0)
and the end of the lookup table is black (end 0. 0. 0. 0.). As a result, input values of 0 are mapped to
255, and vice versa (y=255-x).

The second and third examples show duotone gradients that remap the color wheel's spectrum to
between red and orange (example 2) and olive and cyan (example 3). Notice how, depending on
the original colors at different points in the color wheel, the gradient curve becomes steeper or
more gradual.

The third attribute of the jit.gradient object is the cheby attribute, which specifies a curve to follow
when morphing between the start and end values in the matrix. The cheby attribute takes a list of
floating point numbers as arguments. These arguments are the amplitudes of different orders of
Chebyshev polynomials (see below). These special function curves create different effects when
used in lookup tables. The multislider in the tutorial patch that sets the cheby attribute lets you
specify the relative amplitude of the first eight Chebyshev polynomial curves, which have the
following shapes (if you view them as progressing from black to white):

Gradients generated using Chebyshev orders 1-4 (top row) and 5-8 (bottom row)
103

Tutorial 12 Color Lookup Tables
• Reset the start and end points of the gradient (by clicking the message box objects above them)
and slowly change the multislider that controls the cheby attribute. Watch how the color wheel
changes as colors disappear and reappear in different regions.

When you use the cheby attribute in the jit.gradient object, you can get some very interesting color
warping effects even if you leave the start and end points of the gradient at black and white. Here are
some examples with our movie clip rain.mov:

The effect of different gradient curves on the color spectrum of the rain

The lefthand image shows an unprocessed still image from the rain movie. The middle image
shows what happens to the color spectrum when the gradient is generated using a second order
Chebyshev polynomial (the darkest area in the image is now in the middle of the color spectrum).
The righthand image shows a more complex gradient, where the color spectrum shows numerous
peaks and troughs.

• The multislider objects at the top of the patch reflect the current state of our lookup table (the
matrix generated by our jit.gradient object is sent to a jit.iter object inside of the p showit
subpatch, where the numbers are grouped to set the state of the multislider objects). Try
generating a gradient and then modifying the lookup table by hand by changing the
multislider objects. This lets you use the jit.gradient object as a starting point for a more
complicated lookup table.

Technical note: Chebyshev polynomials are commonly used as transfer functions in wave-
shaping audio signals in digital synthesis algorithms (they have special properties that allow
them to distort sinusoidal waveforms into harmonic spectra equivalent to the amplitudes of
different orders). The MSP lookup~ object can be used with a function loaded into a buffer~ to
do the equivalent process in audio signal processing that we're doing in this tutorial with image.
See Tutorial 12: Synthesis: Waveshaping in the MSP manual for more details.
 104

Tutorial 12 Color Lookup Tables
Summary

You can map cell values in char Jitter matrices using the jit.charmap object. The right inlet of
jit.charmap takes a 256-cell matrix that defines the lookup table (or transfer function) to be applied
to the incoming matrix data. You can define the lookup table using several strategies, including
using jit.fill to generate the matrix from Max lists, or using the jit.gradient object to generate color
gradients between a start and end cell value according to a curve shape specified by the cheby
attribute.
105

Tutorial 13
Scissors and Glue

In this tutorial we'll learn how to use two simple objects to slice and combine rectangular regions
of two-dimensional Jitter matrices.

• Open the tutorial patch 13jScissorsAndGlue.pat in the Jitter Tutorial folder.

The tutorial patch shows two Jitter objects that neatly complement each other: jit.scissors, which
cuts a matrix into equally sized smaller matrices, and jit.glue, which pastes multiple matrices into
one matrix. We'll also take a brief look at a Max object called router, which lets you easily route
Max messages from multiple sources to multiple destinations.

Read the movie

The top left of the patch is straightforward enough. The loadbang object automatically sends the
read traffic.mov message to the jit.qt.movie object, which then loads our movie of traffic footage.

• Start the metro object by clicking the toggle box at the top of the patch. You will see the traffic
appear in the large jit.pwindow at the bottom of the patch. More interestingly, you will see the
traffic image cut into quadrants, each of which appears in a separate jit.pwindow object off to
the right side.
 106

Tutorial 13 Scissors and Glue
Cut it Up

The jit.scissors object is responsible for splitting the Jitter matrix containing the traffic footage into
four smaller matrices:

The jit.scissors object

The jit.scissors object cuts a Jitter matrix of any size, type, or planecount into smaller Jitter matrices
that are then sent out independent outlets of the object. The rows and columns attributes specify how
many smaller matrices are created each time the object receives a new matrix in its inlet. In our
tutorial patch, the jit.scissors object is splitting the image into four smaller matrices (2 columns and 2
rows). These separate matrices come out individual outlets of the object in column-major order
(i.e. the object assigns outlets to the smaller matrices from left-to-right and then from top-to-
bottom).

Two very important things you should know about jit.scissors:

1) The number of outlets that jit.scissors has is determined at object creation. Therefore the rows
and columns attributes will only create outlets when they are specified in the object box. For
example, typing jit.scissors @rows 10 @columns 2 will create an instance of jit.scissors with 20
matrix outlets (plus the usual right outlet for attribute queries), but simply making a jit.scissors
object with no arguments will only give you one matrix outlet. You can change the rows and
columns attributes with Max messages to the object, but you won't be able to add outlets beyond
what those initially created by the object.

2) The size (dim) of the matrices put out by jit.scissors is equal to the size of the slices of the
matrix, not the entire original matrix. For example, the four smaller matrices in our tutorial
patch are each 160x120 cells, not 320x240.
107

Tutorial 13 Scissors and Glue
Routing the Matrices

The four smaller matrices output by jit.scissors in our patch are each sent to two different places: to
jit.pwindow objects so we can see what's going on, and to a Max object in the middle of the patch
called router. The colored patch cords illustrate where each smaller matrix is sent.

The Max router object

The router object is a combination of the Max gate and switch objects. It takes two arguments (the
number of routable inlets and the number of routable outlets) and is controlled by messages sent
to the leftmost inlet. Most of the messages that router understands are identical to the MSP object
matrix~. As a result you can use router with the matrixctrl object with ease.

The four inlets to the right of the router object take their input from the four matrix outlets of our
jit.scissors object. A receive object assigned to the symbol routeit gets messages from the lower-right
of the tutorial patch, which controls our router object. The four leftmost outlets of the router
object are connected to a jit.glue object, which we'll talk about in a moment.

Controlling the router

Sending the message patch followed by an inlet number and an outlet number to a router object will
make a virtual connection between that inlet and that outlet in the object. Any message arriving at
that inlet will be instantly forwarded to the relevant outlet. If an inlet was previously connected to
that outlet, a patch message will sever that connection in favor of the new one.

The radiogroup objects in this patch control which outlets of the router our four small Jitter
matrices (arriving at the inlets) are sent to. The inlets and outlets number up from 0, so the
 108

Tutorial 13 Scissors and Glue
message patch 2 1 makes a connection between the third routable inlet and the second outlet of the
router object.

• Click on some of the radiogroup controls, and watch how the output image in the lower
jit.pwindow changes. Notice how with the router object you can make the matrices cut from
the traffic image appear in any of the four quadrants of the composite image at the bottom.

The Glue That Keeps It Together

The jit.glue object at the bottom of the patch does the effective opposite of jit.scissors. The rows and
columns attributes specify inlets, not outlets, and a composite matrix is output which is made up of
the incoming matrices laid out in a grid.

Sending the same matrix to all four inlets of jit.glue

One final point worth making about jit.glue is that its default behavior is to only output a
composite matrix when a new matrix arrives it its leftmost inlet. If we were to disconnect the
leftmost inlet of our jit.glue object, we would no longer get any new output matrices from the
object. The syncinlet attribute lets you make jit.glue sent its output in response to a different inlet. A
syncinlet value of -1 will cause jit.glue to output new composite matrices when it gets new matrices
at any inlet. While this sounds like a good idea in theory, it can quickly bog down the frame rate of
your Jitter processes with lots of redundant work.

Important Note: As with jit.scissors, jit.glue can only create new inlets and outlets when the
object is created, so the rows and columns attributes present in the object box will determine how
many inlets the object has. Also, the size (dim) of the output matrix generated by jit.glue will be
equal to the size of all the smaller matrices put together (e.g. our four 160x120 matrices in this
patch will yield one 320x240 matrix).
109

Tutorial 13 Scissors and Glue
Summary

The jit.scissors object cuts a matrix into smaller, equal-sized rectangular matrices. The jit.glue
object takes equal-sized rectangular matrices and pastes them back together into a composite
matrix. The rows and columns attributes of both objects determine their number of outlets or inlets,
respectively, when given at object creation, as well as the way in which the matrix is sliced up or
composited. The router object lets you arbitrarily connect Max messages from multiple inlets to
multiple outlets in a similar fashion to the MSP matrix~ object.
 110

Tutorial 14
Matrix Positioning

Positioning Data in a Matrix

In this tutorial we discuss some ways to take a portion of one matrix and place it in some different
location in another matrix. There are various reasons you might want to reposition the location of
data. We'll be focusing especially on visual effects, but the techniques we show here are useful for
any sort of task that involves moving matrix data around.

We'll show how to isolate a region of a matrix, place it at a particular position in another matrix,
resize it (which can be useful for visual effects such as stretching, pixelation, and blurring), and
move it around dynamically.

• Open the tutorial patch 14jMatrixPositioning.pat in the Jitter Tutorial folder.

The jit.window Object

In the bottom-left corner of the patch there is a jit.window object. We introduced this object in
Tutorial 1; it creates a separate window for displaying the contents of a matrix. In most of the other
tutorial chapters we have used the jit.pwindow object instead.

jit.window and jit.pwindow are pretty similar—aside from the obvious difference that one opens a
separate window while the other uses a rectangular region within the Patcher window—and they
share many of the same attributes and messages. There are a few differences, though, so we'll use
jit.window this time in order to demonstrate a couple of its unique characteristics.

You probably can't see the Display window that has been opened by the jit.window object, because
it's hidden behind the Patcher window. However, if we want to, we can make the Display window
be a floating window—one that always “floats” on top of every other window in Max while still
letting us interact with the foreground Patcher window. To do this, we must turn on the floating
attribute of jit.window with a floating 1 message. (The floating attribute is 0 by default.)
 111

Tutorial 14 Matrix Positioning
• Click on the toggle box labeled Display as floating window to send a floating 1 message to
jit.window.

Make the window “float” in front of all other windows

Note that the screen coordinates we've typed into the jit.window object for the display area—450 60
770 300—specify a display area 320 pixels wide by 240 pixels high. (For an explanation of how to
specify screen coordinates for the jit.window object, see Tutorial 1 and/or the Note later in this
chapter.)

From One jit.matrix to Another

Now we will load in a picture and try some modifications.

• Click on the message box importmovie sunset.jpg to load a picture into the jit.matrix object at the
top of the patch. Turn on the metro object labeled Display On/Off to begin sending bang
messages to jit.matrix.

The bang sends the matrix (through jit.hue) to a second jit.matrix object before displaying the
image with jit.window. In that second jit.matrix object we'll be able to modify attributes to change
what part of the matrix we display.

The matrix goes (through the jit.hue object) to another jit.matrix, then to jit.window

We've saved several preset configurations for the window's user interface objects in a preset object
in the middle of the patch.
 112

Tutorial 14 Matrix Positioning
• In the preset object, click on preset 1.

This changes the dimensions of the lower jit.matrix object to 16x12, by sending a dim 16 12 message
to it.

The dim message changes the dimensions of the matrix in jit.matrix

The matrix coming in has the dimensions 320x240, but the receiving jit.matrix has dimensions of
only 16x12, so it tries its best to display the entire matrix it receives, but it necessarily has to discard
much of the information. This results in a very pixelated image. (The term pixelation refers to the
mosaic effect that results from using an insufficient viewing resolution—an insufficient number of
pixels—to represent an image faithfully.) Even though the jit.window object is capable of
displaying the full-resolution 320x240 image (because of the window dimensions typed in as
arguments), the matrix it is receiving is only 16x12 now. It “expands” the 16x12 matrix to 320x240
for display purposes, duplicating pixels as it needs to.

• Try dragging on the two number box objects labeled Change actual matrix dimensions to see
different pixelation effects.

Interpolation

• Now set the number box objects back to 16 and 12, and click on the toggle labeled Interpolate to
smooth pixelation in the blue region at the bottom of the patch to send an interp 1 message to
jit.window.

Turn on interpolation in jit.window

Now the jit.window object—instead of simply duplicating pixels of the 16x12 matrix to make a
bunch of 20x20-pixel blocks—interpolates between values in the incoming matrix as it expands it
to 320x240. That is, as it expands the image, it creates a smooth gradation of colors between each
cell value and its neighboring values in the incoming matrix, so all of the transitions from cell to
cell in the displayed 320x240 matrix are as gradual as possible. The interpolation causes extreme
blurring because the size difference between the incoming matrix and the display is so great.
113

Tutorial 14 Matrix Positioning
• Click on the toggle again to turn off the interpolation. This sends an interp 0 message to
jit.window, setting its interp attribute to 0 (off). Enter some new matrix dimensions into the
number box objects labeled Change actual matrix dimensions so that the image is not quite so
pixelated: say, 80 and 60. (You should see that now the pixelated blocks are each only 4x4.)
Click on the toggle to turn interpolation back on. Notice that in this case the blurring is not so
extreme because interpolation occurs over only 4 pixels. Click on the toggle again to turn off
the interpolation.

• Now find the other toggle with the same label, just above the jit.matrix object, and click on it to
turn on interpolation within jit.matrix (not jit.window).

Interpolation doesn't do much when you're reducing the size of the matrix

Notice that this doesn't have very much effect. That's because jit.matrix still only has a 80x60
matrix to send out. Interpolation in this case (when we're reducing the size of the matrix rather
than enlarging it) is pretty ineffectual.

• Click on that toggle again to turn off interpolation in jit.matrix.

Isolate a Part of the Matrix

Now we'll look at ways to focus on a particular portion of a matrix.

• In the preset object, click on preset 2. Now you see only a small portion of the picture.

This preset restores the dimensions of our jit.matrix object back to 320x240. But we can still isolate
a particular part of the matrix, without altering the actual dimensions of the full matrix, using
some different attributes: srcdimstart, srcdimend, and usesrcdim. Notice that we have sent three new
messages to jit.matrix to set those three attributes: dimstart 40 150, dimend 119 209, and usesrcdim 1.
These messages let us specify a subset of the full matrix coming in the inlet, and send those values
out as a full-sized (in this case 320x240) matrix. This smaller subset of the incoming matrix gets
“expanded” (cells are duplicated as needed) within jit.matrix itself, to fill the size of the outgoing
matrix. The usesrcdim 1 message says, “Use the input matrix subset that I've specified, instead of the
full input matrix.” (By default the usesrcdim attribute is set to 0, so the srcdimstart and srcdimend
attributes are ignored.) In the messages for setting the srcdimstart and srcdimend attributes, the words
srcdimstart and srcdimend are followed by cell indices describing the starting and ending points
within each dimension. With our dimstart 40 150 and dimend 119 209 messages, we have told jit.matrix
 114

Tutorial 14 Matrix Positioning
to use a specific 80x60 region from cell 40 to 119 (inclusive) in the horizontal dimension and from
cell 150 to 209 in the vertical dimension.

We're using only an 80x60 pixel range of the incoming matrix as the source, but the destination
matrix is 320x240. Once again, this expansion of a smaller matrix into a larger one causes a
pixelation effect. This time, though, the expansion occurs inside jit.matrix (i.e. between its
“source” region and its “destination” size), rather than between jit.matrix and jit.window (as we did
earlier when we reduced the actual dimensions of the jit.matrix). Therefore, if we want to smooth
out the pixelation by interpolating, we must do it in jit.matrix. There's no point in turning on
interpolation in jit.window, since it's already receiving a 320x240 matrix from jit.matrix.

• If you want to verify this, turn on the toggle to send an interp 1 message into jit.window. It has
absolutely no effect because we're trying to interpolate a 320x240 matrix into a 320x240
display area, so no change occurs. Turn off that same toggle to set the interp attribute of
jit.window back to 0. Now use the other toggle to send an interp 1 message into jit.matrix. This
time we get the smoothing effect we desire.

• Try entering new values into the number box objects to change the arguments of the srcdimstart
and srcdimend attributes. This lets you isolate any particular region of the picture as your
“source” area. Of course, the dimensions you choose for your source area will determine the
distortion that the picture undergoes when it's expanded to fill a 320x240output matrix.

Note: In this chapter we've discussed three different ways of specifying rectangular regions! It's
important to be clear what we're specifying in each case.

In jit.window we typed in screen coordinates for the display area of the window. In the com-
puter's operating system, screen coordinates are specified in terms of the point at the upper-left
corner of a pixel. The upper-left corner of the entire screen is 0,0; the point two pixels to the right
of that (the upper-left corner of the third pixel from the left) is 2,0; and the point 5 pixels down
from that (the upper left corner of the sixth pixel down is 2,5. To describe a rectangular area of
the screen, we type in arguments for the left, top, right, and bottom limits of the rectangle's
coordinates.

In the dim attribute to jit.matrix, we provided dimension sizes for the object's matrix: the number
of cells in each dimension.

In the srcdimstart and srcdimend attributes, we're stating (inclusive) cell indices within the matrix.
Remember that cells are given index numbers that go from 0 to one less than the number of cells
in that dimension. (Planes are indexed similarly, by the way.) So for a 320x240 matrix, the indi-
ces for the cells in the first dimension go from 0 to 319, and the indices for the cells in the sec-
ond dimension go from 0 to 239. To set the source dimensions for the jit.matrix object, we need
to specify the range of cells we want to start at, using srcdimstart followed by a starting cell index
for each of the matrix's dimensions, and using srcdimend followed by the cell indices for the end
of the range in each dimension.

These different ways of describing regions can be confusing, but if you think carefully about
exactly what it is that you're specifying, you'll be able to deduce the proper way to describe what
you want.
115

Tutorial 14 Matrix Positioning
Flip the Image

You might assume that the arguments of the srcdimend attribute (the ending cell indices of the
source region) should be greater than the index numbers for the srcdimstart attribute. But that need
not necessarily be so.

• In the preset object, click on preset 3. Now the picture is has been flipped vertically.

The top and bottom have been flipped in the second dimension.

This example shows that if you specify an ending cell index in the vertical dimension that is less
than the starting index, jit.matrix will still relate those indices to the starting and ending points in
the vertical dimension of the destination matrix, effectively reversing the up-down orientation of
the values. (This statement assumes that you have not done the same sort of flip to the orientation
of the destination matrix!)

You could do the same sort of flip in the horizontal (first) dimension to flip the image horizontally.
If you flip the source region in both dimensions you get the same visual effect as if you had rotated
the image 180˚.

• In the preset object, click on preset 4.

In this example we've flipped the source region in both dimensions, reduced the size of the source
area to 160x120, and smoothed out the pixelation by turning on the interp attribute.

Resize the Output Matrix

Just as we specified the “source” region of the matrix, we can also specify a destination for that
source. This still does not change the size of the output matrix; that will still be 320x240, as
determined by the dim attribute. However, this does change the region into which the specified
“source” region will be placed. The source region of the input matrix will be placed in the
destination region of the output matrix (with expansion/contraction as necessary). Cells of the
output matrix that lie outside the destination region will remain unchanged.

• In the preset object, click on preset 5. The entire input matrix has been squeezed into an 80x60
rectangle in the center of the output matrix.

The first thing to notice is that the usesrcdim attribute has been turned off, so that we're back to
using the entire input matrix as the source. (The srcdimstart and srcdimend attributes are now being
ignored.) The usedstdim attribute has been turned on, so the input will be placed in whatever part
 116

Tutorial 14 Matrix Positioning
of the output matrix we specify. The dstdimstart and dstdimend attributes have been set to specify the
cells in the center of the matrix as the destination: dstdimstart 120 90 and dstdimend 199 149. We've
turned the interp attribute off because we're contracting the image rather than expanding it.

Notice also that we've turned on the toggle labeled Erase previous image. This sends the number 1
into the if $2 then clear object. The if part of the statement is now true, so every time the object
receives a message in its left inlet it will send out the message clear. This clears the contents of the
jit.matrix object immediately after displaying the image, to prepare jit.matrix for the next matrix it
will receive. That ensures that the values in all the cells outside the destination region will be 0, so
the unused region of the output matrix will be displayed as black.

Change some of the values in the number box objects that provide the destination dimensions, to
move (and resize) the picture within the Display window.

Now turn off the toggle labeled Erase previous image, to suppress the clear messages. Change the
arguments of dstdimstart and dstdimend some more, and notice what's different this time. The
previous destination regions are still being drawn in the Display window because those cells in the
matrix have not been cleared, and they are left unchanged if they're outside the new destination
region. This gives the effect of leaving “trails” of the previous image behind. We can potentially use
these artifacts for their particular visual effect.

If the matrix is not cleared, old destination areas will be left behind if they're outside the new
destination region. For continuous changes, this leaves a “trail” of past images.
117

Tutorial 14 Matrix Positioning
Moving the Image Data Around in the Matrix

By setting up an automated Max process that modifies the dstdimstart and dstdimend attributes, we
can move the data around in the matrix, making the image seem to move around in the display.

• In the preset object, click on preset 6.

This starts an automated process inside the patcher move_around subpatch that provides a
continuous stream of new arguments for the dstdimstart and dstdimend attributes. The toggle above
the patcher turns on this process, and the number box gives a time, in milliseconds, for each move
to a new destination.

• Double-click on the patcher move_around object to see the contents of the subpatch. So far,
we're only using the right half of the subpatch.

The destination-moving process in the subpatch [move_around]

The “rate” value coming in the right inlet is a time interval for the metro object. This object
periodically ends bang messages to four random objects which choose new left, top, right, and
bottom cell indices at random. These destination points are sent, along with the time value, to line
objects. The line objects send out new values every 50 ms (the rate at which we're displaying the
image) to gradually move the destination region to these new random points. Outside the
subpatch, those values are used as arguments for the dstdimstart and dstdimend attributes of the
jit.matrix object.

This subpatch contains a couple of tricks worth noting. The first trick is that we've made it so the
arguments for dstdimend can potentially exceed the 320x240 range of the matrix. For example, we
use a random 640 object for the horizontal dimension, then subtract 160 from the result to give us
an ending cell index from -160 to 479. We do this to increase the likelihood of a larger destination
area so that we can see a larger view of the image as it moves around, and it also means that the
image will more frequently move all the way to the edge of the window. It's noteworthy that we can
 118

Tutorial 14 Matrix Positioning
specify destination boundaries that are beyond the limits of the actual cells in the matrix, and
jit.matrix will place the image in that area to the best of its ability (clipping it off when it exceeds the
limits of the matrix dimensions). The second trick is a trivial but useful detail: we use a sel 0 object
to detect when the metro object gets turned off, and we use that to trigger a stop message to each of
the line objects so that they don't continue sending out values after the user has turned off the
process.

• Close the [move_around] subpatch window.

Changing, Resizing, and Moving the Source Image

Now we'll automate changes to the source image, as well.

• In the preset object, click on preset 7.

In much the same manner as we did for the destination area, we're now continually changing the
source area of the image. In effect, we're now seeing a constantly changing view of some
rectangular subset of the source matrix (using srcdimstart and srcdimend) while also constantly
resizing that view and moving it around in the window (using dstdimstart and dstdimend). Because
the source and destination rectangles are chosen randomly by the [move_around] subpatch, the
image sometimes gets flipped, too. We have turned on the interp attribute in the jit.matrix object to
smooth out the pixelation that would occur when the source image gets stretched.

• To get a slightly clearer view of what's going on, try turning on the toggle marked Erase
previous image.

One More Word About Dimensions

This tutorial has shown how to change the dimensions of a jit.matrix object, and how to specify
source and destination regions within that object. For ease of discussion and visualization, we've
used a two-dimensional matrix, and specified source and destination rectangles within the
matrix. But we should point out that these ideas can also be employed with matrices that have any
number of dimensions. (The number of arguments for srcdimstart, srcdimend, dstdimstart, and
dstdimend should correspond to the number of dimensions in the jit.matrix object.) For example, if
we have a three-dimensional matrix, these arguments can be used to specify a hexahedron in the
virtual 3D space of the matrix.

Note: In certain Jitter objects that deal exclusively with 2D matrices, such as jit.qt.movie, source
and destination regions will always be rectangular areas. So in those objects the source and des-
tination areas are defined in single attributes called srcrect and dstrect, which take four arguments
to specify the bounding (left-top and right-bottom corner) cells of the rectangles.
119

Tutorial 14 Matrix Positioning
Hue Rotation

Just to add a little additional color variety, we've placed a jit.hue object between the two jit.matrix
objects. (jit.hue is described in detail in Tutorial 7.)

• In the preset object, click on preset 8 to see jit.hue in action.

Modify the hue angle

This preset turns off usedstdim, but keeps usesrcdim on, and keeps interpolation on in jit.matrix to
blur the expanded image. The automated process in the patcher rotate subpatch continually rotates
the hue angle of jit.hue.

• Double-click on the patcher rotate object to see the contents of the subpatch.

The contents of the [rotate] subpatch

The value coming in the right inlet provides a time, in milliseconds, to complete a 360˚ hue
rotation. When a 1 comes in the left inlet, the number 360 is combined with that time value to
instruct the line object to go from 0 to 360 in that amount of time, sending out a new angle value
once every 50 milliseconds. Note that the first typed-in argument of the line object contains a
decimal point. This instructs line to send out float values rather than ints, for greater precision (and
because the hue_angle message of jit.hue expects a float argument). When line reaches 360, its right
outlet sends out a bang. We use that bang to set the internal value of line back to 0, then we re-bang
 120

Tutorial 14 Matrix Positioning
the pack object to start the next rotation. When a 0 comes in the left inlet, the sel 1 object passes it
directly to line to stop line and reset the hue angle to 0.

• Close the [rotate] subpatch window.

• In the preset object, click on preset 9. This combines virtually all of the automation and image
-manipulation techniques of the patch. The changes of destination dimensions of jit.matrix
are set to 200 ms this time, creating a more rapid rhythmic effect.

Full Screen Display

When you've got your Max patch creating just the images that you want, and you want to display
your results in a somewhat more elegant way, you can instruct jit.window to fill your entire screen.
jit.window has an attribute called fullscreen; when fullscreen is on, the jit.window uses the entire screen
as its display area. You can also use the hidemenubar message to Max to hide the menu bar (see
"Messages to Max" in the Topics section of the Max documentation for details).

There are a few things to remember about using the fullscreen capability of jit.window.

First of all, once you have filled your screen with an image (and especially if you have also hidden
the menubar), you will no longer be able to use your mouse to turn fullscreen off. So you will need
to program into your Max patch some method of returning the fullscreen attribute to 0.

Secondly, only one jit.window can fill any one screen at any one time. If you have more than one
jit.window object vying for access to the full screen, the jit.window object that has most recently
had its fullscreen attribute set to 1 will fill the screen.

Also, even when a jit.window is fullscreen, its resolution is determined by its actual dimensions
(that is, by the arguments of its rect attribute). So if the rect attribute describes a 320x240 rectangle,
that will be the resolution of your image, even though your screen dimensions are much greater
than that.

At the bottom of our patch, we've included the capability to turn the fullscreen attribute of
jit.window on and off (and hide/show the menu bar) with the space bar of your keyboard.

Note: The fullscreen and hidemenubar attributes of the jit.window object are available on Macin-
tosh systems only.
121

Tutorial 14 Matrix Positioning
Using the space bar to switch the window to full screen display

• Try toggling fullscreen on and off with the space bar.

• For a more abstract visual effect, try importing the colorswatch.pict image into the jit.matrix at
the top of the patch,then try the different presets.

In this tutorial, we've used a still image as our source material so that you could easily see the
effects being demonstrated, but there's no reason that you couldn't use a video (from jit.qt.movie
or some other video source) as your basic material. (You might want to copy the contents of this
patch to a new Patcher window and modify the top-left part of it to try that out.)

Summary

There are several ways to isolate and reposition certain data in a matrix. The dim attribute of
jit.matrix sets the actual dimensions and size of the matrix. By turning on the usesrcdim and
usedstdim attributes of jit.matrix, you can instruct it to use a particular portion of its input and
output matrices, which are referred to as the "source" and "destination" regions of the matrix. You
specify the cell boundaries of those regions with the srcdimstart and srcdimend attributes (to set
starting and ending cells as the boundaries of the source region) and the dstdimstart and dstdimend
attributes (for the destination region). These attributes do not change the actual size of the matrix,
but they specify what part of the input matrix will be passed out in what part of the output matrix
(when usesrcdim and usedstdim are on).If the source and destination regions are different in shape or
size, jit.matrix will either expand or contract the source region to fit it in the destination region.
This results in either duplication or loss of data, but can provide interesting stretching or pixelation
effects. The source and destination regions can be altered dynamically with numbers provided by
some other part of your Max patch, for interactive or automated modification of the size, shape,
and position of the image.

When the interp attribute is on, jit.matrix interpolates (provides intermediate values) between
values when a dimension of the destination region is greater than that of the source region. This
smooths out pixelation effects, and blurs the changes between values in adjacent cells.

The jit.window object displays whatever size matrix it receives, using whatever display rectangle
has been specified for it in its rect attribute. If the size of the incoming matrix differs from the size of
the display area, the image will be expanded, or contracted, or distorted by jit.window. This, too,
can be used for stretching and pixelation effects. jit.window also has an interp attribute which, when
turned on, smooths out the pixelation caused by this expansion and stretching.

To fill the entire screen with an image, you can turn on jit.window's fullscreen attribute, and you can
hide the menu bar with a ;max hidemenubar message. (Just remember to leave yourself some way to
get your Patcher window back in the foreground.)

We've demonstrated the techniques of resizing, repositioning, flipping, and interpolating matrix
data to create visual effects such as stretching, distorting,blurring, and pixelation.
 122

Tutorial 15
Image Rotation

Rotating and Zooming with the jit.rota Object

Jitter provides an easy way to rotate an image, and/or zoom it in or out, with an object called
jit.rota. Rotation and zoom are common and useful video effects, and by combining them in
different ways in jit.rota you can also achieve a variety of kaleidoscopic effects. jit.rota takes a
matrix of video data (or any other sort of image) in its inlet, and sends out a version that has been
zoomed, rotated, and otherwise distorted based on the settings of the object's attributes.

Basic Rotation

• Open the tutorial patch 15jImageRotation.pat in the Jitter Tutorial folder. The QuickTime
video dishes.mov is read into the jit.qt.movie object automatically by a bang message from
loadbang. To see the video, click on the Display toggle to start the metro object.

The video is a three-second left-to-right camera pan over a set of dishes. However, the loop
attribute of the jit.qt.movie object has been initialized to 2, so the movie loops back and forth,
giving the illusion of a back-and-forth pan.

The theta attribute of jit.rota determines the angle of rotation around a central anchor point.

• Drag on the Rotation Angle number box to rotate the video. Positive (or increasing) values
cause counter-clockwise rotation, and negative (or decreasing) values cause clockwise

rotation. The angle of rotation—a.k.a. the angle (theta)—is stated in radians. A value of
0—or any multiple of 2π (i.e., 6.283185)—is the normal upright positioning. A value of π

Note: Many attributes of Jitter objects use only the arguments 1 and 0 to mean “on” and “off ”,
so it's reasonable to assume that the loop attribute of jit.qt.movie is the same. While it's true that
loop 0 turns looping off and loop 1 turns it on, loop 2 causes the video to play forward and then
play backward when it reaches the loopend point, rather than leaping to the loopstart point.

θ

 123

Tutorial 15 Image Rotation
(i.e. 3.141593)—or any odd multiple of π—is the fully upside-down position. Experiment
until you understand the relationship between the theta values and the behavior of jit.rota.

Automated Rotation

Besides rotating the image by hand, you can also write an automated process in Max that will
supply continually changing rotation angles. In the previous chapter we wrote a subpatch called
rotate that used the line object to increase the angle of hue rotation continually from 0˚ to 360˚. In
this chapter we do something similar, but this time we use the bang message from the metro object
that's displaying the movie to increase the angle of rotation. To keep it “user-friendly” we show the
user degrees of angle rotation rather than radians (we convert degrees to radians inside the
subpatch), and we also display the rotation speed as “rotations per second.”

• In the number box labeled Degrees per bang, enter the number 6. This will cause the rotation
angle to increase by 6 degrees with each bang message from the metro. Since the metro object
sends out a bang message 20 times per second (once every 50 ms), we know that we can
calculate the number of rotations per second by the formula d*20/360—that is, d/18—where
d is the degrees of angle increase per bang. Now click on the toggle marked On/Off to begin the
automated rotation.

Technical Detail: jit.rota does a lot of internal calculation using trigonometry to determine
how to rotate the image. If you're not a trigonometry buff, you might not be used to thinking of
angles in terms of radians. In everyday conversation we more commonly use degrees, with a full
rotation being 360˚. In trigonometry, it's more common to use radians, where a full rotation
equals 2π radians. That's because a circle with a radius of 1 has a circumference of exactly 2π, so
you can refer to an angle by referencing the point where it would intersect the unit circle. (For
example if you started at a point on the unit circle and traveled a distance of exactly π/2 around
the circumference, you would end up at a 90˚ angle—i.e. an angle of π/2 radians—from where
you started, in reference to the circle's center.)

Also, in trigonometry we consider a positive change in angle to be a counter-clockwise rotation
around the unit circle, whereas in everyday life you might more commonly think of a clockwise
motion as being intuitively “positive” or “increasing” (like the passage of time).

So, to convert a clockwise rotation in degrees into the same rotation in radians, you would need
to multiply the degree angle by 2π, then divide by –360.
 124

Tutorial 15 Image Rotation
• Double click on the patcher rotate object to see the contents of the subpatch.

Automated rotation in the [rotate] subpatch

We convert what the user specifies as “degrees per bang” into an amount in radians, by multiplying
the degrees by 2 and dividing by –360. (See the Technical Detail sidebar above.) When a bang
message comes in the left inlet, if rotation is turned on then the bang gets passed through and it
causes an increase of angle rotation to be added into the accum object. Note that a negative
“degrees per bang” amount works fine, too, and causes a counter-clockwise rotation of the image.
When the total rotation angle exceeds 2 (or -2), we use a modulo operation to bring it back into
range (resetting the value in the accum object) before sending it to the outlet. When rotation gets
turned off, we detect that fact with a sel 0 object, and reset the theta angle to 0.

• Close the subpatch window. Click on the On/Off toggle to stop the automated rotation.

Zoom In or Out

The other main feature of jit.rota is its zooming capability. The amount of zoom is determined by
jit.rota's zoom_x and zoom_y attributes. These permit you to zoom in or out in the horizontal and
vertical dimensions independently; or you can zoom both dimensions simultaneously by
changing both attributes at once.

• Drag on the number box labeled Zoom to zoom in and out. Values greater than 1 expand the
image (zoom in), and values less than 1 shrink the image (zoom out). You can change the
zoom of the x and y dimensions independently by entering values directly into those number
box objects. (Negative zoom values flip the image as well as resize it.)

When we zoom in on the image—say, with a zoom value of 2—we still retain reasonably good
image quality because we've turned jit.rota's interp attribute on with an interp 1 message. If you turn
interp off, you will get pixelation when you zoom in. When you're zooming out, interp has no
appreciable effect, so it's pretty much a waste of the computer's time. (See Tutorial 14 for a
125

Tutorial 15 Image Rotation
discussion of pixelation and interpolation.) However, interpolation does improve the look of
rotated images, even when they've been shrunk by zooming out.

Beyond the Edge

• Set the zoom of both dimensions to some small value, such as 0.25.

When the image does not fill the entire display area because of shrinking or rotation, jit.rota has to
decide what to do with the rest of the matrix that lies outside the image area. At present jit.rota is
setting all the cell values outside the image area to 0, making them all black. The way that jit.rota
handles the cells that lie outside the image boundaries is determined by its boundmode attribute.
The different available boundmode settings are presented in the pop-up menu labeled Space outside
the image in the upper-right corner of the patch. We initialized the boundmode value to 1, which
instructs jit.rota to clear all the outlying cells. Here is the meaning of each of the boundmode
settings:

0 Ignore: Leave all outlying cells unchanged from their previous values.

1 Clear: Set all outlying cell values to 0.

2 Wrap: Begin the image again, as many times as necessary to fill the matrix.

3 Clip: For all the outlying cells, continue to use the values of the boundary cells of the image.

4 Fold: Repeat the image, flipped back in the opposite direction.

• For special effects when the image is zoomed out, try setting the boundmode attribute to 2
(wrap) for a “Warhol” duplicate image effect, or 4 (fold) for a kaleidoscope effect.

• Now try turning the automated rotation back on, to combine rotation and zoom, and modify
the different parameters (Degrees per bang, Zoom, and Space outside the image).

• When you have finished experimenting, turn off the automated rotation and return the zoom
attributes (zoom_x and zoom_y) to 1.

Some Adjustments—Anchor Point and Offset

Up to now we've been using the center of the image as the center point of the rotation. However,
you can actually choose any point around which to rotate the image. The central anchor point of
the rotation is set with the anchor_x and anchor_y attributes. Right now those attributes are set to 160
and 120, but you can change them in the number box objects labeled Anchor point.

• Try different anchor points, and drag on the Rotation Angle number box to see the effect. Some
anchor point settings you might want to try are 0,0 or 40,30 or 160,–120 or 320,240. You
might want to set the boundmode attribute to 1 so that you can see the effects of different
rotations more clearly. Note that the anchor_x and anchor_y values are specified relative to the
upper-left corner of the matrix, but they may exceed the bounds of the matrix's dimensions.
 126

Tutorial 15 Image Rotation
In addition, you can move the image to a different location in the output matrix after zooming and
rotation take place, using the offset_x and offset_y attributes.

• To see this most effectively, first click on the message box above the pvar object in the lower
right corner of the patch. This will set the rotation angle, boundary mode, zoom, and anchor
points back to the settings we used at the outset of this chapter. (We have given names to the
relevant user interface objects so that we can communicate with them via pvar.) Now set the
Zoom number box to some value between 0 and 1, to zoom out on the image.

• Use the Location offset number box objects to move the image around by changing the offset_x
and offset_y values. Try this in conjunction with boundmode 4, to see its utility in the
“kaleidoscope” mode.

• When you have finished, reset the Location offset values to 0.

Rotary Control

We've devised one more way for you to rotate the image.

• Click in the jit.pwindow display object and, with the mouse button held down, drag in a small
circular motion around the center of the object.

jit.pwindow tracks your mouse movements and, as long the mouse button is down, it sends
coordinate information (and other mouse information) out its right outlet in the form of mouse
messages. The first two arguments of the mouse message are the x and y coordinates of the mouse,
relative to the upper left corner of jit.pwindow. We use those coordinates to calculate the angle of
127

Tutorial 15 Image Rotation
the mouse relative to the center of the jit.pwindow, and we send that angle to jit.rota as the
argument to the theta attribute.

You can use the mouse location in jit.pwindow as control information
 128

Tutorial 15 Image Rotation
Summary

The jit.rota object provides an easy way to rotate an image with its theta attribute, specifying an
angle of rotation, in radians. It also provides an easy way to zoom in and out on an image with its
zoom_x and zoom_y attributes. You can change the central point of the rotation with the anchor_x
and anchor_y attributes, and you can move the resulting image in the output matrix with the
offset_x and offset_y attributes. You can change the way that jit.rota treats the matrix cells that lie

Technical Detail: Do you really want to know how we did that calculation? If so, read on.

If we think of the center point of the jit.pwindow as the origin point 0,0, and we think of the cur-
rent mouse location relative to that as being a point along a circle around the origin, then we can
describe a right triangle based on those two points. By taking the arctangent of the mouse's
coordinates y/x, we get the angle of the mouse relative to the center of jit.pwindow.

So we take the incoming x and y coordinates, and the first thing we do is convert them so that
they're relative to the center of the jit.pwindow. We do that by subtracting 160 from the x dimen-
sion coordinate (so the x values will now go from -160 to 160) and multiplying the y coordinate
by –1 (so values will increase as we go up, instead of down) then adding 119.5 to it. (If we added
exactly 120, then every time we had a y coordinate of 120 from jit.pwindow we'd be trying to
divide by 0 in expr, which is an undefined mathematical operation.) Once we have converted
the x and y coordinates, we take the arctangent of y/x to get the angle in radians, then multiply
that angle value by -1 to make clockwise rotation of the mouse cause clockwise rotation of the
image.

This method only works within a 180˚ span, because the arctangent function can't tell the dif-
ference between a mouse location and its opposite point on the circle. (The calculation of y/x
will be the same for both points.) So, every time the y coordinate of the mouse goes into the
bottom half of the jit.pwindow, we add an offset of - to the theta angle to distinguish those loca-
tions from their counterparts on the opposite side. (That's the last part of the expression.)

Note that this expression only works relative to the point 160,120 in the jit.pwindow. If we
wanted to make an expression that works for the central point of any size jit.pwindow, we'd need
to get the jit.pwindow's dimensions with a getsize message, and use the size values as variables in
our expression. As the math books say, “We'll leave that as an exercise for the reader.”

theta
129

Tutorial 15 Image Rotation
outside of the resulting image with the boundmode attribute. Using all of these capabilities in
combination, you can get image-duplication and kaleidoscope effects in addition to simple zoom
and rotation.

Zooming and rotation involve some rather intensive internal calculation by jit.rota, so these
operations make substantial demands on the computer's processor. If you're curious, the
formulae for these calculations are in the jit.rota.help file. There are additional attributes, not
covered in this tutorial, that give you access to virtually every coefficient in the rotation formula,
presenting you even more possibilities for distorting and rotating the image. These, too, are
shown in jit.rota.help.

To manage the control of so many attributes at once, you can devise automated Max processes to
generate attribute values, and/or interactive controls to change the values with gestures.
 130

Tutorial 16
Using Named Jitter Matrices

In this tutorial we'll learn how to use the name attribute of the jit.matrix object to write matrix data
from multiple sources into the same matrix. We'll also look at how to scale the size of matrices
when they are copied into a new matrix, and how to use the Max low-priority queue to de-
prioritize Max events in favor of more time-consuming tasks.

• Open the tutorial patch 16jNamedMatrices.pat in the Jitter Tutorial folder.

The tutorial patch is divided into five colored regions. The middle (light blue) region contains two
jit.qt.movie objects. A loadbang object reads two movies (rain.mov and traffic.mov) into the
jit.qt.movie objects when the patch is opened:

Reading in the movies

Unlike the tutorial patches we've looked at before, the jit.qt.movie objects in this patch use send
and receive objects to communicate with the rest of the patch. The receive objects named m1 and
m2 forward messages to the two jit.qt.movie objects. The output matrices of the two objects are
then sent (using send objects) to receive objects named movie1 and movie2 elsewhere in the patch.
 131

Tutorial 16 Using Named
Jitter Matrices
The yellow region at the top of the patch contains the metro object that drives the Jitter processes in
the patch:

The metro object drives one of the two message box objects

• Click the toggle box to start the metro. The three jit.pwindow objects in the patch will start to
display an image.

Order of Importance

The metro object goes through a Ggate object and an object called jit.qball (about which we will
have something to say later) into a gate object. The bang messages sent by the metro are routed by
the gate to one of two message box objects. Our final output matrix (in the jit.pwindow at the
bottom of the patch) will change depending on which message box gets a bang message.

• Click the two message box objects attached to the left inlet of the gate (1 and 2). Notice how
the jit.pwindow at the bottom changes:

The final output matrix changes depending on the message ordering of the patch.
 132

Tutorial 16 Using Named
Jitter Matrices
The two message box objects both send bang messages to the same three named receive objects
(m1, m2, and output). The difference between the two is the order in which they send the messages.
The lefthand message box (driven by the metro when the gate is set to 1) sends the first bang
message to the receive object labeled m2, then the receive object labeled m1, and then the receive
object labeled output. This causes the right jit.qt.movie object (containing the traffic footage) to
send out a matrix, followed by the left jit.qt.movie object (with the rain movie). Finally, the
jit.matrix object at the bottom of the patch receives a bang message, causing our final matrix to be
sent out. The righthand message box (driven by the metro when the gate is set to 2) reverses the
order of the two bang messages driving our jit.qt.movie objects (the left jit.qt.movie outputs a
matrix first, followed by the right jit.qt.movie object).

The order in which these messages occur only becomes relevant when we look into what happens
between the two jit.qt.movie objects and the final jit.pwindow object.

What's in a Name?

Once our jit.qt.movie objects receive their bang messages, they output a matrix to the send objects
below them, which in turn pass their matrices over to receive objects named movie1 and movie2. The
receive objects (in two identical regions at the right of the patch) are connected to jit.pwindow
objects as well as two named jit.matrix objects:

The named jit.matrix object

Both of the jit.matrix objects at the right of the patch (as well as the jit.matrix object at the bottom
of the patch above our final jit.pwindow) have a name. The name attached to all three of these objects
is composite. The result of this is that all three of these jit.matrix objects share the same matrix data,
which is contained in a Jitter matrix called composite.

Once we know that our two jit.qt.movie objects write data into the same Jitter matrix (via two
separate jit.matrix objects sharing the same name) we can understand why the ordering of the bang
messages is important. If the left jit.qt.movie sends out its matrix first, it writes data into the
composite matrix, followed by the right jit.qt.movie, which writes data into the same matrix. If the
133

Tutorial 16 Using Named
Jitter Matrices
two matrices write to any cells in common (see below), the matrix that gets there last will overwrite
any data that was in those cells before.

The Destination Dimension

The two jit.matrix objects on the right of the tutorial patch have their usedstdim attribute set to 1.
This allows us to scale the matrices sent by our jit.qt.movie objects so that they only write to a
certain region of the composite Jitter matrix.

• Play around with the number box objects labeled x origin, y origin, and scale connected to the two
subpatchers labeled p coords. Notice how you can move and resize the two images from the
jit.qt.movie objects in the composite matrix.

Picture within a picture

The subpatches p coords contain identical helper patches to format the dstdimstart and dstdimend
attributes for the jit.matrix objects. These attributes specify the upper left and lower right
coordinates, respectively, to use when copying data into our composite Jitter matrix. The usedstdim
attribute simply tells the jit.matrix object to use those attributes when copying data. When

Important Note: If you are ever unsure about the order in which things are happening in your
Max patch, you can do a Trace of the patch to see the way in which your patch executes. If you
choose the Enable command from the Trace menu, and then turn on the metro object, you can
step through the patch with the Step command to see how it executes. (See the “Debugging”
chapter of the Max Tutorials and Topics manual for details about how to trace Max messages
with the Trace feature.)
 134

Tutorial 16 Using Named
Jitter Matrices
usedstdim is set to 0, the incoming matrix is scaled to fill the entire matrix referred to by the jit.matrix
object.

Scaling the input matrices before the are written into our shared matrix

The three numbers that we send into the subpatches get formatted by the Max objects inside to
generate a list that describes the upper left and lower right areas of the output matrix which we
want to fill with our input matrix. The message box before the outlet uses $ substitution to replace
the relevant arguments for the attributes with numbers from the list.
135

Tutorial 16 Using Named
Jitter Matrices
The last thing that happens after our two matrices have been written into the composite matrix is
that a bang message is sent to the receive object named output:

The final result

The region at the bottom of the tutorial patch contains a third named jit.matrix object. The bang
sent by the metro goes through a trigger object that sends a bang message to the jit.matrix (causing it
to output its matrix to the jit.pwindow) followed immediately by a clear message. The clear message
erases (zeroes) all the cells in the Jitter matrix named composite. If we didn't clear the matrix,
changing the dstdimstart and dstdimend attributes of any of the jit.matrix objects could result in cells
left over from a previous output location of our movies.

Jumping the Queue

The jit.qball object at the top of the patch provides an invaluable service in the event that Max can't
keep up with our demands. The metro object (which is sending out bang messages every 50
milliseconds) is driving three separate operations (writing the two matrices from the jit.qt.movie
objects into our named Jitter matrix, as well as displaying the data and clearing the matrix so we
can start over). The jit.matrix object writes data into its internal Jitter matrix (in this case our
named composite matrix) in a way that allows it to be usurped by a subsequent message. It also
allows other Max events that are scheduled at a higher priority to happen while it works on a task.
This makes it possible to display the matrix (or write more data into it) before the previous
operation has finished, causing flicker and other unexpected results. The jit.qball object places
messages input into the object at the back of Max's low priority queue where they too can be
usurped by another message. This way, if jit.qball gets a bang message from the metro object before
all the current Jitter tasks are complete, it will wait until everything else in the low priority queue is
finished before sending out the bang. Similarly, if another bang comes along before that first bang
has been sent (i.e. if it takes more than 50 milliseconds for the rest of the patch to do everything),
the first bang will be usurped (jettisoned) in favor of the second. This allows you to set a maximum
 136

Tutorial 16 Using Named
Jitter Matrices
hypothetical rate of events in a Max patch without having to worry about events accumulating too
rapidly for the objects in the patch to keep up.

• Click on the Ggate object labeled “jit.qball bypass switch” so that the output of the metro object
bypasses the jit.qball object. The composite image in the jit.pwindow at the bottom will start to
flicker, indicating that messages are arriving out of order.

Normally, sending a bang message to a Jitter object will usurp an already pending event in that
object (e.g. a bang message that has already arrived but hasn't been dealt with yet by the object).
However, the jit.qball object gives us this kind of control over multiple chains of Jitter objects,
automatically usurping events (“dropframing”) to guarantee that messages arrive in the right
order.

Summary

By giving a single name to multiple jit.matrix objects, you can write into and read from a common
Jitter matrix in different parts of your patch. You can scale a Jitter matrix while copying it into the
internal matrix of a jit.matrix object by using the dstdimstart and dstdimend attributes and by setting
the usedstdim attribute to 1. The jit.qball object allows you to de-prioritize Max events by placing
them in the low-priority queue where they can be usurped by subsequent events if there isn't
enough time for them to execute.
137

Tutorial 17
Feedback Using Named Matrices

This tutorial shows a simple example of using named jit.matrix objects in a feedback loop. We'll
use a matrix of random values to seed an iterative process (in this case, Conway's Game of Life).

• Open the tutorial patch 17jMatrixFeedback.pat in the Jitter Tutorial folder.

The tutorial patch generates an initial matrix of randomized values with the jit.noise object:

The jit.noise object

The jit.noise object generates a Jitter matrix full of random values. The dim, planecount, and type
attributes of the object determine its output matrix (in this instance, we want an 80 x 60 cell matrix
of one-plane char data). Our random cell values (which are initially in the range 0 -255) are then
set to true (0) or false (255) by the jit.op object. The > operator to the jit.op object takes the value
from the number box (arriving at the right inlet of the object) and uses it as a comparison operator.
If a cell value is below that value the cell's value is set to 0. Otherwise the cell is set to 255. Sending a
bang message to jit.noise will generate a new random matrix.

• Try changing the number box attached to the jit.op object. Click the button attached to the
jit.noise object to generate a new matrix each time. Notice how higher comparison values yield
fewer white (255) cells. The small jit.pwindow below the jit.op object shows you the random
matrix. The one-plane matrix data is correctly interpreted by the jit.pwindow object as
grayscale video.
 138

Tutorial 17 Feedback Using
Named Matrices
Jitter Matrix Feedback

The quantized noise we've generated at the top of our patch goes from the jit.op object into a
jit.matrix object with the name of cellular:

Two named jit.matrix objects in a feedback loop

This jit.matrix object, which receives bang messages from a metro object at the top of the patch, is
connected to an object called jit.conway, the output of which is hooked up to another jit.matrix
with the same name (cellular) as the first. The result of this is that the output of the jit.conway object
(whatever it does) is written into the same matrix that its input came from, creating a feedback
loop.

• Start the metro object by clicking the toggle box. The jit.pwindow at the bottom of the patch
will show you the output of the jit.conway object.

If you want to start with a fresh random matrix, you can always copy a new matrix into the
feedback loop by clicking the button attached to the jit.noise object. The matrix from the jit.op
object will go into our shared cellular matrix and will be used in the feedback loop.

The Game of Life

The jit.conway object performs a very simple cellular automata algorithm called the ‘Game of Life’
on an input matrix. Developed by John Conway at Princeton University, the algorithm simulates
cycles of organic survival in an environment with a finite food supply. The cells in the matrix are
considered either alive (non-0) or dead (0). Each cell is compared with the cells surrounding it in
space. If a live cell has two or three live neighbors, it stays alive. If it has more or less than that
number, it dies (i.e. is set to 0). If a dead cell has exactly three live neighbors it becomes alive (i.e. is
set to 255). It's that simple.
139

Tutorial 17 Feedback Using
Named Matrices
Every time the jit.conway object receives an input matrix it performs one generation of the Game
of Life on that matrix. Therefore, it makes sense to use the object inside of a feedback loop, so we
can see multiple generations of the algorithm performed on the same initial set of data.

For example, the initial random matrix:

Some random matrix values

Generates the following matrices in the first four iterations through the jit.conway object:

The first four generations of the Game of Life performed on the dataset above

After seeding the feedback loop with a random matrix, you can turn on the metro object and
watch the algorithm run! The Game of Life is designed in such a way that the matrix will
eventually stabilize to either a group of self-oscillating cell units or an empty matrix (a dead
world). In either case you can just bang in a new set of numbers and start all over again.

Summary

You can use the name attribute of the jit.matrix object to create feedback loops in your Jitter
processing. By using two jit.matrix objects with the same name at either end of an object chain, you
create a patch where the output of the chain gets written to the same Jitter matrix as the input
comes from. The jit.noise object generates matrices of random numbers of any type, dim, or
planecount. The jit.conway object, which works best within such a feedback loop, performs simple
cellular automation on an input matrix.
 140

Tutorial 18
Iterative Processes and Matrix Re-Sampling

This tutorial demonstrates a more complicated example of when to use named jit.matrix objects,
as well as how to use jit.matrix objects to upsample and downsample an image.

• Open the tutorial patch 18jMatrixIteration.pat in the Jitter Tutorial folder.

The upper left-hand corner of the patch contains a jit.qt.movie object that has a still image (the file
fuzz_circle.jpg) loaded into it when the patch opens.

Read the image

• Start the metro object by clicking the toggle box above it. You should see an image appear in
the jit.pwindow in the lower right of the tutorial patch:

Our little comet
 141

Tutorial 18 Iterative Processes
and Matrix Re-Sampling
The fuzz_circle.jpg file contains an image of a white circle with a black background, which is being
scaled in size to appear as a small circle inside of our final matrix.

The real fuzz circle

Getting Drunk

The top part of the patch writes the image from the jit.qt.movie into the first jit.matrix object in the
chain. a bang message generated by the bangbang object changes the dstdimstart and dstdimend
attributes of the jit.matrix object with each frame, randomly varying the coordinates using Max
drunk objects. Note that our first jit.matrix object has its usedstdim attribute set to 1, so that it will
scale the input matrix:

The drunk part of the patch

This first jit.matrix, therefore, simply serves to scale the circle image to fit in a small (80 by 60)
region of our output matrix. Note that the message box that formats the coordinates for the scaled
image also clears the matrix with every frame (with a clear message), so that there are no artifacts
 142

Tutorial 18 Iterative Processes
and Matrix Re-Sampling
from a previously written image. The Max drunk objects vary the placing of the circle, causing it to
jitter around (no pun intended).

• Click somewhere in the jit.pwindow in the lower right corner of the patch. The circle will jump
to the position you clicked, and begin to move from there.

The result of a mouse click in the jit.pwindow is sent to the receive object with the name winclick.
This message is then stripped of its selector (mouse) and the first two elements (the x and y position
of the mouse click) are extracted by the unpack object. These coordinates are then used to set the
new origin for the drunk objects.

The Feedback Network

Once our circle image has been scaled and placed appropriately by the jit.matrix object, our patch
enters a feedback chain that centers around a pair of jit.matrix objects sharing a matrix named
blurry:

The feedback loop in our patch

This section of the patch contains four jit.matrix objects (not including the one at the top which
scales down the circle image). Two of the objects share a name (blurry) and are used simply to store
and retrieve previous matrices generated by the rest of the patch. The topmost jit.matrix object
sends its matrix to the rightmost inlet of the first jit.op object in the patch. In addition, it sends a
bang message to the first named jit.matrix object using a bangbang object, causing it to output its
stored matrix (called blurry). This matrix eventually ends up in the left inlet of the jit.op, where it is
then displayed (by the jit.pwindow) and multiplied by a scalar (the second jit.op object). It
eventually overwrites the previous blurry matrix (by going into the bottom named jit.matrix
143

Tutorial 18 Iterative Processes
and Matrix Re-Sampling
object). Without worrying about what the intermediate Jitter objects do, you can see that the blurry
matrix will hold some version of the previous ‘frame’ of our circle image:

A scaled-down and illustrated map of our patch

The new and old images are combined by the first jit.op object using the max operator. The max
operator compares each cell in the two matrices and retains the cell with the highest value. The
 144

Tutorial 18 Iterative Processes
and Matrix Re-Sampling
second jit.op object (with the * operator) serves to darken our image by multiplying it by a scalar
(set by the number box on the right of the patch that is sent to the receive object named fb):

The feedback amount determines how much the image is darkened before being stored in the blurry
matrix.

• Change the feedback amount of the patch by playing with the number box labeled Feedback on
the right of the patch. Notice how the trails after the circle increase or decrease when you move
the circle by clicking in the jit.pwindow, depending on how the feedback amount is set.

Downsampling and Upsampling

The final step in our image processing algorithm concerns the part of the patch in between the first
named jit.matrix, which sends out the matrix saved there during the previous frame by the
jit.matrix at the bottom, and the first jit.op object, which composites the previous matrix with the
new one:

Using jit.matrix objects for resampling of an image

The two jit.matrix objects colored green in the tutorial patch are used to resample the blurry image
matrix coming out of the jit.matrix object above them. The first of the two jit.matrix objects has its
dim attribute set to 4 x 4 cells. This size can be changed by setting the attribute with the number box
145

Tutorial 18 Iterative Processes
and Matrix Re-Sampling
at the top left with the caption Pixelation. This number gets sent to the receive object named dim
above the jit.matrix object.

Change the pixelation of the trails

• Change the number box labeled Pixelation in the blue region of the tutorial patch. Notice how
the circle trails change.

By downsampling the image matrix, the jit.matrix object copies the 320x 240 matrix from its input
into a much smaller matrix, jettisoning excess data. The result is a pixelation of the image that you
can control with the dim of the matrix.

The second jit.matrix object upsamples the matrix back to a 320x 240 matrix size. This is so that
when subsequent Jitter objects process the matrix, they will have a full resolution image to work
with and will output a full resolution matrix.

The jit.streak object adds a nice effect to the pixelated trails by randomly ‘streaking’ cells into their
neighbors. The prob attribute of jit.streak controls the likeliness that any given cell in the matrix will
be copied onto a neighboring cell. Our jit.streak object has a prob attribute of 0.5, so there's a 50%
chance of this happening with any given cell.

Technical Detail: By default the, jit.streak object copies cells towards the right. Changing the
direction attribute will alter this behavior. There is also a scale attribute that determines the bright-
ness of the ‘streaked’ cells as compared to their original values. The help patch for the jit.streak
object explains more about how the object works.
 146

Tutorial 18 Iterative Processes
and Matrix Re-Sampling
Our effects chain with intermediate jit.pwindow objects to show the processing

Summary

Pairs of named jit.matrix objects can be used effectively to store previous iterations of a Jitter
process. These techniques can be used to generate video delay effects by combining the previous
matrix with the current one using matrix compositing objects such as jit.op. You can also use
jit.matrix objects to resample an image (using the dim attribute), both to perform an algorithm
more efficiently (the smaller the matrix, the faster it will be processed by subsequent images) and
to create pixelation effects. The jit.streak object performs random cell streaking on an input matrix
by copying cells over to their neighbors according to a probability factor (set by the prob attribute).
147

Tutorial 19
Recording QuickTime movies

This tutorial shows how you can record a single matrix or a sequence of matrices to disk as a
QuickTime movie. We'll demonstrate the use of the jit.qt.record object for recording in real time
and non-real time. Along the way, we'll also show you how to adjust some of the settings of the
output movie.

Like most Jitter objects, the jit.qt.record object operates according to an event-driven model rather
than a time-driven one—frames sent to a record-enabled jit.qt.record object are appended to the
movie in progress as “the next frame” based on the timing characteristics of the output movie,
without regard for the relative time between the arriving frames. This results in very smooth
movies with consistent timing between frames, but it requires some preparation before recording.

Your Mileage May Vary

Each and every matrix that arrives at a recording jit.qt.record object must be compressed before
becoming part of your output movie. The speed of this compression depends on several factors:
the speed of your processor and your disk drive, and—most importantly—the type of
compression used (referred to as the codec, short for compression/decompression). The examples
in this tutorial will use the Photo-JPEG codec. It should yield fairly consistent results from
machine to machine without a lot of high CPU usage and disk access. On older or slower systems,
it's possible that you'll notice some timing inaccuracy with the first set of examples for this
tutorial. If you do, don't worry; the second part of this tutorial will show you how to achieve
excellent results on even the most modest system by working in non-realtime mode.

The jit.qt.record object also offers a time-driven (realtime) method of recording in addition to
the default mode described in this tutorial. Although the realtime mode might seem simpler to
use, the recorded output won't be as smooth because frames of the incoming movie will usually
be dropped fairly regularly during recording. You can set the time-driven mode for the
jit.qt.record object by using the realtime message, but it is quite different from the non-realtime
or event-driven operation described in this tutorial.
 148

Tutorial 19 Recording QuickTime movies
On the Clock

• Open the tutorial patch 19jRecording.pat in the Jitter Tutorial folder.

The first example shows a very basic recording setup. Notice that the jit.qt.record object takes two
arguments (320 and 240) that specify the width and height of any movies we record with this
object.

A simple recording patch

• Click the message box that says read countdown 15.mov to load a movie into the jit.qt.movie
object, and start the metro object by clicking on the toggle box connected to its inlet. You will
see the movie's image appear in the jit.pwindow object, since the jit.qt.record object passes any
matrices it receives out its left outlet. (The jit.robcross object in this patch is a simple edge
detector that we're using to process the matrices passing through it).

• Click the message box that says write 15. jpeg. to start writing the movie (we'll look at the
contents of the message box in more detail in a moment). A file Dialog Box will appear,
prompting you for a file name. When you enter a valid name and click the Save button,
recording begins to the filename you've chosen (For the purposes of example, let's assume
you've named your movie myfilename.mov.). Click the stop message box to stop recording.
149

Tutorial 19 Recording QuickTime movies
The jit.qt.record object sends a message out its right outlet after a write operation to confirm that
the movie was successfully written. Since we've connected that outlet to a print object in our patch,
we can see the results by looking at the Max Window. If everything went as expected, you should
see print: write myfilename.mov 1 in the Max Window. If there was a problem, the number after the
filename will not be a 1.

• Click the read message box attached to the jit.qt.movie object and read in the movie you just
recorded. How does it look?

Let's examine the write message to the jit.qt.record object for a moment. The write message puts
jit.qt.record into a record-enabled mode. The actual recording doesn't begin until the object
receives a matrix in its inlet. The write message can take several optional arguments to specify a file
name, frame rate, the codec type, the codec quality and the timescale for the output movie. In this
example we're only using two arguments (15. and jpeg) to specify the frame rate (15. indicates 15
frames per second) and the codec type (jpeg indicates Photo-JPEG) of the output movie. For a full
description of all the arguments for the write message, see the Object Reference entry for the
jit.qt.record object.

Note that we have the metro object set to send a bang message every 66.67 milliseconds. This is
done to match the input movie's frame rate. If you change the metro object's rate and record a few
more movies, you will see that a faster metro rate causes the movie to be longer and slower, while a
slower metro rate results in a shorter, faster movie. This happens because of the event-driven
model being used by jit.qt.record.
 150

Tutorial 19 Recording QuickTime movies
The second example patch is a little more complicated, but it has two important additions (and
several minor ones).

Same idea, different patch

First, we're automatically detecting the frame rate of the original movie (using the getfps message),
and using it to set both the rate of the metro object driving jit.qt.record and the output movie's
frame rate, as well. Let's look at that portion of the patch in detail:

• When a movie is successfully loaded into the jit.qt.movie object, the object sends the message
read filename.mov 1 out its right outlet (if the read operation is unsuccessful, the number will not
be 1). We're using the route object to retrieve this message.

• The unpack s 0 object breaks up the remaining elements of the message. We're not interested in
the file name, only in the success or failure of the read operation, so we've attached nothing to
151

Tutorial 19 Recording QuickTime movies
the left outlet of unpack, and attached a select object, which tests for the integer 1, to the right
outlet. If our read operation was successful, the select object will output a bang message.

• The bang is used to send the message getfps to the jit.qt.movie object, which will respond by
sending the message fps [fps] out its right outlet. The [fps] message element is a floating-point
number representing the movie's frame rate. This value is sent from the route object's middle
outlet, and used to set the metro object's speed and the output movie's frame rate.

This patch includes a second improvement. Rather than locking the entire patch to the frame rate
of the original movie, we've added a jit.matrix object with thru turned off to “collect” the output of
the patch, and we're using a second metro to send it bang messages at the correct frame rate for the
jit.qt.record object. This permits the rest of our patch to operate independently, at as fast or slow a
rate as we want, with only the very last part of the patch specifically timed to the recording process.

Finally, we've added a neat crosshatching filter (the jit.hatch object) with its own editing control
(the number box and the grid $1 message box objects). You can use this to modify your movie while
you're recording it and watch the effects on playback. You can substitute any kind of Jitter object or
patch you want at this point in the recording patch and modify what you record in real time.

Off the Clock

Both of the previous patches have a problem: under high processor loads, these patches will drop
frames. In many cases, this is not a problem, and the patches we've looked at are well suited to
recording in any context, including live performance.

But how can we record a sequence in which every frame in an original movie has a corresponding
frame in the output movie? How do you render movies in Jitter so that, even under heavy
processor or disk load, every processed frame is captured?

There is a way. The jit.qt.movie object's framedump message offers a non-realtime playback mode
that works perfectly with jit.qt.record.
 152

Tutorial 19 Recording QuickTime movies
• Scroll all the way down in the Patcher window to see the third example.

Non-realtime recording with framedump

On first inspection, the third example patch may not seem a lot more complicated than the
previous one. But don't be fooled—this unassuming patch will bring even the speediest computer
to its knees.

• Click the message box countdown.mov to load a movie into the jit.qt.movie object, start the metro
object by clicking on the toggle box connected to its inlet and watch the jit.fpsgui object's
framerate output display located at the bottom of the patch. If you get more than 10 fps, you
have a much nicer computer than we do.
153

Tutorial 19 Recording QuickTime movies
While this patch runs slowly in real time, it does a great job of creating a QuickTime movie in non-
realtime. Using the jit.qt.movie object's framedump message and the jit.qt.record object, the patch
will capture every frame of the original movie, process it, and produce an output movie of
identical length.

Here's how it works: the framedump message tells the jit.qt.movie object to stop playing its movie,
and then sends each frame out, one at a time. (N.B. You don't need to send a bang or outputmatrix
message to the jit.qt.movie object for the frames to be sent.) Because of the way the Max scheduler
works, a new frame will not be sent until the previous frame has been fully processed and
recorded. Let's try it out.

• Click on the toggle box connected to the inlet of the metro object to turn it off. (Sending a bang
message to the jit.qt.movie object during the framedump operation will cause an extra frame
to be sent, which is not what we want.) We've connected the button on the top left corner of the
patch to both the pack object that sends the write message, and the framedump message. Press
the button, enter a file name when the File Dialog appears, and wait for the movie to render.
When the framedump is finished, the jit.qt.movie object sends the message framedump done
from its right outlet. The example patch uses that message to trigger a stop message to
jit.qt.record.

The example patch also takes advantage of the fact that the jit.qt.record object sends a matrix out
its left outlet after recording a frame. We're using that frame to trigger a bang message to a counter
object that is driving the grid attribute of the jit.hatch filter. This creates a repeatable sequence of
processing changes that happen as the QuickTime movie is captured.

• Click on the “read” message box to open the movie you've just created. Turn on the metro to
display the movie. Click on the toggle box connected to the gate object to see your new movie.
This switches the jit.qt.movie object's output directly to the jit.pwindow, instead of through the
processing objects.

Summary

The jit.qt.record object provides event-driven ways to record Jitter matrices as QuickTime movies.
You can record the output of a Jitter patch in real time as you manipulate your patch, or out of real
time, in render-like operation. You can use the jit.qt.movie object's framedump message to process
an entire movie file without dropping any frames. This method lets you record high quality
movies regardless of the load being placed on your computer's processor.
 154

Tutorial 20
Importing and Exporting Single Matrices

This tutorial shows how you can export a single matrix to disk from Jitter. We'll demonstrate the
variety of options available, including QuickTime still picture formats, text and ASCII formats
and Jitter's own .jxf file format.

In the previous tutorial, we learned how to save a sequence of matrices as a QuickTime movie—
and we can save a single matrix using the same techniques. Since the data that Jitter works with can
describe much more than series of images, it makes sense that there should be several additional
options for exporting individual matrices.

Import and Export From the jit.matrix Object

 The jit.matrix object offers two types of single-matrix import/export: QuickTime movie and Jitter
binary (.jxf). Both formats permit import and export of a single matrix. We'll discuss both,
starting with the movie format.

QuickTime Export and Import

The QuickTime movie format is identical to the format we learned about in the last tutorial—
Recording QuickTime Movies. The only difference is that, in this case, an exported output
movie will be exactly one frame long. We can import a single frame of a movie, regardless of the
movie's length. The messages importmovie and exportmovie are used to import and export a single
matrix from the jit.matrix object. The exportmovie message conveniently uses the same format as the
jit.qt.record object's write message.

In fact, when you use the jit.matrix object's exportmovie message, the jit.matrix object is briefly
creating an internal instance of a jit.qt.record object, and sending a write message to it with the
arguments you've specified for exportmovie. Although that shouldn't change the way you think
about it, it's pretty nifty.
 155

Tutorial 20 Importing and Exporting
Single Matrices
• Open the tutorial patch 20jImportExport.pat in the Jitter Tutorial folder.

The jit.matrix object’s importmovie and exportmovie messages

• Click the message box that says read to load a movie into the jit.qt.movie object. Since we're
only interested in a single frame, there's no metro in the patch. You'll also notice that there is a
new attribute set for the jit.qt.movie object— @autostart 0. Setting this attribute means that our
movie will not begin playing automatically. We can choose a frame of the loaded movie we
want to export, using the number box connected to the message box containing the message
frame $1, bang.

• Why are the colors all messed up? They're messed up because we're using the planemap
attribute of the jit.matrix object to remap the planes of the incoming movie from 0 1 2 3 (alpha,
red, green, blue) to 0 3 2 1 (alpha, blue, red, green). We'll see why in a few moments.

• Click the message box exportmovie myframe.mov 30. jpeg to export the frame as a QuickTime
movie. As with jit.qt.record, we're specifying the frame rate and codec (30. and jpeg). We're also
specifying a file name, myframe.mov. The exportmovie message automatically closes the file after
writing the frame to it.

• To load the single frame we've just exported, we'll use the importmovie message. Since we want
to be certain that we're really importing the frame we just exported, we'll clear the jit.matrix
 156

Tutorial 20 Importing and Exporting
Single Matrices
object first. Click on the message box that says clear, bang. This message clears the matrix and
then outputs it to the jit.pwindow, which should now appear entirely black.

• Now, click the message box that says importmovie, bang. A file Dialog Box should appear, and
you should locate and read myframe.mov. The movie should have been saved in the same
folder as the tutorial patch. If you can't find it there, your file browser's find or search
commands to locate the file on your disk drive. The frame you just exported should now be
back in the jit.pwindow. The importmovie message takes an optional first argument which
specifies a file name.

• You're probably wondering what that second importmovie message is for. If you try to import a
multi-frame movie into jit.matrix, the object assumes that you want the first frame, unless you
specify a time value that you'd prefer. In this example, we've asked for time value 600 which is
one second in from the beginning of a normal QuickTime movie—remember from Tutorial 4
that most QuickTime movies use a timescale of 600, which means they have 600 time values
per second.

• Try reading another QuickTime movie by clicking on the message box importmovie 600, bang.
The jit.pwindow should now be showing a frame from one second into that movie. You'll
notice that the colors in the frame are not switched around this time. This is because we are
importing an image matrix directly into the object. Since the jit.matrix object's planemap
attribute only affects matrices that arrive via its inlet, no plane remapping occurred.

Jitter Binary Export and Import

Jitter offers its own binary format for single-matrix export, called .jxf. The Jitter binary format is
simpler to use than the QuickTime format, and .jxf stores your data without any of the data losses
associated with the various codecs you need to use with the QuickTime format. Additionally, the
157

Tutorial 20 Importing and Exporting
Single Matrices
.jxf format supports matrices of all types, dimensions and planecounts, whereas the QuickTime
format is only capable of storing 4-plane char matrices (images).

Using .jxf format with the jit.matrix object

The patch shown above uses the Jitter binary format, which is selected using the write and read
messages. While it is very similar to the previous example patch, there are some important
differences:

• The write message only takes a single argument that specifies the name of the output file. Since
the .jxf format is always a single matrix of uncompressed data, we don't need any other
arguments.

• The read message doesn't need a time argument (since a .jxf file will only have a single matrix
in it). Like the importmovie message, read will take an optional argument for the file name.

• The read and write messages cause the jit.matrix object to send confirmation messages out the
object's right outlet. We've connected that outlet to a print object, so you can see those
messages in the Max Window.

Both techniques described in this section are available to the jit.matrixset object as well, and
function in similar ways.
 158

Tutorial 20 Importing and Exporting
Single Matrices
Import and Export From the jit.qt.movie Object

The jit.qt.movie object offers two export methods you can use to save movie frames as QuickTime
still images, rather than movies. The first method exports single frames as image files. The second
method exports an entire movie as a sequence of image files, called an Image Sequence.

You may find this way of working preferable if you're using images you generate with Jitter for page
layout, or if you're using the images in conjunction with other graphic processing software like
Photoshop or GraphicConverter.

The exportimage Message

Let's start with the simpler of the two methods: the exportimage message to the jit.qt.movie object.
Using exportimage, we can save the current movie frame as an image file. This method allows you to
save your image in one of several standard graphic formats, including JPEG, PNG and TIFF.

The jit.qt.movie object’s exportimage message

• Click the message box read to read in a QuickTime movie. Use the number box to navigate to a
frame you'd like to export as a still image.

The jit.qt.movie object can export and import QuickTime movies in a number of non-movie
formats. For the purposes of this tutorial, we're only going to cover still image export. For a
more comprehensive listing of import and export options available in jit.qt.movie, please con-
sult the object's Object Reference entry and help file.
159

Tutorial 20 Importing and Exporting
Single Matrices
• Click on the ubumenu object. The object contains a list of the still image file types available.
Choosing one of these items will send the exportimage message to the jit.qt.movie object (by way
of the pak object), with your chosen file type as an argument. A file Dialog Box will appear,
where you can enter a file name for the image file you're about to create. The jit.qt.movie object
will automatically append the correct file name extension (.png, .jpg, .tif, etc.) to the filename
when it exports the image, so you don't need to add them. Click Save to continue.

• That's it. To verify that your export was successful, look in the Max Window. The jit.qt.movie
object sends the message exportimage myfile 1 from its right outlet after a successful exportimage
operation (myfile is the file name you chose). If exportimage was unsuccessful, the number will
not be 1. You can either reopen the file in Max, by reading it into jit.qt.movie, or switch to the
file browser and open it in your favorite image viewing application.

• The exportimage message takes an optional int argument to call up the export Dialog Box. Click
on the message box exportimage 1 to see it. First, you'll be prompted for a file name. Then,
before exporting the image file, the Dialog will appear, where you have the option to change
the file type, and set file type-specific options for the exportimage operation.

General Export From the jit.qt.movie Object

We can also use jit.qt.movie to save an entire movie file as an Image Sequence—a series of still
images, one for each frame. This process relies on a slightly more complicated export mechanism.

In QuickTime, every movie can potentially have a different set of available exporters—for
example, you might want to export the sound tracks in a QuickTime movies as CD audio or AIFF
files. Or you may be able to export your Photo-JPEG video tracks as a DV stream. Some movies
might permit several image export formats, while others are limited to just a few. Because of this

The full format of the exportimage message is exportimage [file name] [file type] [dialog flag]. All of the
arguments are optional. If you omit the file type and dialog flag, the exportimage operation will
use the last file type you specified. PNG is the default if there is no saved file type.
 160

Tutorial 20 Importing and Exporting
Single Matrices
potentially shifting landscape of options, we've attempted to make exporting in jit.qt.movie as
flexible as possible. And that added flexibility will require a little extra explanation.

Generalized export from jit.qt.movie

• Click the message box read garbage.mov, to read in that file. We're using this movie because it's
only one second long. You may use the number box to navigate around the movie, if you like.

• Click on the message box getexporterlist. This causes jit.qt.movie to send a list of available
exporter components from its right outlet, preceded by the word exporterlist. Our patch breaks
that list up and places the list into an ubumenu for easy access.

• Click on the ubumenu to view the list. Our list contains entries like AIFF, BMP, FLC, HEURIS
MPEG and several others. You probably recognize several of the formats offered. Choose the
Image Sequence item. This causes the message box exporter $1 to send the Image Sequence
exporter's index number (which is the same as its position in the ubumenu item list) to
jit.qt.movie.

• Click on the message box export 1. A file Dialog Box will appear, prompting you for a file name.
We'd suggest that you create a new folder for saving the sequence, since the operation
generates several files. Enter a valid file name and click Save.

Important Detail: Since each movie could potentially support different exporters, this index
number might change from movie to movie for the same exporter component.
161

Tutorial 20 Importing and Exporting
Single Matrices
• You should now see a special Dialog Box appear, permitting you to adjust the options specific
to the exporter you chose, such as file type and frame rate, in the case of the Image Sequence
exporter. (Notice that the same file type options are available as with the exportimage
operation.) If you leave the frame rate field empty, the export operation will use the movie's
native frame rate to generate the images.

Each exporter may have its own options. This Dialog Box will only appear when there is a 1
(which we call the options flag) at the end of the export message to jit.qt.movie. The export
message also accepts an optional file name before the options flag.

• You should see a progress Dialog Box appear briefly. When it disappears, you can check in the
Max Window to verify that the operation was successful—jit.qt.movie will send the message
export myfile 1 if it was. (The number will not be 1 if there was a problem.) If you switch to the
Finder and look in the folder where you chose to save the Image Sequence, you should see
several files, named sequentially. You've successfully exported your movie as an Image
Sequence. Open a couple of the files up and verify that they show different frames.

• Returning to Max, click on the message box export fulldialog. The fulldialog argument is another
flag to the export message, telling the jit.qt.movie object to open the full QuickTime export
dialog, which permits you to set file name, exporter and exporter options all at once.

The jit.textfile Object

Had enough? Sorry—there's more, but let's take a little break from image data.

Jitter matrices can be used to manage all sorts of data, including text. The jit.textfile object
provides a convenient interface for importing and exporting text files to and from Jitter. Once
you've imported a text file, you can edit it, or send it to other objects for further processing or
display as you would with any Jitter matrix. Or you might export a Jitter- generated text file, and
continue to work on it in your word processor. In this section, we're going to take a quick look at
the jit.textfile object's import and export abilities.

You may recall from the What Is A Matrix? chapter that one of Jitter's data types, char, is the size of
a single character. With the notable exception of certain complex character sets (such as Japanese),

You should only need to use the export 1 message once, whenever you start using a new exporter.
While you're using the same exporter, the jit.qt.movie object will remember the options after
you've specified them the first time. Try clicking the message box export now. No Dialog Box will
appear for the exporter options, and the file will be exported with the same options as before.
Alternatively, you can use the exportsettings and exportimagesettings messages to set up an exporter
without having to perform an actual export.

Technical Detail: When you use the fulldialog flag, jit.qt.movie won't know which exporter you
chose while inside the Dialog Box. In order for the jit.qt.movie object to remember what your
current exporter is, you must use the exporter message.
 162

Tutorial 20 Importing and Exporting
Single Matrices
most languages use the char type for computer representation. The correspondence between the
numbers and letters has been standardized in the American Standard Code for Information
Interchange, usually referred to as ASCII.

One of the interesting things about the ASCII code is that the regular characters used in the
English alphabet can be represented in less than half of the space available to the char type (26
uppercase plus 26 lowercase plus 10 numerals is only 62 characters, compared to the 256 different
values that chars can represent). Furthermore, all of these regular characters fall in the first half of
the char range (specifically, between 32 and 126). The following example patch will take
advantage of that fact.

String processing in Jitter with jit.textfile
163

Tutorial 20 Importing and Exporting
Single Matrices
This patch sends encoded text messages via Jitter matrices. Here's how to use it:

• Let's begin by encoding a message. Choose an encode key—a password that will be used for
encoding (and later, decoding) your message. Enter your encode key in the textedit object
labeled “encode key”. Enter the message you want to encode in the larger textedit object labeled
“code text”, at the top of the patch. For the purposes of this example, you should limit your
message to regular English language characters—no accented characters, please.

• Press the button labeled make code to encode your text. This causes the contents of the two
textedit objects to be sent to two jit.str.fromsymbol objects. These two objects convert the
contents of their respective textedit objects from Max symbols into matrices. The resulting
two matrices are then added using the addition mode of the jit.op object, producing a new
encoded matrix that is then sent to the jit.textfile object,

• Double-click on the jit.textfile object. This causes the object's text editor window to open,
displaying the encoded message.

• To verify that the encoding was successful, enter your encode key into the textedit object
labeled “decode key”, and click on the button labeled “read code”. Your original message will
appear in the textedit object at the bottom of the patch. We'll look at this process in a moment.

• Click the message box that says “write” to save the message to disk so you can retrieve it later to
send to your secret message buddy (don't forget to give them the encode key!). A file Dialog
Box will open, where you can enter a file name and click Save to save your message to a text
file. You can open this text file with any text editor application. The write message takes an
optional argument to specify a file name.

• There's a secret message waiting for you, too. Click the message box “read secret.txt”. The read
message reads a text file from disk. In this case, we're using its optional file name argument.
Without that argument, a file Dialog Box would open, allowing you to locate a text file on your
disk drive.

• Double-click on the jit.textfile object again, and verify that there's a new encoded message in
the editor window. Close the editor window when you're ready. You can decode this message
by entering the decode key Jitter in the textedit object labeled “decode key”, and clicking on the
button labeled “read code”. Did you get our message?

• Like Max's Text object, jit.textfile will output a single line in response to the line message. In
Jitter, the line will be sent as a string matrix. A string matrix is a matrix using the char data type
with one dimension and one plane. The matrix is composed of a sequence of characters

It doesn't matter that the two pieces of text (and therefore the two matrices) are different sizes.
Jitter automatically scales the right-hand matrix of the jit.op object to the size of the left-hand
matrix, stretching it or shrinking it as necessary. You might modify the test patch and use a
jit.print object to view the output of each object, and then compare it against the output of jit.op,
to see exactly what's happening.
 164

Tutorial 20 Importing and Exporting
Single Matrices
ending with a zero (0). This is the format generated by jit.str.fromsymbol, and the format
expected by jit.str.tosymbol. We're using the line 0 message to output the first line of jit.textfile
(our encoded text) and send it to the jit.op object for decoding.

• The decoder simply reverses the encoding process—we use the subtraction mode of the jit.op
object to subtract the key matrix from the encoded message matrix, leaving the original text.
The decoded matrix, containing all the letters of the decoded text, is then sent to the
jit.str.tosymbol object, where it is converted back into the form of an ordinary Max message,
suitable for display in the textedit object.

• If we wanted this patch to work properly with extended Roman characters, such as accented
letters, we'd need to make a couple of modifications. For extra credit, you might try to figure
out a way to do that. Hint: the secret is in the op attribute to jit.op.

Summary

Jitter offers several methods for importing and exporting single matrices from and to disk. The
jit.matrix object (and the jit.matrixset object, not demonstrated in this chapter) allow single
matrices to be saved as single-frame QuickTime movies, using the same parameters as the
jit.qt.record object's write message. The jit.matrix and jit.matrixset objects also support the Jitter
binary (.jxf) format— an uncompressed format specially suited to Jitter matrices. The jit.qt.movie
object's exportimage message lets you export a matrix as a single frame image in any of a number of
image formats, and the export message lets you store video frames as an Image Sequence.

In addition to images, Jitter matrices can be used to manage other kinds of data, such as text. The
jit.textfile object provides a convenient interface for importing and exporting text files to and from
Jitter matrices. The jit.str.tosymbol and jit.str.fromsymbol objects provide conversion between Max
symbols and string matrices. These objects provide one of the means by which data can be
translated to and from Jitter's matrix data format.
165

Tutorial 21
Working With Live Video and Audio Input

This tutorial demonstrates how to use Jitter in conjunction with a QuickTime-compatible image
capture device—such as a webcam, a DV camera, or a PCI video input card—to grab video
sequences and use them as matrices, or record them directly to disk. We can also use Jitter to
record sound directly to disk as a QuickTime movie.

The Basics of Sequence Grabbing

When we capture video images from an input device, we are actually working with a sequence of
images. In Tutorial 20, we created a sequence of images using the export operation of the
jit.qt.movie object. This time, we'll use the jit.qt.grab object to grab a sequence of images.

The jit.qt.grab object provides an interface to one of QuickTime's components—the general
mechanism used by QuickTime to extend its functionality. Components can include software
modules that provide interfaces for new video codecs, or an interface between software and
various kinds of hardware, or tasks like image capture and sound output. We've already used a
QuickTime component in Tutorial 20 when we used the export message, and we'll be looking at
other QuickTime component-based Jitter objects in the next several tutorials..

At this time, the jit.qt.grab object requires a 3rd party QuickTime VDIG component under
Windows. We are currently aware of two:

WinVDIG (free, http://www.vdig.com/WinVDIG/)

Abstract Plane (~$40 USD, http://www.abstractplane.com/products/vdig.jsp)

The jit.qt.grab object will not function with most Windows-ready devices without one of these
installed in your system.

The patch examples in this Tutorial assume that you have a QuickTime-compatible image cap-
ture device powered on and attached to your computer.
 166

Tutorial 21 Working With Live Video
and Audio Input
First Grab

• Open the tutorial patch 21jSequenceGrabbers.pat in the Jitter Tutorial folder.

Grab it like you want it

Notice that the jit.qt.grab object takes two arguments (320 and 240) that specify the width and
height of the matrix output by the object. They also represent the dimensions of the internal buffer
into which any captured data will be placed. The matrix will always be a 4-plane char matrix.

• Click the message box that says getvdevlist. This message causes the jit.qt.grab object to search
for available video capture devices. The jit.qt.grab object will then send the names of any
devices it finds out the right outlet in the form of a list preceded by the symbol vdevlist. In our
patch, we're using iter to break the list up, and placing the device names in an ubumenu. Our
list only has one item, DV Video, but yours may include different items.

• Click on the ubumenu and select the device you'd like to use. This causes the message box that
says vdevice $1 to send the index of the selected video capture device (which is the same as its
position in the ubumenu) to the jit.qt.grab object. If you don't explicitly choose a vdevice, the
jit.qt.grab object defaults to the first selection in the list (equivalent to sending a vdevice 0
message) when it opens the component connection.

• Click on the message box that says open. The open message tells the jit.qt.grab object to open a
connection to the sequence grabber component—to create a component instance—for the
video capture device you've selected. Until you send the open message, the jit.qt.grab object
will simply output its last matrix when you send it a bang or outputmatrix message—no sequence
grabbing will occur.
167

Tutorial 21 Working With Live Video
and Audio Input
• Click on the toggle attached to the metro object, to start sending bang messages to the
jit.qt.grab object. You should now see your captured video signal in the jit.pwindow.

• If you have multiple devices connected to your computer, you can use the vdevice attribute to
switch between them, even after sending the open message to the jit.qt.grab object.

• To close the component connection, click on the message box that says close. Leave this patch
open; we'll return to it in a moment.

Switching Between Inputs

The video capture device you're using may support several different inputs. For instance, a
CapSure Card supports s-video and composite inputs, and an ATI Rage 128 Pro supports s-video,
composite and tuner inputs. FireWire DV generally supports a single input. In this section, we'll
learn how to list those inputs and switch between them.

• Re-open the jit.qt.grab object's component connection by clicking on the message box that
says open.

• Click on the message box that says getinputlist. This causes the jit.qt.grab object to send a list of
available inputs for your chosen device out the right outlet preceded by the symbol inputlist.
The patch breaks this list up using the iter object and sends it to the ubumenu on the right of
the patch.

If you don't see your video signal, check the Max Window and see if the jit.qt.grab object
reported any errors. It may be possible that your device is in use by another application, or that
it has gone to sleep (our video camera sleeps after about 3 minutes of non-use, for example). If
your device supports multiple inputs, read on.
 168

Tutorial 21 Working With Live Video
and Audio Input
• Click on the rightmost ubumenu to see a list of inputs available to your device. Our DV camera
reports that it has one input: YUV component (DV). Our CapSure card reports composite and s-video
inputs, as shown in the screen shot:

Setting device inputs

• To change your input, select an item from the ubumenu. This causes the message box that says
input $1 to send the index of the selected input (which is the same as its position in the
ubumenu) to the jit.qt.grab object, which will switch to your selection. If you don't explicitly
choose an input, the jit.qt.grab object defaults to the first selection in the list (equivalent to
sending an input 0 message) when it opens the component connection.

• You should now see your captured video signal (from your chosen input) in the jit.pwindow.

• When you're done, click the message box that says close to close the component connection.

Grabbing for Quality

For webcams, the normal operating mode of the jit.qt.grab object provides speed and good
quality. For other higher resolution capture devices such as analog video-capture boards or DV

Some video capture devices don't work properly in the jit.qt.grab object's default mode (vmode
0, or sequence grabber mode). If you find that the jit.qt.grab object is acting erratically, try
sending it the message vmode 1 (vdig mode). This enables a method of video capture that is
more reliable on certain capture devices.
169

Tutorial 21 Working With Live Video
and Audio Input
cameras, we'd like to be able to adjust the quality of the sequence grabber to get the most out of
them.

High quality mode, with source and destination rects

• Double-click on the p device_input subpatcher. The Patcher window that opens contains
everything you need to set your vdevice and input settings. Once you've done this, close the
subpatch window.

• Click the message box that says open to start the component connection. Click on the toggle
attached to the metro object. You should now see your captured video signal (from your
chosen input) in the jit.pwindow.

• To enable high quality mode, we need to send the message vmode 2 to the jit.qt.grab object.
Enter the numeral 2 in the number box attached to the message box that says vmode $1. If your
 170

Tutorial 21 Working With Live Video
and Audio Input
capture device supports a high quality mode, you'll probably see the image in the jit.pwindow
change slightly.

• To compare the different quality modes and settings, let's zoom in on a detail of the captured
signal. Click on the toggle attached to the message box that says usesrcrect $1. Sending the
message usesrcrect 1 causes the jit.qt.grab object to capture only the portion of the input signal
specified by the source rectangle attribute, srcrect. By default, the srcrect attribute is set to the full
frame of the input signal.

• Change the values of the number box objects attached to the pak srcrect 0 0 320 240 object. This
will generate a message to set the srcrect attribute. The srcrect message arguments refer to the left
x, top y, right x and bottom y coordinates of the input frame, respectively. You should see the
image changing to reveal only the portion of the input frame you specify. For best results,
choose two numbers that have the same 4:3 aspect ratio as the input frame.

• Let's do some comparisons. First, switch the vmode setting back to 0 or 1, depending on what
you were using before (reminder: vmode 1 (vdig mode) is only necessary and supported on
specific capture devices). Compare the image quality to vmode 2 (high quality mode). On our
system, using a DV camera, the image becomes noticeably crisper, and aliased edges are
tightened up.

• Click on the ubumenu object. The object contains a list of available quality settings for vmode 2
(the settings have no effect in sequence grabber and vdig modes). Choosing an item from the
ubumenu will cause the item's index number to be sent to the jit.qt.grab object, via the message
box that says codecquality $1. Select some different quality settings, and observe the changes—
both in terms of image quality and frame rate (displayed on the jit.fpsgui object). The default
setting for codecquality is max (equivalent to sending a codecquality max or codecquality 4 message to
the jit.qt.grab object).

• You can also specify the portion of the output matrix the captured frame will occupy—a
destination rectangle—with the dstrect attribute. To enable the destination rectangle, click on
the toggle attached to the message box that says usedstrect $1. By default, the destination
rectangle is set to the dimensions of the jit.qt.grab object's output matrix.

• Change the values of the number box objects attached to the pak dstrect 0 0 320 240 object. As
with the srcrect message, the dstrect message arguments refer to the left x, top y, right x and

If your device does not support high quality mode (vmode 2), you may see no change, or some
undesirable result, like distorted image proportions or noise. Should this occur, return to
sequence grabber or vdig mode (vmode 0 or vmode 1) and skip the rest of this section.

You should experiment with your hardware to determine the best settings for your system. For
example, using the vmode 2 in conjunction with the codecquality min and codecquality low modes
actually looks worse than vmode 0 on our system. While vmode 2 offers control over the capture
quality, it will not necessarily improve the image quality over the jit.qt.grab object's default cap-
ture mode.
171

Tutorial 21 Working With Live Video
and Audio Input
bottom y coordinates of the output matrix. You should see the image changing to occupy only
the portion of the output matrix you specify. Notice that the pak object is connected to a t l clear
object, which causes a clear message to be sent to the jit.qt.grab object before sending the dstrect
message. You could modify the patch to see what happens if you don't send the clear message.

• When you're done, click the message box that says close to close the component connection.

Grabbing to Disk

You can save grabbed sequences directly to disk as a QuickTime movie, if you prefer. When you do
this, the jit.qt.grab object writes straight to the hard disk without sending out any matrix output.
With only a few minor differences, this process is similar to the one described in Tutorial 19. But
this time, we'll be recording audio, too.

You should quit or disable any applications or settings that interrupt processing on your
machine while recording to disk, such as Internet applications or network filesharing.
 172

Tutorial 21 Working With Live Video
and Audio Input
Grabbing Video to Disk

Grabbing to disk

• Double-click on the p device_input subpatch. The Patcher window that opens contains
everything you need to set your vdevice and input settings. Once you've done this, close the
subpatch window.

• Click the open message box to start the component connection. Click on the toggle attached to
the metro object. You should now see the captured video signal from your chosen input in the
jit.pwindow.

• The jit.qt.grab object, by default, has its write_video attribute set to on (1). To reflect this, we've
used loadbang to turn on the toggle attached to the message box that says write_video $1. If you

We've encapsulated the vmode, srcrect and dstrect settings we just looked at in the
p mode_rect subpatch. You can access them by double-clicking on the object if you'd like to
change them. Note, however, that the vmode attribute does not affect the grab to disk operation.
173

Tutorial 21 Working With Live Video
and Audio Input
wanted to disable writing video and only write audio, you would send a write_video 0 message
and a write_audio 1 message to the jit.qt.grab object. For now, leave the toggle connected to the
message box that says write_audio $1 turned off (by default, the write_audio attribute is set to off
(0)).

• Click on the write grabfile.mov 15. jpeg normal message box. You've probably noticed that this
message looks like the write message that we send to jit.qt.record object to start recording.
Except for the lack of a timescale argument, the write message to the jit.qt.grab object is
formatted identically—grabfile.mov is the file name, 15. refers to the output movie's frame rate,
jpeg specifies the Photo-JPEG codec, and normal specifies normal codec quality. All of the
arguments are optional; if we omit the file name, a file Dialog Box will appear. The remaining
settings, if omitted, will retain their previous values. If there are no previous values, the default
values for the capture device will be used.

• Recording begins immediately after you send the write message. While we are recording, the
jit.qt.grab object doesn't output any matrices. We can tell because the jit.fpsgui object's display
isn't changing. You can use the write_preview attribute to switch matrix output on and off while
recording. The write_preview attribute is off (set to 0) by default. Click on the toggle attached to
the message box that says write_preview $1 to enable matrix output while recording. Your
recordings will be smoother if you leave write_preview off.

• Click the message box that says stop to stop the grab to disk operation, but leave the patch
open.

The jit.qt.grab object sends a message out its right outlet after a write operation to confirm that the
movie was successfully recorded. Since we've connected that outlet to a print object in our patch,
we can see the results by looking at the Max Window. If everything went as expected, you should
see print: write grabfile.mov 1 in the Max Window.

We can also record sound to disk using the technique just described. There are two ways to choose
the sound device for a jit.qt.grab object:

1. Use the snddevice and sndinput messages to set sound device and sound device input. This
method is very similar to the method we used to list the video devices and inputs, except that
we use the getsnddevlist and getsndinputlist messages instead of the getvdevlist and getinputlist
messages.

2. Use the Operating System’s sound control panel to adjust all of the device and input settings at
once.

Technical detail: There is an important difference in the formatting of the write message to the
jit.qt.grab object if you plan to record separate video and audio (split) files. For more informa-
tion, consult the Object Reference entry and help file for the jit.qt.grab object.
 174

Tutorial 21 Working With Live Video
and Audio Input
While this is the method we're going to use for this tutorial, you might find it instructive to try
making an altered copy of the example patch for the message-based method. You can use the p
device_input subpatcher as a model.

• Click the message box that says snd_settings. The sound control panel will appear. Using the
pop-up menus and other controls, adjust the sound input settings to your preference. Close
the Dialog Box by clicking OK.

• Click on the toggle attached to the message box that says write_audio $1 to enable audio for the
grab to disk operation.

• Click the write grabfile+snd.mov 15. jpeg normal message box. The recording will begin
immediately as before, but sound will also be recorded to the movie.

• Click the message box that says stop to end the recording. Locate the movie on your hard drive,
and open it in QuickTime Player (or Max, if you prefer) to verify that sound was recorded
with the movie.

• Click the close message box to close the component connection.

Summary

The jit.qt.grab object allows you to grab images from any QuickTime-compatible video input
device. The object offers both Max-based and Dialog Box interfaces for listing devices and inputs,
switching between them, and controlling image quality. The srcrect and dstrect attributes can be
used to crop and position a captured image within a Jitter matrix. The jit.qt.grab object also
provides a mechanism for recording video and sound directly to disk as a QuickTime movie.

There is a Video Settings Dialog Box available for changing video device and input settings, as
well. You can access it by sending the settings message to the jit.qt.grab object.

If you investigate the Sound and Video Settings Dialog Boxes, you will notice that both offer
numerous options for controlling the input settings of each device—brightness, saturation,
gain, etc. All of these parameters may be modified directly from Max/Jitter, although it's
beyond the scope of this tutorial to describe their operation. Please refer to the Object Refer-
ence entry and help file for the jit.qt.grab object for more information.
175

Tutorial 22
Working With Video Output Components

This tutorial demonstrates how to use Jitter in conjunction with a QuickTime-compatible video
output device—such as a DV camera—to send matrices and video sequences directly to
hardware, bypassing your computer’s analog video output. We’ll explore the jit.qt.videoout object,
and return to the jit.qt.movie object to explore its video output capabilities.

End of the Line

You can place the jit.qt.videoout object as the final object in a Jitter patch and send processed Jitter
matrices directly to a video output device. You'll find that this process is very similar in operation
to the jit.qt.grab object that we used in the previous tutorial.

The jit.qt.grab and jit.qt.videoout objects both require that you create a component connection
before they can do their work. In the case of the jit.qt.videoout object, that means a connection to a
video output device. And, as in the previous tutorial, we'll need to specify the settings we want to
use by creating a listing of all our available devices and output modes and choose the settings we
want before we use the jit.qt.videoout object. Since we're already familiar with that procedure from
working with the jit.qt.grab object in the last tutorial, using the jit.qt.videoout object will be easy.

Important Note: Video output components support is only available for the Macintosh at the
present time.

The patch examples in this tutorial assume that you have a DV camera attached to your com-
puter’s FireWire port, powered on and in VTR mode. However, the techniques described will
work with any device that has a QuickTime video output component.
 176

Tutorial 22 Working With
Video Output Components
• Open the tutorial patch 22jVideoOutput.pat in the Jitter Tutorial folder.

jit.qt.videoout in action

• Click the read dozer.mov message box to read an example movie.

Take a moment and look at the patch. By now, you should be familiar with the processes we're
using to transform the movie: we separate out a single plane of a matrix using the jit.unpack
object, and sent it to the jit.op object. You'll notice that the jit.op and the jit.rota objects are
using named matrices to communicate between the jit.rota object’s output matrix and the
jit.op object’s right input matrix without using any patch cords. Yep—it's the cool Jitter
feedback loop in action.

• Turn on the toggle attached to the metro object to start the patch. You’ll notice that
jit.qt.videoout appears to have no effect. Until we send it an open message, the object simply
passes any matrix received via its inlet directly to its outlet. Don’t click the open message box
just yet—we still have some setup work to do.
177

Tutorial 22 Working With
Video Output Components
• Click the message box that says getvoclist. Sending a getvoclist message to the jit.qt.videoout
object causes it to send out its right outlet a list of messages preceded by the symbol voclist. The
items in this list refer to each available video output component — voc, for short. This list of
available video outputs is routed through an iter object and from there into the ubumenu on the
left, from which we can easily make our selection. On our system, the list contains a single item:
FireWire.

• Select the FireWire output component from the ubumenu. This causes the item’s index number
(which is the same as its position in the ubumenu) to be sent to the jit.qt.videoout object, via
the voc $1 message. If you don't select anything, the first item in the list will be used as the
default component. This is equivalent to sending the message voc 0 to the jit.qt.videoout object.

• Click on the message box that says getvocmodes to retrieve a list of available modes for the
output component you chose. The resulting list, preceded by the symbol vocmodes, is routed
through iter and into the righthand ubumenu. Our list contains two items: Apple FireWire NTSC
and Apple FireWire PAL.

• Select the output mode you’d like to use from the ubumenu. Your selection will depend on your
FireWire hardware—our camera is NTSC, so we’re using Apple FireWire NTSC mode. This causes
the item’s index number (which is the same as its position in the ubumenu), to be sent to the
jit.qt.videoout object, via the vocmode $1 message box. If you don't select anything, the first item
in the list will be used as the default mode. This is equivalent to sending the message vocmode 0
to the jit.qt.videoout object.

• Now we’re ready to start sending data to our output device. Click the open message box to start
the component connection. After a few moments, you should see the same image on your
device’s display as you see in the jit.pwindow in the patch.

• We have control over other aspects of the output, too. While the specific codec we use is
hardware-specific (Apple FireWire always uses the DV codec for output, for example), we do
have control over the codec quality of our output. Try selecting different values in the ubumenu
connected to the codecquality $1 message and compare the results on your output device. You
should be able to improve speed at the expense of a small loss in image quality by using the
Minimum Quality (codecquality 0) or Low Quality (codecquality 1) settings. The default is
Normal Quality (codecquality 2).

If the video output component is registered with QuickTime, it will appear in the voclist and can
be opened even if the hardware isn't available. If there is no hardware available, the jit.qt.videoout
object will report a –200 error in the Max window when you send matrices to it.

Important Note: Video output component support is only available for the Macintosh at the
present time.

If you are getting errors in the Max window, and not seeing any video on your hardware device,
check to make sure that your device hasn’t gone to sleep.
 178

Tutorial 22 Working With
Video Output Components
Just Passing Through

If you want to send a movie directly from your disk drive to an output device and you don't need
to process any of your data using Jitter, you can use the jit.qt.movie object. You would typically
want to do this only when the movie on your disk is already in the proper format for the video
output component you're using—for example, if you're using a FireWire output device, the file
should be already be compressed with the DV codec at the standard image resolution and frame
rate.

Using jit.qt.movie with output components

While using jit.qt.movie with output components doesn't look very different from using the
jit.qt.videoout object, there is one important difference:

The jit.qt.movie object doesn’t use the open or close messages. You send the jit.qt.movie object a voc
message with an argument of 0 or greater to open a component connection, and close the
connection and return the jit.qt.movie to normal operation by sending the message voc –1. The
argument to the voc message specifies the output component, just as with jit.qt.videoout.

Other than that, the two objects access video output components identically.

• Click the message box that says read to load a DV-encoded QuickTime movie from your disk
drive. These usually have the file extension .dv at the end of their file name. Because these
movies tend to be large, we’ve chosen to not include one with the tutorial package.

• Click on the toggle object attached to the metro. Your movie will be shown in the jit.pwindow.
You may notice that the display is skipping frames; that's because DV movies contain a lot of
179

Tutorial 22 Working With
Video Output Components
data. Don’t worry—the playback will improve when we switch to the video output
component.

• Use the getvoclist and getvocmodes message box objects and the ubumenu objects to select your
preferred device and output mode as we did in the previous chapter. When you set the output
device (via the voc $1 message box), the movie will stop playing in the jit.pwindow, and should
begin playing on the display of your output device. If your DV movie includes sound, the
sound will play on the output device, as well. If your movie is correctly encoded for your
output device, playback will be smooth.

• Click the message box that says voc –1 to disconnect from the output component. Playback will
return to normal mode, and the movie should display in the jit.pwindow object again.

Summary

The jit.qt.videoout object provides a way to send processed Jitter data directly to a device
supported by QuickTime video output components—such as a DV camera—over FireWire. If
you don’t require Jitter processing and would like to send a properly encoded QuickTime movie
directly from your disk drive to a supported output device, use the voc message to the jit.qt.movie
object.

Technical note: Playback improves when we switch to the video output component because
the movie is no longer being decompressed in software before it's displayed—it's passing
directly to the hardware where it is processed (as necessary) there.

Important: You may have noticed that the jit.qt.movie object that we’ve created has dimensions
of 320x240, even though DV movies are generally 720x480. When we switch to the output
component, the movie is sent to your selected output device at the movie’s native size, without
regard for the dimensions of the jit.qt.movie object’s output matrix.
 180

Tutorial 23
Controlling Your FireWire Camera

This tutorial describes how to use Jitter to control the transport of a FireWire-based DV camera or
deck using the jit.avc object. This object provides a simple interface for communicating between
Jitter and your DV device, and lets you control and automate your FireWire DV device using the
Max interface.

AV/C (an abbreviation for Audio Video Control) is the official name for the protocol that
communicates between a computer and an external device such as a DV camera. The exact
specification used is called the AV/C Tape Recorder / Player Subunit. You can find a copy of the
entire specification online at http://1394ta.org/Technology/Specifications/specifications.htm.

The specification breaks the different types of transport controls you can use into three main
groups:

1. The WIND group is used to move the media forward and backward, without playing it.
WIND group commands include stop, fast forward and rewind.

2. The PLAY group contains commands used to play media while moving forward or backward
at various speeds. Examples include play, pause, slow forward and slow reverse.

3. The RECORD group is used to insert data on media.

These three groups are fully implemented in the jit.avc object. Additionally, the object supports a
custom message, which lets you send any command to your hardware, even those not directly sup-
ported by the jit.avc object.

Plug and Play

The jit.avc object’s hardware connection has to be explicitly opened and closed, as is the case for
the jit.qt.grab and jit.qt.videoout objects we've used in the previous tutorials. Using the jit.avc
object is a little simpler, though—it communicates only with a single type of device.

The patch examples in this tutorial assume that you have a DV camera or deck attached to your
computer’s FireWire port and powered on.
 181

http://1394ta.org/Technology/Specifications/specifications.htm

Tutorial 23 Controlling Your FireWire Camera
Basics

• Open the tutorial patch 23jFWCameraControl.pat in the Jitter Tutorial folder.

jit.avc and friends

• Click the getdevice message box. This causes the jit.avc object to look for a compatible device
attached to your computer. If it finds one, the object sends the device’s name from its outlet,
preceded by the symbol device. With our Sony DV camera attached, jit.avc sends the message
device Sony DV.

• In the patch, we’re using the route and prepend objects to set the contents of the blank message
box to the name of the located device. If jit.avc cannot find any compatible devices, an error
message will be posted to the Max Window.

• Click the message box that says open. This causes jit.avc to open a connection to the device it
found.

If you receive an error message, double-check your cable connections between your camera/
deck and computer, and make sure that the device is powered on.

Technical note: We don't need to do any configuration prior to sending the open message to the
jit.avc object. Unlike objects like jit.qt.grab and jit.qt.videoout, which can switch between multi-
ple input or output devices, jit.avc communicates with a single “device”—the DV component—
which supports a single piece of hardware.
 182

Tutorial 23 Controlling Your FireWire Camera
PLAY and WIND groups (VTR mode)

• Use the play, stop, pause, rewind and ff message box objects (one at a time) and observe the
behavior of your FireWire device. It should be responding as if you’d pressed those buttons on
the unit itself.

• Click on the ubumenu object to view a partial list of PLAY group messages. These messages
consist of the word play followed by an additional symbol describing the specific type of PLAY
group operation. Double-click on the p avc_play_commands subpatch to see brief descriptions
of the messages we’ve placed in the ubumenu. A full list of supported messages can be found in
the Object Reference entry for the jit.avc object. Use the ubumenu to send a few of these
messages to the jit.avc object to check their effect.

• To check the current tape time, click the gettime message box. This causes the jit.avc object to
send the current time from its outlet as a list of four integers preceded by the symbol time. We’re
using route and unpack objects to display those integers in the number box objects at the
bottom of the patch. The numbers represent hours, minutes, seconds and frames, respectively.

• Click the message box that says close to turn off the connection between jit.avc and your DV
device.

This portion of the tutorial assumes that you have a DV cassette (with data already recorded on
it) loaded in your device, and that you are in VTR mode.
183

Tutorial 23 Controlling Your FireWire Camera
Avez-vous le Temps?

The following patch uses the gettime message to do something useful—it causes an attached DV
device to play the first minute of a loaded tape, and then rewinds and starts over. You might use a
patch like this to automate a video installation, for example.

Automating DV transport with jit.avc

• Make sure that you have at least 1 minute of recorded material on your loaded DV cassette.
Otherwise, the patch won’t work properly. Modifying the patch to perform error checking
would probably be an instructive exercise for the motivated reader.

• Click on the message box that says open to open the connection between the jit.avc object and
your device.

• Click on the toggle attached to the metro object. This causes two things to happen: the trigger
object causes a rewind message to be sent to your device, and the metro is turned on, sending a
gettime message to jit.avc every 100ms.

• We’re using the route object to send jit.avc object’s response message (time [hour] [minute] [second]
[frame]) to the unpack object at the top of the patch. The individual time values are unpacked,
 184

Tutorial 23 Controlling Your FireWire Camera
multiplied and added to determine the total number of frames that the current time
represents.

• Next, we test the frame count against the numbers 0 and 18122115 using the select object.
Why? When a DV device can’t find time code (which is the case when it’s fully rewound and
stopped), it reports the current time as either 0 0 0 0 or 165 165 165 165, depending on the device
model. Since (0 * 10800) + (0 * 1800) + (0 * 30) + 0 = 0, and (165 * 10800) + (165 * 1800) +
(165 + 30) + 165 = 1812215, we can use these numbers to determine if the tape has been fully
rewound. If our frame count does equal 0 or 1812215, then we send a bang message to the play
message box to start playback.

• If our frame count does not equal 0 or 1812215, then we are either rewinding or playing. Now,
we want to make sure that we stop playing after approximately one minute, or 1800 frames (60
seconds * 30 frames). We test the frame count against 1800 with the > 1800 object and, if it
sends out a 1, the sel 1 object will bang the rewind message box and start the process all over
again—that's all there is to it.

• When you’re ready, turn off the toggle. This will both disable the metro and send a final rewind
message to your DV device, just for neatness. Click on the message box that says close to close
the connection between jit.avc and your device.

RECORD Group

If your DV device is a camera, it likely has two modes of operation: VTR mode and Camera mode.
VTR mode is used for tape playback and non-camera (line-level) recording. Camera mode is
used for recording directly from the camera portion of the unit. In VTR mode, all of the PLAY and
WIND group commands are available, plus the RECORD group. In Camera mode, only the
RECORD group commands are available (since you can’t rewind while recording!). You can use
either mode for this portion of the tutorial.

Actually, our frame count is a little inaccurate. DV time has 29.97 frames per second, not 30.
For simplicity, we’ve rounded up. For the purposes of this exercise, the math is close enough.

The jit.avc object also offers an advanced message called gettransport that reports the exact state
of the device’s transport using special numerical codes, which we might have used in preference
to the method above. For our purposes, though, this is fine, and a little bit cleaner. For more
information on gettransport, refer to the Object Reference entry and help file for the jit.avc object.

Some FireWire DV devices support an additional message, time, which causes the device to
wind to the specified location on a loaded tape (the location is described by four integers, in the
same format as noted above). DV cameras do not support this message, generally speaking.
Please refer to the help file for the jit.avc object for an example of building an auto-wind func-
tion in Max.
185

Tutorial 23 Controlling Your FireWire Camera
The RECORD group provides two primary messages: record and recpause. The record message starts
recording, while the recpause message places the unit into record pause mode.

Time-lapse with the jit.avc object

This simple little patch is all that’s necessary to set up time-lapse recording with jit.avc. It records 1
second of material every 30 seconds. Let’s go through it:

• Click the message box that says open to start the connection between jit.avc and your DV
device.

• Before we turn it on, let’s examine the patch to see what’s going to happen. Every second, the
metro object will send a bang message to the counter. When the counter hits 0, the sel 0 object
will output a bang message, first to the record message, and then to the delay object. After the
specified delay (we’ve chosen 1000 ms.), the recpause message will be sent to jit.avc. We’ve
supplied some number box objects so that you can change the counter and delay values.

• Make sure that your DV device is receiving input (either from its built-in camera, or from a
line-level source). Then, turn on the toggle attached to the metro, and watch your DV device
for a few minutes—time-lapse videography was never so easy!

• When you’re ready, turn off the toggle and click the message box that says close to close the
connection between jit.avc and your DV device.

Summary

The jit.avc object provides a way to control and automate your FireWire DV device, such as a DV
camera or deck, using the Max interface. It offers complete control over the WIND, PLAY and
RECORD group commands.
 186

Tutorial 24
QuickTime Effects

This tutorial describes the basic operation of the jit.qt.effect object—Jitter’s interface to Apple’s
QuickTime Effects architecture. We’ll learn how to set up and configure the object, discuss the
difference and use of tweenable and non-tweenable parameters and apply a few effects to Jitter
matrices. We’ll also learn how to create QuickTime Effects tracks inside of movies.

QuickTime contains a large number of built-in effects, including transitions (wipes and fades),
filters and standalone (render) effects, collected under the general system known as QuickTime
Effects. While QuickTime Effects are slow compared to many of Jitter’s transitions and filters,
there are some unique effects available that Jitter does not include. The other difference between
using QuickTime Effects and Jitter filters is that QuickTime Effects can be embedded as tracks
inside a QuickTime movie, in a similar way as audio or video tracks.

The QuickTime Effects architecture uses a single interface to support a wide variety of different
effects, each of which may require different numbers of parameters and parameter types—
QuickTime Effects use the same interface to describe effects which don't use any input sources at
all (such as the Fire or Cloud effects), effects which require a single input source (such as Blur or
Gain) and effects that require two inputs (such as the Chromakey effect). So it should come as no
surprise that the jit.qt.effect object is one of the most complex objects in the Jitter package. But
don't worry—we'll be taking it one step at a time in this tutorial.

The Dialog Box Interface

The quickest and easiest way to access QuickTime Effects and to become acquainted with them is
to use QuickTime’s standard Dialog Interface. The following patch will let you do just that.
 187

Tutorial 24 QuickTime Effects
• Open the tutorial patch 24jQTEffectsDialogInterface.pat in the Jitter Tutorial folder.

Exploding QuickTime effects

• By clicking on both of the message box objects that say read, load QuickTime movies into the
two jit.qt.movie objects.

• Turn on the toggle attached to the metro object to start the patch. You will see your movies in
the two smaller jit.pwindow objects. On the larger jit.pwindow object, you should see the left-
hand movie. Since we haven’t actually selected a QuickTime effect, the jit.qt.effect object is
just passing the matrix received in its left inlet through its outlet.
 188

Tutorial 24 QuickTime Effects
• Click on the dialog message box. This causes the jit.qt.effect object to display the standard
QuickTime Effects Dialog Box. You can select any available effect, and set any of the
parameters for it. Here's an example of what the Dialog box looks like under QuickTime
version 5—we've selected the Explode effect:

The QuickTime 5 Effects Standard Dialog Box interface

• All available QuickTime Effects are shown in the scrollable window on the left. Your list may
look slightly different from this example—especially if you've added extra effects to your
system. As you select different items from the list, the preview window on the bottom-left of
the patch changes to show you an example of what the effect does. The adjustable parameters
for the effect are shown on the right part of the window.

• Go ahead and try a few different effects, and experiment with different parameters. Choose an
effect, set the parameters, and click on the OK button to see your changes in the patch. To try
another effect, just click on the dialog message box again and choose another effect. Note that
some of the effects use both matrix inputs to jit.qt.effect, some only use one, and some don’t
use the incoming matrix at all, except for timing purposes.

• You’ll notice that a number of effects offer two values for each parameter. For instance, in the
Explode effect’s parameter panel shown above, all three parameters have two values. These are
known as tweenable parameters, because the effect will interpolate between the two values
189

Tutorial 24 QuickTime Effects
entered. If you look at the jit.qt.effect object in our patch, you’ll notice that it has a typed-in
value of 60 for the steps attribute, indicating that any tweened parameters should interpolate
over 60 steps (60 incoming matrices). We’ll discuss tweened parameters in more detail later on
in this tutorial.

• When you’ve had your fill of the QuickTime Effects Dialog Box, click on the toggle to turn off
the patch.

To the Max

Every effect and option that you saw in the QuickTime Effects Dialog Box is available when using
Jitter, too. Here's where things become a little bit complicated, and here's where we can help you
out. While you were experimenting with the last patch, you probably noticed that each effect had a
different number of parameters, each with completely different parameter types. For example,
let's compare the Blur and Cloud effects. The Blur filter effect has one parameter in the form of an
enumerated list of values (the menu), while the Cloud render effect has three parameters—two of
which specify RGB colors, and the third of which is a floating-point number representing the
degree of rotation. How will you know how many QuickTime Effects parameters you need to
control, and what kind of data you need to send for each one?

We've created a patch we hope you'll use if you want to use QuickTime Effects from with Jitter.
Our patch handles all the QuickTime Effects information by listing all the variables on the fly, as
you make selections in Jitter. We've created an interface in the Max patch that interprets this infor-
mation in a clear way that you can use and adapt for your own purposes. You should feel free to use
our patch—at least until you're comfortable enough to make something similar for yourself. We
promise it will save you a lot of hassle and frustration.

Listing and Loading Effects

To generate a list of available effects using jit.qt.effect, we use the geteffectlist message. This causes a
series of messages to be sent out the object’s right outlet, one message for each available effect.
Each of these messages is in the format effectlist [index] [name] [code], where index is an index number
(starting at 0), name is the plain English name for the effect, and code is a 4-letter code used to
describe the effect.

• Open the tutorial patch 24jQTEffectsMaxInterface.pat in the Jitter Tutorial folder.

• Don’t worry about the jit.qt.movie objects for now. Let’s start by looking at the other parts of
the patch first.

In the jitter-examples folder installed with Jitter, you’ll find a whole set of QuickTime Effects
helper patches, in the folder jit.qtfx.helpers. Each of these patches isolates and documents the
functionality of a single QuickTime Effect—and we’ve made helper patches for all of them. You
can use these helper patches as though they were normal Jitter objects, and ease your entry into
the rich but complex world of QuickTime Effects.
 190

Tutorial 24 QuickTime Effects
• Click on the message box that says geteffectlist. We’re using a route object to separate out
messages beginning with the symbol effectlist, formatting the messages with sprintf, and then
appending them to the ubumenu.

• Click on the ubumenu to see the list of available effects. It should contain the same items as the
list that appeared on the left side of the QuickTime Effects Dialog Box.

• To load an effect for use in jit.qt.effect, we use the loadeffect message. The loadeffect message
takes a single argument, which can be either the index number or the 4-letter code of the
desired effect. In this example, we’re using the effect’s index number (which is the same as the
item’s position in the ubumenu) to load effects into jit.qt.effect via the loadeffect $1 message.

Now that we've loaded our effect, it's time to list and specify the parameters for our effect.

Parameter Types

Let’s take a moment and look over the various parameter types used by QuickTime Effects. When
the jit.qt.effect object reports available parameters, it describes the type of each parameter and any
limitations placed on the values. You’ll need this information to set the parameters properly.

The types are:

• long: (long integer) an integer value

• fixed: (fixed-point) floating-point value, usually between 0. and 1.0.

• double: (double-precision floating point) floating-point value

• rgb: (RGB color) 3 integers between 0 and 255, describing an RGB color

• bool: (Boolean) an integer value, 0 or 1

• enum: (enumerated list) a list of integer indices, in which each index is associated with a
specific value (the indices are not necessarily consecutive)

• text: (text) This type is not currently supported from Max (you can use effects with text
parameters from the Dialog Box)

• imag: (image) This type is not currently supported from Max (you can use effects with image
parameters from the Dialog Box)

Listing Parameters

To generate a list of available parameters for your selected effect, we use the getparamlist message.
This causes a series of messages to be sent out the jit.qt.effect object’s right outlet, one message for
each available parameter, plus a “header message”.
191

Tutorial 24 QuickTime Effects
The header message is sent first. It is in the format paramhead [name] [code] [params] [sources], where
name is the plain English name for the effect, code is the 4-letter code, params is the number of
parameters the effect has, and sources is the number of input sources used by the effect.

After the header message comes the series of parameter messages, in the format paramlist [index]
[name] [code] [tween] [type] [variable]. The index argument is the index number of the parameter
(starting at 0), name is the plain English name of the parameter, code is the 4-letter code for the
parameter, tween is an integer describing the parameter’s tweenability (0 = always tween, 1 = never
tween, 2 = optionally tween), type is the type of parameter (from the list above), and variable is zero
or more additional arguments which indicate permitted values, depending on the parameter type.
They are:

• long: [min (optional int)] [max (optional int)]

• fixed: [min (optional float)] [max (optional float)]

• double: [min (optional float)] [max (optional float)]

• rgb: rgb_range (which is just a reminder that RGB values are from 0 - 255)

• bool: none

• enum: [index (int)] [value (int /symbol)] … (these repeat in pairs until all enumerated values
are described)

• text: [max characters (optional int)] [max lines (optional int)]

• imag: none

In Practice

• In our patch, when you select an effect from the ubumenu, a bang is automatically sent to the
getparamlist message box. The subpatcher p interpret contains an algorithm that automatically

Although some QuickTime Effects report the ability to use 3 sources, the jit.qt.effect object
only supports up to 2-source effects at present.
 192

Tutorial 24 QuickTime Effects
takes the information we’ve just described and formats it for readability (If you’d like to see
how it works, double-click on the patcher object).

• Take a look at the portion of the patch shown above. The three outlets from the p interpret
patcher are attached to the inlets of the three objects below—the message box, ubumenu and
textedit object. The message box contains the formatted paramhead message. The ubumenu
contains the formatted paramlist messages. The textedit object displays the additional
parameter data. Above, you see the information reported for the Blur effect. We see that it’s
called ‘blur’, has a 4-letter code of ‘blur’, takes only one parameter and one source. Parameter
0, the first parameter, represents the amount of blurring, and has a 4-letter code of ‘ksiz’. This
parameter is an enumerated list, and cannot be tweened. In the textedit object, we display the
correspondence between the indices and their actual values.

• Choose a few other effects from the left-hand ubumenu, and see how the information displays
change. Choose different parameters from the right-hand ubumenu to get a feel for how the
different parameters are described.

Making Changes to Parameters

• Load some movies into the two jit.qt.movie objects by clicking on the read message box objects
and turn on the toggle attached to the metro to start the patch.

• In the left-hand ubumenu, choose the transition effect called ‘radial’ (in our ubumenu, it’s at
index 24).

• Looking at the parameter display, we see that ‘radial’ has seven parameters and takes 2 sources.
In the jit.pwindow, you should see your left-hand movie playing.
193

Tutorial 24 QuickTime Effects
• The effect’s first parameter is called ‘percentage’. It’s a fixed-point parameter, and, by
consulting the textedit object, we see that it takes a minimum value of 0, and a maximum
value of 1.

• In the example patch, find the display pictured in the screen shot above. It’s located toward the
upper right of the patch. This is our parameter editor. The value in the blue number box
represents the parameter number. We’ll use the yellow number box objects to set values for the
chosen parameter. Each time you change one of the yellow number box objects, the pak object
sends a param message to jit.qt.effect to set the parameter values.

• For now, let’s just edit the first parameter. Make sure the blue number box is set to 0. Now, adjust
the first yellow number box to values between 0 and 1. You should see the image in the
jit.pwindow change as you do. The right-hand screen shot, above, shows an example.

• Change the parameter number to 1. From the information display, we see that parameter 1 is
an enumerated list that controls the wipe type. You can scroll down in the textedit object to see
the full list of types. Try entering different indices in the leftmost yellow number box to try
them out. You can always switch back to parameter 0 to see the effect at different percentage
values.

We’ve set up the patch so that when you change the blue number box, the parameter information
display automatically changes to display the parameter you’ve chosen. Behind the scenes, we’re
using another message to jit.qt.effect called getparam to retrieve the current values of the param-
eter.
 194

Tutorial 24 QuickTime Effects
• Let’s skip to parameters 4 and 5 (parameters 2 and 3 control horizontal and vertical repeat
values—feel free to try them out). Change to parameter 4 (border width, which takes a fixed-
point number between 0 and 20) and set the parameter value so that you see a border appear
at the edge of the wipe. Now, change to parameter 5. This parameter sets the RGB color of the
border. Using all three yellow number box objects, set the parameter to 0 255 0. The border
should appear bright green, as pictured below.

• Finally, change to parameter 6, (soft edges). Parameter 6 is a Boolean value (the equivalent of a
check box in the Dialog Box). If you set this parameter to 1 (on), the border will be drawn
anti-aliased.

• You’ve now successfully negotiated jit.qt.effect and worked with every major parameter type.

Tweening

Like any other Jitter object, we use messages to control jit.qt.effect parameters using messages.
Additionally, we can take advantage of QuickTime Effect’s built-in support automatic
interpolation between parameter values, or tweening. As we saw in the first part of this tutorial,
using tweened parameters is fairly straightforward. Now, we’re going to control them from Max.

You’ll recall that tweened parameters change from an initial value to a target value over a specified
number of steps. Setting these values from a patch differs only slightly from the method we just
used. Instead of setting parameters using the param message, we use a pair of messages, param_a
and param_b, which represent the initial and target values, respectively.
195

Tutorial 24 QuickTime Effects
• Locate the portion of the patch shown in the screen shot, above.

• Select the ‘cloud’ render effect from the left-hand ubumenu. The parameter information
display should indicate that ‘cloud’ has 3 parameters and takes no sources. If you quickly
browse through the parameters, you’ll see that they are all marked ‘tween-optional’, which
means that we can tween them all if we like.

• Let’s set our initial values. Click on the blue ubumenu, and change the selection to param_a.
This sets the first item in the pak object, so that any parameter changes are now sent to the
jit.qt.effect object as a param_a message.

• The ‘cloud’ effect’s first parameter, parameter 0, sets the RGB color of the cloud. Let’s go for
red. Using the yellow number box objects, set this parameter’s value to 255 0 0.

• Parameter 1 sets the RGB color of the background. Anyone for black? Set this parameter to 0 0
0.

• Parameter 2 sets the cloud’s rotation. We’ll set up a full rotation for this example. Change this
parameter to 0.

• Click on the blue ubumenu again, and select param_b. We’ll set target values now.

• Set the cloud color to blue (0 0 255), the background color to yellow (255 255 0) and the rotation
to 360.

• To actually see our tweened parameters, change the number box connected to the message
box that says steps $1. Look at that sky change!

Saving and Loading Parameter Files

QuickTime Effects supports a special file type that we use to save and retrieve effect parameters,
called .qfx. We can use .qfx files to back up parameter configurations that we’d like to recall later,
or to move a parameter set from one patch to another (or from one application to another—.qfx
files use a standard file type that any program that utilizes QuickTime Effects should know how to
read). In Jitter, we also use .qfx files to create QuickTime Effects tracks in the jit.qt.movie object.
 196

Tutorial 24 QuickTime Effects
• Locate the message boxes shown in the screen shot below in the lower right of the patch. Since
we’re confident that you’ll want to hold on to the settings we just entered for the ‘cloud’ effect,
let's save them to disk.

• Click on the qfx_write message box. A File Dialog box will appear. Enter a filename and click on
the Save button to write your parameter file to disk. The qfx_write message also accepts an
optional filename as an argument, if you’d like to bypass the File Dialog box.

• We use the qfx_read message to retrieve a .qfx file. Click on the message box that says qfx_read
luv.qfx. Make sure you have two movies running in the patch, and that your steps attribute is set
to a value greater than 0. It’s a little present from us to you, because we love you so much.

Using QuickTime Effects in QuickTime Movies

QuickTime Effects can be used as special tracks inside of movies. A QuickTime Effects track uses
existing video tracks as sources (if applicable) and renders the effect in real time, while the movie
plays.

The jit.qt.movie object lets you add effect tracks to an existing movie by using .qfx files to describe
the effect and its parameters.

• Open the tutorial patch 24jQTEffectMovieTracks.pat in the Jitter Tutorial folder.

• Turn on the toggle attached to the metro object to start the patch.

• Click on the read track1.mov message box to read in an example movie.

If you are using the QuickTime Effects Dialog Box interface to set your effect parameters, you
can access the functionality of the qfx_read and qfx_write messages with the Load and Save but-
tons at the bottom left of the Dialog Box.
197

Tutorial 24 QuickTime Effects
• To determine the number of tracks this movie contains, click the message box that says
gettrackinfo. This causes one or more messages to be sent out the jit.qt.movie object’s right
outlet, beginning with the symbol trackinfo, followed by several arguments. The format of the
message is trackinfo [track index] [track name] [track type] [track enabled] [track layer].

Let’s take a moment to look at this message. It reads trackinfo 1 ‘unnamed video’ video 1 0. Since there is
only one message, we know there is one track in track1.mov, at index 1. It is an unnamed video
track. It’s enabled, and at layer 0.

• Click on the message box that says copy track2.mov track 1 track –1. This message finds the movie
track2.mov, and copies its first track (which we happen to know is a video track) to a new
track in our current movie (the –1 tells jit.qt.movie to create a new track). Because the new
track has the same layer as the existing track (0, in this case), it is displayed in front.

• Click on the gettrackinfo message box again. You should see two messages printed in the Max
Window, indicating that we now have two tracks in our movie:

print: trackinfo 1 ‘unnamed video’ video 1 0
print: trackinfo 2 ‘unnamed video’ video 1 0

• Let’s insert luv.qfx as an effect track in this movie. Take a look at the addfxtrack dialog 0 0 1 2
message:

This message causes jit.qt.movie to present a File Dialog Box, in which you can choose a .qfx
file to import as an effect track (if we replaced the reserved symbol dialog with a the name of a
file, the object would load the file specified). The message format is addfxtrack [filename] [offset]
[duration] [source track A] [source track B]. The offset argument refers to the starting position of the

QuickTime layers are numbered from –32768 to 32767. Tracks at lower layers are displayed in
front of tracks at higher layers. If two tracks are at the same layer, the track with the higher track
index is displayed in front. When you create a new track, QuickTime assigns it a layer of 0.

If we wanted to know, without a doubt, what the track layout of track2.mov is, we could send
the message gettrackinfo track2.mov to jit.qt.movie. Most track query commands—messages
beginning with gettrack—accept a remote source (a file on disk, a URL or data in RAM) as an
initial argument.
 198

Tutorial 24 QuickTime Effects
effect in the movie. The duration argument specifies the length of the effect (in QuickTime time
values). The source track A and source track B arguments specify the source tracks, by track index.

• Click the message box that says addfxtrack dialog 0 0 1 2. Find luv.qfx and click the Open button in
the File Dialog Box.

• You should immediately see the luv.qfx effect applied to the two movie tracks as the movie
plays.

• Click the gettrackinfo message box one last time. You should see the following in your Max
window:

print: trackinfo 1 ‘unnamed video’ video 1 0
print: trackinfo 2 ‘unnamed video’ video 1 0
print: trackinfo 3 ___effect_src2 video 1 0
print: trackinfo 4 ___effect_src1 video 1 0
print: trackinfo 5 ___effect_track video 1 –32768

Apparently, our movie has acquired some new tracks, hasn't it? Applying an effect track to a
movie will create between one and three new tracks—one track for the effect itself (named
___effect_track), and one track for each of the source tracks (named ___effect_src1 and
___effect_src2).

• We use the deletefxtrack message to remove effects tracks from a movie. Click on the message
box that says deletefxtrack. This will remove any tracks with the reserved names discussed
above.

Summary

The jit.qt.effect object provides an interface to Apple’s QuickTime Effects architecture. The object
permits control over QuickTime Effects using a standard Dialog Box, or with Max messages. The
jit.qt.effect object permits control over tweenable parameters, and offers import and export with
the .qxf file format. The jit.qt.movie object can use .qxf files to generate effect tracks for QuickTime
movies.

A duration argument of 0 causes jit.qt.movie to calculate a maximum duration for the effect. For a
0-source effect, this value is the length of the movie (minus any offset). For a 1-source effect, it’s
the length of the source track (minus any offset). For a 2-source effect, the value is the length of
the shortest of the two source tracks (minus any offset).

You shouldn't change the names of these tracks— the jit.qt.movie object relies on these track
names for the deletefxtrack message, as we'll see.
199

Tutorial 25
Tracking the Position of a Color in a Movie

Color Tracking

There are many ways to analyze the contents of a matrix. In this tutorial chapter we demonstrate
one very simple way to look at the color content of an image. We'll consider the problem of how to
find a particular color (or range of colors) in an image, and then how to track that color as its
position changes from one video frame to the next. This is useful for obtaining information about
the movement of a particular object in a video or for tracking a physical gesture. In a more general
sense, this technique is useful for finding the location of a particular numerical value (or range of
values) in any matrix of data.

The jit.findbounds Object

The object that we'll use to find a particular color in an image is called jit.findbounds. Since we're
tracking color in a video, we'll be analyzing—as you might expect—a 4-plane 2-dimensional
matrix of char data, but you can use the jit.findbounds object for matrices of any data type and any
number of planes.

Here's how the jit.findbounds object works. You specify a minimum value and a maximum value
you want to look for in each plane, using jit.findbounds's min and max attributes. When the
jit.findbounds object receives a matrix, it looks through the entire matrix for values that fall within
the range you specified for each plane. It sends out the cell indices that describe the region where it
found the designated values. In effect, it sends out the indices of the bounding region within which
the values appear. In the case of a 2D matrix, the bounding region will be a rectangle, so the
jit.findbounds object will send out the indices for the left-top and bottom-right cells of the region
in which it found the specified values.

• Open the tutorial patch 25jColorTracking.pat in the Jitter Tutorial folder.

In this example we use the jit.qt.movie object to play a movie (actually an animation) of a red ball
moving around. This is obviously a simpler situation than you will find in most videos, but it gives
 200

Tutorial 25 Tracking the Position
of a Color in a Movie
us a clear setting in which to see how the jit.findbounds object works. Notice that we've used typed-
in arguments to initialize the min and max attributes of the jit.findboundsobject.

Minimum and maximum values specified for each of the four planes

There are four arguments for these attributes—one value for each of the four planes of the matrix
that the jit.findbounds object will be receiving. The min attribute sets the minimum acceptable
value for each plane, and the max attribute sets the maximum acceptable value. These arguments
cause the jit.findbounds object to look for any value from 0 to 1 in the alpha plane, any value from
0.75 to 1 in the red plane, and any value from 0 to 0.1 in the green and blue planes. Since the data
in the matrix will be of type char, we must specify the values we want to look for in terms of a
decimal number from 0 to 1. (See Tutorials 5 and 6 for a discussion of how char values are used to
represent colors.) We want to track the location of a red ball, so we ask the jit.findbounds object to
look for cells that contain very high values in the red plane and very low values in the green and
blue planes. (We'll accept any value in the alpha plane.)

• Click on the toggle to start the metro. As the red ball moves around, the jit.findbounds object
reports the cell indices of the ball's bounding rectangle. Stop the metro, and examine the
numbers that came out of jit.findbounds. You'll see something like this:

The jit.findbounds object reports the region where the specified color appears

The jit.findbounds object will report the region where it finds the desired values in all planes of the
same cell. In this picture, the jit.findbounds object found the values we asked for somewhere in
columns 120 through 159 and somewhere in rows 50 through 89 inclusive. This makes sense,
since the red ball is exactly 40 pixels in diameter. Those cell indices describe the 40x40 square
region of cells where the ball is located in this particular frame of the video.

Note that the output of the jit.findbounds object from its first two outlets is in the form of two lists.
The first outlet reports the starting cell where the values were found in each dimension and the
second outlet reports the ending cell of the region in each dimension. (Since it's a 2D matrix, there
are only two values in each list, and we use the unpack objects to view them individually.)
201

Tutorial 25 Tracking the Position
of a Color in a Movie
If we wanted to know a single point that describes the location of the ball in the video frame, we
could take the center point of that rectangular region reported by the jit.findbounds object and call
that the “location” of the ball. That's what we do with the expr objects. For each dimension, we take
the difference between the starting cell and the ending cell, divide that in half to find the center
between the two, and then add that to the starting cell index to get our single “location” point.

Calculating the center point of the rectangle

Notice that for the vertical dimension we actually subtract the vertical location coordinate from
239. That's because the cell indices go from top to bottom, but we would like to think of the
“height” of the object going from bottom to top. (That's also how the uslider object behaves, so
since we're going to display the vertical coordinate with the uslider, we need to express the
coordinate as increasing from bottom-to-top.)

We send the results of our “location” calculation to a hslider and a uslider to demonstrate that we
are successfully tracking the center of the ball, and we show the coordinates in the number box
objects. We also scale the coordinates into the range 0 to 1, to show how easily the horizontal and
vertical location of the ball could potentially be used to modify some activity or attribute
elsewhere in a Max patch. For example, we could use the vertical location to control the volume of
a video or an MSP sound, or we could use the horizontal coordinate to affect the rotation of an
image.

Scale the location coordinates into the range 0-1, for use elsewhere in the patch.

Tracking a Color in a Complex Image

Well, that all worked quite nicely for the simple example of a plain red ball on a plain white
background. But tracking a single object in a “real life” video is a good deal tougher. We'll show
some of the problems you might encounter, and some tricks for dealing with them.

• Make sure the redball movie is stopped. Now double-click on the patcher bballtracking object to
see A More Detailed Example. Click on the toggle labeled Start/Stop in the upper-left corner of
the [bballtracking] subpatch to start the video.
 202

Tutorial 25 Tracking the Position
of a Color in a Movie
This movie has objects with distinct colors: a red shirt, green pants, and a yellow-and-blue ball.
Potentially it could be useful for color tracking. However, there are a few factors that make
tracking this ball a bit harder than in the previous example.

First of all, the top few scan lines of the video (the top few rows of the matrix) contain some
garbage that we really don't want to analyze. This garbage is an unfortunate artifact of the
imperfect digitization of this particular video. Such imperfections are common, and can
complicate the analysis process. Secondly, the image is not highly saturated with color, so the
different colors are not as distinct as we might like. Thirdly, the ball actually leaves the frame
entirely at the end of the four-second clip. (When the jit.findbounds object can't find any instance
of the values being sought, it reports starting and ending cell indices of -1.) Fourthly, if we want to
track the color yellow to find the location of the ball in the frame, we need to recognize that the ball
is not all one shade of yellow. Because of the texture of the ball and the lighting, it actually shows
up as a range of yellows, so we'll need to identify that range carefully to the jit.findbounds object.

Let's try to solve some of these problems. As we demonstrated in Tutorial 14, some Jitter objects
allow us to designate a “source” rectangle of an image that we want to view that's different from the
full matrix. In Tutorial 14 we demonstrated the srcdimstart, srcdimend, and usesrcrect attributes of the
jit.matrix object, and we mentioned that the jit.qt.movie object has comparable attributes called
srcrect and usesrcrect. Let's use those attributes of the jit.qt.movie object to crop the video image,
getting rid of some parts we don't want to see.

• Click on the message box labeled Crop Source Image. This sends the cell indices of a new source
rectangle that we want to view to the jit.qt.movie object, and tells the object to use that source
rectangle instead of the full matrix. Notice that by starting at row 4 (that is, starting with the
fifth row of the matrix), we crop out the garbage at the top of the image. We also chop 20 pixels
off of the left side of the source image, so that the first bounce of the ball occurs exactly in the
lower-left corner. Now we've focused on the part of the video we want to analyze.

• Next we'll deal with our other problems. Click on the small preset object labeled Setup in the
lower-right corner of the window. This sets all the user interface objects to just the settings we
desire.

This sets the loop attribute of the jit.qt.movie object to 2 for back-and-forth playback, and it sets a
loop endpoint at time 2160 (just at the moment when the 54th frame would occur) so that the
movie now plays back and forth from frame 0 to frame 53 and back. The movie now plays just up
to the moment of the first bounce of the ball on the pavement, then reverses direction.

We have also sent some values to the jit.brcosa object (discussed in detail in Tutorial 7) to set its
brightness, contrast, and saturation attributes just the way we want them. This doesn't exactly result in
the best-looking image, but it does make the different colors more distinctive, and compresses
them into a smaller range of values, making them easier for the jit.findbounds object to track.
203

Tutorial 25 Tracking the Position
of a Color in a Movie
And we've turned on the usesrcdim attribute of the jit.matrix object (in the center of the patch) so
that it is now using the output of the jit.findbounds object to determine its source rectangle. You
can see the tracked region displayed in the jit.pwindow labeled Show Tracked Region.

Using the output of a jit.findbounds object to set srcdimstart and srcdimend attributes of a jit.matrix object

The basic yellow of the ball has nearly equal amounts of red and green in it, so we set the min and
max attributes of the jit.findbounds object to look for cells containing high values in the red and
green planes and a low value in the blue plane. You can see that with careful settings of jit.brcosa
and careful settings of the min and max attributes of the jit.findbounds object, we've managed to get
very reliable tracking of the yellow part of the ball.

Using the Location of an Object

So, at least in this particular situation, we've managed to overcome the difficulties of tracking a
single object in a video. But now that we've accomplished that, what are we going to do with the
information we've derived? We'll show a couple of ways to use object location to control sound: by
playing MIDI notes or by playing MSP tones. Neither example is very sophisticated musically, but
they should serve to demonstrate the basic issue of mapping location information to sound
information.

Note: One fairly important detail that we haven't really discussed here is how to set the min and
max attributes of the jit.findbounds object most effectively to track a particular color in a video. A
certain amount of trial-and-error adjustment is needed, but you can get some pretty specific
information about the color of a particular pixel by using the suckah object demonstrated in
Tutorial 10. You can place the suckah object over the jit.pwindow of the video you want to ana-
lyze, click on the color you want to track, and use the output of the suckah object to get the RGB
information of that cell. (The values from the suckah object are in the range 0-255, but you can
divide them by 255.0 to bring them into the 0-1 range.)
 204

Tutorial 25 Tracking the Position
of a Color in a Movie
We'll send the location data to two subpatches located in the part of the patch marked Use Tracking
Info. We use a pack object to pack all of the output of the jit.findbounds object together into a single
4-item list, and then we use a gate object to route that information to the patcher playnotes subpatch
(to play MIDI notes) or the patcher playtones subpatch (to play MSP tones) or neither (to produce
no sound).

Send the location information to one of two subpatches

Playing Notes

• In the ubumenu labeled Use Tracking Info, choose the menu item 1 = Play MIDI Notes. Double-
click on the patcher playnotes object to see the contents of the [playnotes] subpatch. If you are
not hearing any notes being played (and you've verified that the movie is still playing), try

Note: In order for any of the tutorial examples involving MIDI or MSP to work, you'll need to
have your equipment configured properly. The MIDI examples assume that you have a multi-
timbral synthesizer keyboard connected to Max's virtual MIDI port a. The MSP examples
assume that you have MSP installed and that you have the Driver set to the proper output device
in the DSP Status window.

For more information on how to configure your equipment, consult the “Setup” section of the
Max Getting Started manual, the “Introduction” section of the Max Tutorials and Topics manual,
and the “Audio I/O” section of the MSP manual.
205

Tutorial 25 Tracking the Position
of a Color in a Movie
double-clicking on the noteout a object and choosing a different MIDI synthesizer in the
device dialog box.

The contents of the [playnotes] subpatch

In the [playnotes] subpatch we use the same sort of mapping formulae as we used in the first exam-
ple to calculate the location coordinates of the ball and place the information in a usable range. We
calculate the horizontal location and divide by 16 to get numbers that will potentially range from 0
to 19. We use the change object to ignore duplicate numbers (i.e. repeated notes), and then we
look up the note we want to play in the table.

We use the vertical location of the ball—which we've mapped into the range 0-119—to determine
the velocity values. The makenote object assigns the duration (200ms) to the notes and takes care
of providing the MIDI note-off messages. The underlying pulse of the music (20 pulses per
second) is determined by the speed of the metro that's playing the movie, but because the change
object suppresses repeated notes, not every pulse gets iterated as a MIDI note.

• Close the [playnotes] subpatch window. Click on the message box labeled Crop and Flip Source
Image. This sends a new source rectangle to the jit.qt.movie object to flip the image
horizontally, which reverses the high-low musical effect of the [playnotes] subpatch.

Note: The basketball player's motion has no relationship to any particular musical scale, so tak-
ing the raw location data as MIDI key numbers would result in an atonal improvisation. (Not
that there's anything wrong with that!) If we want to impart a tonal implication to the pitch
choices, we can use the numbers generated by the horizontal motion of the ball as index num-
bers to look up notes of the scale in a lookup table. If you want to see (or even alter) the contents
of the table, just double-click on the table object to open its graphic editing window.
 206

Tutorial 25 Tracking the Position
of a Color in a Movie
Playing Tones

• In the ubumenu labeled Use Tracking Info, choose the menu item 2 = Play MSP Tones. Double-
click on the patcher playtones object to see the contents of the [playtones] subpatch.

Use location of a color as frequency control information for MSP oscillators

Here we're using the horizontal and vertical location coordinates of the basketball as frequency
values for MSP oscillators. The equations we use to calculate those values are somewhat arbitrary,
but they've been devised so as to map both coordinates into similar frequency ranges. The
horizontal coordinate is used to control the oscillator in the left audio channel, and the vertical
coordinate controls the frequency of the oscillator in the right channel.
207

Tutorial 25 Tracking the Position
of a Color in a Movie
We use the presence of incoming messages to turn MSP audio on (and fade the sound up), and if
the messages are absent for more than 200 ms, we fade the sound down and turn the audio off.

First message starts and fades in audio; lack of a message for 201ms fades out and turns off audio.

• Close the [playtones] subpatch window. Flip the video image horizontally by clicking on the
message box objects labeled Crop Source Image and Crop and Flip Source Image to hear the
difference in the effect on the MSP oscillators.

Deriving More Information

In this tutorial we've shown a pretty straightforward implementation in which we use the location
coordinates of a color region directly to control parameters of sound synthesis or MIDI
performance. With a little additional Max programming, we could potentially derive further
information about the motion of an object.

For example, by comparing an object's location in one video frame with its location in the
preceding frame, we could use the Pythagorean theorem to calculate the distance the object
traveled from one frame to the next, and thus calculate its velocity. We could also calculate the slope
of its movement (), and thus (with the arctangent trig function) figure out its angle of
movement. By comparing one velocity value to the previous one, we can calculate acceleration,
and so on. By comparing an object's apparent size from one frame to the next, we can even make
some crude guesses about its movement toward or away from the camera in the “z axis” (depth).

Summary

The jit.findbounds object detects values within a certain range in each plane of a matrix, and it
reports the region in the matrix where it finds values within the specified range of each plane. This
is useful for finding the location of any range of numerical data in any type of matrix. In

∆ ∆y x/
 208

Tutorial 25 Tracking the Position
of a Color in a Movie
particular, it can be used to find the location of a particular color in a 4-plane matrix, and thus can
be used to track the movement of an object in a video.

Cropping the video image with the srcrect attribute of the jit.qt.movie object helps to focus on the
desired part of the source image. The jit.brcosa object is useful for adjusting the color values in the
source video, making it easier to isolate and detect a specific color or range of colors.

We can use the output of the jit.findbounds object to track the location of an object, and from that
we can calculate other information about the object's motion such as its velocity, direction, etc. We
can use the derived information to control parameters of a MIDI performance, MSP synthesis, or
other Jitter objects.
209

Tutorial 26
MIDI Control of Video

The MIDI–Video Relationship

When Max was first developed it was mainly for interactive control of musical instruments via
MIDI. As computer processor speeds increased, it became practical to use Max for processing
audio signals directly with MSP, and to process large matrices of data such as video images with
Jitter. The great power of Max is that it gives you access to all of the digital information in each of
these domains —MIDI, audio, and video—and helps you program interesting correlations
between them. This tutorial will focus on using incoming MIDI data to control aspects of video
playback in Jitter.

The two main benefits of using MIDI for controlling video are

1. the advantage of using a physical interface—a slider, wheel, etc.—rather than a mouse
dragging an onscreen control

2. the potential to make interesting relationships between music and video in realtime
performance.

There are many available MIDI controllers that provide useful physical interfaces for video: banks
of multiple sliders on fader boxes or digital mixers, jog wheels, etc. Even most synthesizer
keyboards have buttons, sliders, wheels, and foot pedals in addition to the obvious piano-like
keys. For this tutorial we'll limit ourselves to the controls that are commonly available on most
MIDI keyboards.

This tutorial assumes that you have a 61-key MIDI synthesizer keyboard with a modulation wheel
and a pitchbend wheel, that the keyboard is connected to your MIDI interface, and that it’s
assigned to Max's virtual port a.

The Macintosh OS comes equipped with a built-in MIDI system called CoreMIDI. You can use
the Audio MIDI Setup application found in /Applications/Utilities to specify the ports, interfaces
and MIDI devices in your MIDI setup.

On the Windows OS, all MIDI devices which are installed correctly on your system and appear
in the Sounds and Audio Devices Properties (Start - Settings - Sounds and Audio Devices) are
available to Max/MSP for MIDI I/O.
 210

Tutorial 26 MIDI Control of Video
In this tutorial patch we'll play a movie, we'll use the notes from the MIDI keyboard to move
around in the movie, and we'll use various types of MIDI messages to apply effects to the video
and modify it in real time.

Mapping MIDI Data for Use as Video Control Parameters

The data in MIDI channel messages (notes, pitchbend, aftertouch, etc.) is in the range 0 to 127.
For the most part, the attributes of Jitter objects expect arguments in the range 0 to 1—especially
when handling 4-plane 2D matrices of char data, as with video. So one of the first tasks we need to
do is map the MIDI data into the appropriate range for controlling parameters of the Jitter objects.
In the tutorial patch we show some examples of how to do this.

• Open the tutorial patch 26jMIDIControl,pat in the Jitter Tutorial folder.

In the yellow portion of the patch we have various MIDI input objects, for gathering the data
generated by a keyboard controller attached to port a: ctlin a 1 for the modulation wheel, ctlin a 7
for the volume pedal, bendin a for the pitchbend wheel, and notein a for the keyboard. The most
straightforward controls for our use are continuous controllers like the mod wheel and the volume
pedal. It's a simple matter to map their values into the 0 to 1 range, just by dividing by 127.

Map MIDI control data into a more useful 0-to-1 range

Even though both controllers have a range from 0 to 127, the mod wheel's “normal” resting
position is at 0 (modulation off), while the volume pedal's usual resting position is at some non-
zero position such as 100 or 127 (volume on). Thus, they might be useful to us in slightly different
ways for controlling video effects.

The pitchbend wheel uses still another normal position. It's resting position is at 64, and it springs
back to that position when released by the user. So we want it to give us a value of 0.5 when at rest.
The problem is that 64 is not exactly half way between 0 and 127; if we simply divide by 127, a bend
211

Tutorial 26 MIDI Control of Video
value of 64 will give us a result of about 0.504. So we have to treat the “downward bend” and
“upward bend” values differently, as shown in the following example.

There are 64 pitchbend values below the central value, and 63 above the center.

For the pitch information from the keyboard, the problem is a bit more complicated. First of all,
most keyboards do not have keys for all pitches 0 to 127; the normal 5-octave keyboard sends out
MIDI key numbers 36 to 96. But even more importantly, we're usually concerned not only with
pitch “height” (where it lies in the 0 to 127 range), but also the musical significance of the pitch
class (C, C#, D, etc.). In our patch, we use both ways of viewing pitch. We map the key range 36 to
96 into the 0-to-1 parameter range, and we derive the pitch class with a % 12 object. (All Cs will be
0, all C#s will be 1, etc.)

Using the note-on key value to derive pitch height and pitch class

In the above example we use a couple of other handy objects to thin out the incoming note data.
The poly 1 1 object allows only one note-on message to go through at a time; it turns off the preced-
ing note (sends it out with a velocity of 0) before passing the new note through. That's because we
 212

Tutorial 26 MIDI Control of Video
only want to try to track one key number at a time. If the user plays with legato technique (plays a
note before releasing the previous one) or plays several notes in a chord “simultaneously” (i.e.,
nearly simultaneously; nothing is really simultaneous in MIDI) it might be hard to tell which note
our patch is actually tracking. The poly 1 1 object ensures that all notes except the most recently
played one will be turned off in our patch, even if the notes are still being held down on the actual
MIDI keyboard. The stripnote object suppresses note-off messages, so only the note-on key num-
bers will get through. We don't want to track the pitches as the notes are being turned off, we only
want the get the key number when the note is first played.

• Try out your MIDI keyboard (and wheels) to verify that MIDI messages are getting into Max
OK. If not, double-click on the MIDI input objects to select the proper input device.

Using send and receive

The workings of this patch may be a bit difficult to follow because we make liberal use of the send
and receive objects. We do this mainly to avoid what would otherwise be a ludicrous mess of patch
cords. It's particularly appropriate here because we'll be sending so many messages into and out of
the jit.qt.movie object from/to so many other places in the patch. So we use receive and send
objects for the input and output of the jit.qt.movie object, and all other objects in the patch can
now communicate with it remotely.

We can communicate with jit.qt.movie no matter where it's located.

Just in case you're not familiar with the use of a semicolon (;) in a message box, we'll take a
moment to point out that you can put a semicolon, the name of a receive object, and a message in a

Note: We've set up the patch so that you don't really need a MIDI keyboard to try it out. You can
play (silent) pseudo-notes by clicking on the keys of the kslider object, and you can generate
other values by dragging on the number box objects labeled Mod., Vol., Bend, Key, and Vel.
Needless to say, the mouse will be a bit less gratifying than a MIDI keyboard as a physical inter-
face, but you can at least test the patch and try out the things that are explained in this chapter.
213

Tutorial 26 MIDI Control of Video
message box, and when that message box is triggered it will function exactly as if you had sent that
message into a send object. See the following example.

A semicolon in a message box is like using a send object.

So, let's trace what happens when we send a read message to jit.qt.movie.

• Click on the red message box that says ; movieA read blading.mov; movieA vol 0.

This opens the movie blading.mov. When jit.qt.movie has completed the movie-opening
operation, it sends a read message out its right outlet. If it opened the file successfully, the full
message will be read blading.mov 1. (If it was unsuccessful, the last argument will not be 1.) This
message gets sent to the receive Arightoutlet object in the purple region in the bottom-left corner of
the patch. We use the route objects to detect all the messages we expect to get out of that outlet and
route the messages to the proper places elsewhere in the patch. The arguments of the read message
get sent to the r read object in the green region in the bottom-right corner of the patch. With the zl
ecils 1 and sel 1 objects we check to see if the last argument of the message was a 1. If so, that means
that the read was successful, so we then go ahead and get the movie's attributes.

If the movie was read in successfully, get its framecount, fps, rate, and dim attributes.
 214

Tutorial 26 MIDI Control of Video
The remainder of the read message will be the name of the movie file, so we put that into a message
box to show the user what file is now playing. If the read was unsuccessful, the sel 1object will
trigger the message failed to read movie instead. (The delay object is there to ensure that the failure
message gets put into the message box after the filename.

Using MIDI Notes to Trigger Video Clips

We have chosen to use the pitch class of the note played on the MIDI keyboard to decide where to
go in the video. (There are, of course, many ways you could choose to use MIDI to navigate
through a movie or select different video segments. This just happens to be the method we've
picked for this tutorial. In a later tutorial chapter we demonstrate how to switch from one video to
another.) So, we take the total number of frames in the movie (the framecount attribute of
jit.qt.movie) and divide that by 12. We then use each note's pitch class (key % 12) to leap to a
certain twelfth of the movie.

The movie blading.mov is a 12-second long video consisting of twelve 1-second edits. So in this
case each different pitch class takes us to a different scene of this short movie. (Of course, that's all
very neat and convenient since we planned it that way. But by using the movie's actual framecount,
we've made it so our patch will successfully divide a movie of any length into twelfths.)

The pitch class (5) of F above middle C takes us to frame 75, 5/12 into the movie.

The note-on velocity will turn on the toggle that starts the metro that sends a bang message to the
jit.qt.movie object, and the note-off velocity will stop the metro.

• Click on the toggle labeled Show/Hide Display Window make the Display window visible. Play
some notes on your MIDI keyboard (or click on the kslider) to leap to different points in the
movie.
215

Tutorial 26 MIDI Control of Video
The jit.qt.movie object's matrices go to a send Aleftoutlet object, and eventually get to the
jit.pwindow via a receive display object. Where do the jit_matrix messages go between send Aleftoutlet
and receive display? They actually go into a subpatch for video effects processing. But before we
examine that subpatch, we'll discuss how we intend to control those effects.

Routing Control Information

Earlier in this chapter we saw the various ways that the incoming MIDI data gets mapped into the
0-to-1 range for use in controlling Jitter attributes. If you look in the yellow region of the patch,
you can see that that control information goes to five send objects: s pitch, s vel, s bend, s mod, and s
vol. These are five different sources of MIDI control, and we will use them to control up to eight
different video effects linked in a series. The effects link is something like this:

movie -> rate control -> volume control -> brightness control -> saturation control -> edge–detection
-> zoom–in control -> pixelation -> zoom–out control -> display window

For maximum versatility, we'd like to be able to control any of those effects with any of our MIDI
sources. To accomplish that, we use a combination of objects designed for just such a purpose:
matrixctrl and router. The router object takes messages in its various inlets and routes those
messages internally to any of its outlets that you specify. The matrixctrl object (designed for
controlling the MSP matrix~ object and the Max router object, not for controlling Jitter matrices
per se) provides a user-interface for specifying those routings. Take a look at the matrixctrl object in
the blue region of the patch.

Route fifth input (VOL) to second output (Volume)

matrixctrl shows input sources on vertical grid lines and output destinations on horizontal grid
lines. So, if we want to route the messages from the fifth source inlet of a router object to the second
destination outlet, we need to click on the grid point where those meet. In this example, we're
asking to route the vol data to control the volume effect. Clicking at that point on the matrixctrl grid
sends a message to a router object that tells it to make this source–destination connection
 216

Tutorial 26 MIDI Control of Video
internally. (Clicking again erases the red dot and breaks the connection in router.) In our program
the router object is inside the patcher effects subpatch, but if they were in the same patch, their
connection would look like the following example.

router is the “patchbay” for Max messages, and matrixctrl is its user interface

Routing Around (Bypassing) Parts of the Patch

If we aren't using some of the video effects at a certain time (for example, maybe we don't want
any zooming or pixelation), we'll want to bypass those particular effects. In the effects subpatch
we'll use Ggate and gate objects to bypass some of the effects. To give the user easy control over
which effects to use and which to bypass, we've set up checkboxes in the main patch, using the
radiogroup object. When the user clicks on one of the checkboxes, radiogroup sends the on/off
217

Tutorial 26 MIDI Control of Video
status of all of the checkboxes out its outlet, and we can use that information to switch the routing
of the Ggate objects in the subpatch.

Zoom In, Pixelate, and Zoom Out effects are completely bypassed.

• Double-click on the patcher effects object to see the contents of the effects subpatch.

The output of radiogroup is used to switch gate and Ggate objects in the subpatch.
 218

Tutorial 26 MIDI Control of Video
In the subpatch, the receive Aleftoutlet object receives jit_matrix messages from the jit.qt.movie in the
main patch. In the example above, the Ggate object routes the jit_matrix message around the p
brightness subpatch—bypassing that effect—and the next Ggate object routes the message through
the p saturation subpatch. Thus, the Ggate objects serve as Insert/Bypass switches for each effect, and
the checkboxes in the radiogroup provide the user interface for those switches. At the end of this
chain of effects, the matrix is finally passed to a send display object, which sends the matrix to the
Display window.

So, in the main patch we have two separate controls for the user to set up the routing of control
data and effects. With the matrixctrl object MIDI data from a source (or more than one source)
can be routed to any (or many) of the effects. With the radiogroup checkboxes, the user can elect to
insert effects or bypass one or more effect entirely.

• Close the [effects] subpatch window. Use the checkboxes to select which video effects you want
to insert, and use the matrixctrl to assign MIDI sources to the control of those effects. Play
around with different combinations to see what types of control are most intuitive (and work
in the context of a keyboard performance) for each effect.

User Control of Video Effects

Each video effect in this tutorial patch is pretty simple, so we won't describe each one in detail.
We'll just point out a few traits that might be instructive as you decide how you want to apply
realtime user control of video effects.

• Double-click on the patcher effects object once again to open the effects subpatch window.
Double-click on the p brightness object to see a typical one of these video effect subpatches.

The 0 to 1 data is scaled to the range 0 to 2 for controlling the brightness.

The jit_matrix message comes in the left inlet and the control data (in the range 0 to 1) comes in the
right inlet. The control data is scaled to an appropriate range, and is used to alter an attribute in a
Jitter object, and the processed matrix is passed on out to the next effect in the chain. The p
219

Tutorial 26 MIDI Control of Video
saturation and p zoomin subpatches work pretty similarly. The p zoomout subpatch is also similar, but
uses a slightly more involved mathematical expression, shown in the following example.

The 0 to 1 data is remapped as an exponential curve from 1 to 0.125.

In the above example the incoming control data (0 to 1) is used to calculate the exponent of a

power of 2. When the control data is 0, the expression will be 20=1. When the control data is 1, the

expression will be 2-3=0.125. Thus, the actual control value is flipped to have reverse meaning and
to describe an exponential curve instead of a linear change.

In the p edges subpatch, the object that's really creating the effect is a Sobel edge detection object
called jit.sobel. What we're controlling is the mix between the original input image and the edge-
detector's output. So we're really just controlling the xfade parameter of a jit.xfade object
(described in detail in Tutorial 8).

The p pixelate subpatch reduces the dimensions of the image matrix (a process known as
downsampling), so that some of the data must be discarded and the image will be pixelated when
it's displayed in the 320x240 Display window. (This method of pixelation is detailed in Tutorial
14.) We got the dimensions of the original image by retrieving the dim attribute of jit.qt.movie
(back when we first read in the movie), so we use our control data to scale those dimensions by
 220

Tutorial 26 MIDI Control of Video
some factor from 0 to 0.0625, and we use those new dimensions to set the dim attribute of a
jit.matrix object, as shown in the following example.

Downsampling an image causes it to be pixelated when it's upsampled to its original dimensions.

The p rate and p volume subpatches are a bit different because we're not actually processing a matrix
in those subpatches, we're just changing an attribute of jit.qt.movie in the main patch. The
following example shows the contents of the p rate subpatch.

Send the result to any r rate object, and also use it so set the rate attribute of jit.qt.movie

Summary

The physical interface afforded by MIDI controllers gives you a good way to control video in real
time in Jitter, and particularly to make correlations between music and video. Each type of
controller—keyboard, pitchbend wheel, modulation wheel, volume pedal, etc.—implies a
different type of control mapping. All the data of MIDI channel messages falls in the range 0 to
127, but the way you map that data to control Jitter attributes varies depending on the effect you're
trying to produce. In this patch, as a starting point we mapped all the pertinent MIDI data into the
range 0 to 1, then we scaled that range as necessary for each video effect.

Because Jitter objects receive so many different messages, it's often necessary to use a message box
to construct the desired message. If you find yourself directing many different messages to the
same place(s) from different parts of the patch, you might consider using the message box's
221

Tutorial 26 MIDI Control of Video
remote message-sending capability—a semicolon plus the name of a receive object—to reduce
the patch cord spaghetti in your patches.

If you need to send Max messages from many different sources to many different destinations, and
you need the ability to reconfigure the routing of source messages to the desired destinations, the
router object functions well as a configurable “patch bay” for Max messages. The matrixctrl object
provides a readymade user interface for configuring the internal source–destination patching
within a router. in this patch, we used a matrixctrl and router to allow the user to direct any of five
types of MIDI control data to any of eight different video effects. We used a radiogroup object to
create a bank of checkboxes that act as Insert/Bypass switches for the video effects.
 222

Tutorial 27
Using MSP Audio in a Jitter Matrix

This tutorial shows how to copy an MSP audio signal into a Jitter matrix using an object called
jit.poke~. Along the way, we'll investigate how to use the soundtrack from a QuickTime movie in
the MSP signal network using the sound output component attribute of the jit.qt.movie object and
a new MSP object called spigot~.

This tutorial assumes familiarity with routing MSP signals using send~ and receive~. It also uses a
simple delay network using tapin~/tapout~ objects. Tutorial 4 and Tutorial 27 in the MSP manual
cover these topics.

• Open the tutorial patch 27jAudioIntoMatrix.pat in the Jitter Tutorial folder.

The jit.qt.movie object at the top left of the tutorial patch reads a QuickTime movie called rca.mov
upon opening.

Our jit.qt.movie object

• Start the metro object at the top of the patch by clicking the toggle box. You will see an image in
the lefthand jit.pwindow object below the jit.qt.movie object. You won't see anything in the
other jit.pwindow objects yet, nor will you hear any sound.

Our jit.qt.movie object has two attributes set in its object box in addition to its dim attribute (320 by
240 cells). The loop attribute with a value of 2 tells the jit.qt.movie object to loop the movie as a
palindrome. Once the playback of the movie reaches the end, it will play backwards to the
beginning of the file, rather than looping around to the beginning and playing forward (the
 223

Tutorial 27 Using MSP Audio
in a Jitter Matrix
default behavior, when the loop attribute is set to 1). If you watch the movie, you'll see that the arm
manipulating the oscillator control moves up and then down again in an endless loop. The movie
actually only contains footage of the arm moving upward, but the loop attribute we've used
reverses the playback in the second half of the loop.

The Sound Output Component

The second attribute we've set in our jit.qt.movie object sets the Sound Output Component (soc) for
that instance of the jit.qt.movie object. The name specified as an argument to the soc attribute (in
this case gliss) specifies a new sound output component that MSP can use to acquire the
soundtrack of the movie loaded into the jit.qt.movie object. By default, the soc attribute is set to
none, which routes the movie's audio output directly to the Sound Manager. A named soc attribute
routes the audio to a spigot~ object with the same name as the component, allowing you to access
the audio signal in MSP:

The spigot~ object

The spigot~ object in the upper-right hand corner of the tutorial patch has an argument (gliss)
which matches the soc attribute of our jit.qt.movie object. If a movie file loaded into that jit.qt.movie
object has a soundtrack (which the rca.mov file conveniently does), the audio from the movie is
sent out as MSP signals from the spigot~. Note that the spigot~ object has two outlets, which cor-
respond to the left and right audio channels of the movie soundtrack. Our rca.mov file has a mon-
aural soundtrack, so we only need to use one of the outlets in our patch.

• Start the dac~ object at the bottom of the patch by clicking the toggle box attached to it. You
will see images appear in the remaining jit.pwindow objects and will see a signal level appear in

Important: The soc attribute of the jit.qt.movie object allows you to create a separate sound out-
put component for each jit.qt.movie object in your patch. You can use as many spigot~ objects
as you like, each with a unique name, to grab the audio from multiple QuickTime movies. It's
important to note, however, that you can only have one spigot~ object per sound output com-
ponent, and each jit.qt.movie object must have a unique soc attribute (unless, of course, the soc is
set to none—the Sound Manager can take the sound from as many movies as you wish). Once
you have multiple movie audio tracks as MSP signals you can mix them as you please.
 224

Tutorial 27 Using MSP Audio
in a Jitter Matrix
the meter~ object attached to the spigot~. If you turn up the gain~ slider attached to the dac~,
you should begin to hear sound out of whatever device you currently have selected as your
MSP audio driver. For more information on how to setup your computer's audio system with
MSP, consult the Audio I/O Chapter in the MSP manual

Receiving the audio signal from the spigot~

The soundtrack from the rca.mov file is sent as an MSP signal from the spigot~ object into a two-
tap delay line (generated by the tapin~ and tapout~ objects in the patch). The dry audio signal is
sent to a send~ object with the name red attached to it; the two delay taps are sent to send~ objects
named green and blue, respectively. The three audio signals are output by named receive~ objects
and summed into the gain~ object at the bottom of the patch, allowing you to hear all of them at
once.

• Adjust the delay times using the number box objects labeled Delay times (green/blue) attached
to the tapout~ objects. You can adjust the delays up to a maximum length of 1000 milliseconds
(the maximum delay time allocated by our tapin~ object).
225

Tutorial 27 Using MSP Audio
in a Jitter Matrix
Poke~ing Around

The righthand jit.pwindow object at the top of the tutorial patch shows the output of a jit.matrix
named scope, which also gets bang messages from the metro object at the top of the patch:

The output of the scope jit.matrix

The scope Jitter matrix is generated by three jit.poke~ objects at the right of the tutorial patch,
which write MSP audio signals into cells in the matrix. These cells, when displayed in the
jit.pwindow object, portray an oscilloscope view of the movie soundtrack, with the dry and two
delayed signals appearing as the colors red, green, and blue, respectively.

The three jit.poke~ objects, writing into the scope matrix
 226

Tutorial 27 Using MSP Audio
in a Jitter Matrix
The three similar regions at the right of the screen use the jit.poke~ object to write MSP signal data
into our scope matrix. The jit.poke~ object takes three arguments: the name of the Jitter matrix to
write into, the number of dim inlets to use, and the plane of the destination matrix to write numbers
to. All three jit.poke~ objects in our patch write into the matrix scope. Since scope is a 2-dimensional
matrix, we need 2 inlets to specify where to write the data (one inlet for the column and one inlet
for the row). The three objects differ in that they each write to a different plane of the scope matrix.

The first inlet of the jit.poke~ object provides the value to write into the matrix cell specified by the
other two inlets, which take signals to specify the cell location. We use a sig~ object with a value of
1 to write a constant value into our current position in the scope matrix. The value of 1 gets
interpreted as 255 when writing into a matrix containing char data (which is what we're doing in
this case).

The other two inlets in our jit.poke~ objects determine where in the output matrix they should
write data (this set of coordinates defines the write pointer for the object—you could think of this
as the location of the record head, only with two dimensions instead of one). The rightmost inlet
receives the audio signal from our named receive~ objects and sets the vertical (dim 1) coordinate
of the write pointer to correspond to the amplitude of the signal. The *~ and +~ objects in the
patch scale the output of the audio signal from between -1 and 1 (the typical range for an audio
signal) to between 0 and 239 (the range of the vertical dimension of our output matrix).

Sync or Swim

The middle inlet to our jit.poke~ object receives a sync signal that specifies where along the
horizontal axis of the matrix we write the current amplitude from the audio signal. This signal is
unrelated to the audio data coming from the movie—you could think of it as the horizontal
227

Tutorial 27 Using MSP Audio
in a Jitter Matrix
refresh rate of the virtual oscilloscope we've made in this patch. The sync signal is generated by a
phasor~ object in the middle of the tutorial patch:

Generating the horizontal sync signal for our jit.poke~ objects

Our phasor~ object generates a repeating ramp signal from 0 to (nearly) 1. The *~ below it rescales
this signal to generate values appropriate to the width of our matrix (0 to 319). This signal is then
passed to a send~ object with the name h_sync, which forwards the signal to receive~ objects
connected to the middle inlets of our jit.poke~ objects. The frequency of the phasor~ (specified by
the number box connected to its first inlet) determines the rate at which our jit.poke~ objects scan
from the left to right through the matrix.

• Try changing the frequency of the phasor~ by changing the number box labeled Horizontal scan
rate (Hz). Notice how at higher frequencies you can see the waveform generated by the movie
audio in more detail. If you set the rate to a negative value, the matrix will be written
backwards (i.e. from right to left).

The dry audio signal and the two delayed outputs are visualized as the three visible planes of our
scope matrix (1, 2, and 3, or red, green, and blue). When the cells written by the jit.poke~ objects
overlap, different color combinations will appear in the output matrix.
 228

Tutorial 27 Using MSP Audio
in a Jitter Matrix
Now that we understand how the matrix is being written, we need to look into how the matrix
clears itself every time a horizontal scan is completed. The relevant parts of the patch are shown
below:

Detect when the horizontal sync resets and clear the matrix

The change~ object outputs a value of 1 when the ramp generated by the phasor~ object is on the
increase. When the phasor~ snaps back to 0 at the end of the ramp, change~ will briefly output a
value of -1. The ==~ object, which outputs a 1 when the change~ object does, will output a 0 at that
point. When the phasor~ begins to ramp again, the ==~ object will output a 1, triggering a bang
message from the edge~ object (which detects a zero to non-zero transition in the last signal
vector). The bang is then sent to a receive object named reset, which triggers a clear message to the
jit.matrix object. As a result, our scope matrix is cleared every time the phasor~ restarts its ramp.
229

Tutorial 27 Using MSP Audio
in a Jitter Matrix
Putting it All Together

Our two Jitter matrices (the image from the jit.qt.movie object and the oscilloscope drawn by our
jit.poke~ objects) are composited into a final matrix by the jit.op object:

Compositing the two matrices using jit.op

The op attribute we've specified initially for our jit.op object is *. As a result, our composite is made
from the multiplication of the two matrices. Since most of the cells in our scope matrix are 0
(black), you only see the movie image appear in those cells and planes where the jit.poke~ objects
have traced the waveform.

• Change the op attribute of the jit.op object by clicking on some of the message box objects
attached to the prepend object to the right of the jit.pwindow showing the scope matrix. Notice
how the different arithmetic operators change the compositing operation of the two matrices.
 230

Tutorial 27 Using MSP Audio
in a Jitter Matrix
Summary

The soc attribute of the jit.qt.movie object lets you define a named Sound Output Component. The
spigot~ object lets you access the soundtrack of a QuickTime movie as an MSP signal by giving it
an argument that matches the soc attribute of the jit.qt.movie object playing the movie.

You can use the jit.poke~ object to write data from MSP signals into a named Jitter matrix. The
jit.poke~ object takes arguments in the form of the name of the matrix to write to, the number of
inlets with which to specify cell coordinates, and the plane to write to in the matrix. The first inlet
of jit.poke~ takes the value to be written into the matrix. Subsequent inlets take MSP signals that
specify the cell location in the matrix in which data should be written.
231

Tutorial 28
Audio Control of Video

Audio as a Control Source

This tutorial demonstrates how to track the amplitude of an MSP audio signal, how to use the
tracked amplitude to detect discrete events in the sound, and how to apply that information to
trigger images and control video effects.

• Open the tutorial patch 28jAudioControl.pat in the Jitter Tutorial folder.

In the upper-right corner of the patch we've made it easy for you to try out either of two video
sources: the audio input of the computer or a pre-recorded soundfile.

The pop-up menu lets you select one of two audio sources: adc~ or sfplay~

We've used a loadbang object (in the upper-middle part of the patch) to open an AIFF soundfile
talk.aiff and a QuickTime movie dishes.mov, and to initialize the settings of the user interface
objects with a preset. So, in the above example, the ubumenu has already selected the sfplay~ object
as the sound source, the soundfile has already been opened by the open talk.aiff message, the rate of
sfplay~ has been set to 1, and the output volume has been set to 0.5. The left channel of the sound
source (the left outlet of the left selector~ object) is connected to another part of the patch, which
will track the sound's amplitude.
 232

Tutorial 28 Audio Control of Video
Tracking Peak Amplitude of an Audio Signal

To track the sound's amplitude for use as control data in Max, we could use the snapshot~ object
to obtain the instantaneous amplitude of the sound, or the avg~ object to obtain the average
magnitude of the signal since the last time it was checked, or the peakamp~ object to obtain the
peak magnitude of the signal since the last time it was checked. We've elected to track the peak
amplitude of the signal with peakamp~. Every time it receives a bang message, peakamp~ reports
the absolute value of the peak amplitude of the signal it has received in its left inlet. Alternatively,
you can set it to report the peak amplitude automatically at regular intervals, by sending a non-
zero time interval (in milliseconds) in its right inlet, as shown in the following example.

A non-zero number in the right inlet is a reporting time interval in milliseconds

Every 10 milliseconds, peakamp~ will send out the peak signal amplitude it has received since the
previous report. We've given ourselves the option of turning off the peakamp~ object’s timer and
using the metro that's controlling the video display rate to bang peakamp~, but the built-in timing
capability of peakamp~ allows us to set the audio tracking time independently of the video display
rate.

Using Decibels

We actually perceive the intensity of a sound not so much as a linear function of its amplitude, but
really more as a function of its relative level in decibels (abbreviated dB). This means that more
than half the sound pressure level we're capable of hearing from MSP resides in the bottom 1% of
its linear amplitude, in the range between 0 and 0.01! For that reason, it's often more appropriate
to deal with sound levels on the logarithmic decibel scale, rather than as a straight amplitude
233

Tutorial 28 Audio Control of Video
value. So we convert the amplitude into decibels, using the p AtodB subpatch (which is identical to
the AtodB subpatch used in the MSP Tutorial 4).

The contents of the [AtodB] subpatch

The [AtodB] subpatch takes the peak amplitude reported by peakamp~ and converts it to decibels,
with an amplitude of 1 being 0 dB and all lesser amplitudes having a negative decibel value.

Convert amplitude to a decibel value, relative to a reference amplitude of 1

Focusing on a Range of Amplitudes

In many recordings and live audio situations, there's quite a bit of low-level sound that we don't
really consider to be part of what we're trying to analyze. The sound we really care about may only
occupy a certain portion of the decibel range that MSP can cover. (In some recordings the music is
compressed into an extremely small range to achieve a particular effect. Even in many
uncompressed recordings, the most important sounds may all be in a small dynamic range.) The
level of the soft unwanted sound is termed the noise floor. It would be nice if we could analyze only
those sounds that are above the noise floor.

The patcher dBexpander subpatch lets us control the dB level of the tracked amplitude and set a noise
floor threshold beneath which we want to ignore the signal. The subpatch takes the levels we do
want to use, and expands them to fill the full range of the decibel scale from 0 dB down to –120

Technical Detail: The formula for conversion of amplitude into decibels is:

where A0 is a reference amplitude and A is the amplitude being measured. The decibel scale is
discussed in the “Digital Audio” and “Tutorial 4" sections of the MSP manual.

dB
A

A
= ⋅20 10

0

log ()
 234

Tutorial 28 Audio Control of Video
dB. In the following example, we have specified a noise floor threshold of –36 dB. The amplitude
of the MSP signal at this moment is 0.251189, which is a level of –12dB. The subpatch expands
that level (originally –12 in the range from 0 down to –36) so that it occupies a comparable
position in the range from 0 down to –120. The resulting level is –40 dB, which is sent out the right
outlet of the subpatch. The level relative to the noise floor is sent out the left outlet expressed on a
scale from 0 to 1, which is a useful control range in Jitter. In this example, the input level of –12 dB

is 24 dB greater than the noise floor; that is, it's 2/3 of the way to the maximum in the specified 36
dB range.

Convert linear amplitude in the region above -36dB into full range

• You can apply this value as control data for Jitter. Turn on the toggle labeled Use Display
Framerate. This will temporarily turn off the internal timer of peakamp~ and will use the bang
messages from the metro instead. Turn on the toggle labeled Audio On/Off to start MSP audio
processing. Click on the message box containing the number 1 above the sfplay~ object to
start the playback of the sound file. Turn on the toggle labeled Display Movie to start the video
playback. The peak amplitude of the audio is reported at the same rate as the movie matrix is
displayed—every 25 milliseconds. The tracked decibel level—40 values per second—is
displayed in the green and black multislider labeled expanded level. The level, mapped into the
range 0 to 1, is used to change the val attribute of the jit.op object, affecting the displayed video.
You can scale the range of that value up or down with the number box labeled Effect Strength.
Values in the range 0.5 to 1.5 have the most effect on the image.

Audio Event Detection

In the preceding section we tracked the amplitude envelope of the sound and used the peak
amplitude to get a new control value for every frame of the video. We can also analyze the sound
on a different structural level, tracking the rhythm of individual events in the sound: notes in a
piece of music, words in spoken text, etc. To do that, we'll need to detect when the amplitude
increases past a particular threshold, signifying the attack of the sound, and when the sound has
gone below the threshold for a sufficient time for the event to be considered over. We do this inside
the patcher detectevent subpatch. In the main patch, we provide three parameters for the
[detectevent] subpatch: the Note-on Threshold (the level above which the sound must rise to
designate an “event” or “note”), the Min. Note Duration (a time the subpatch will wait before
235

Tutorial 28 Audio Control of Video
looking for a level that goes back below the threshold), and the Min. Off Time (the amount of time
that the level must remain below the threshold for the note to be considered ended). In the
following example a “note” event will be reported when the level exceeds –30 dB, and the note will
only be considered off when the level stays below –30 dB for at least 25 milliseconds. Since the
subpatch will wait at least 50 ms before it even begins looking for a note-off level, the total duration
of each note will be at least 75 milliseconds.

When the level exceeds the threshold and reaches a local maximum, an audio event is reported.
 236

Tutorial 28 Audio Control of Video
• To see the contents of the subpatch, double-click on the patcher detectevent object.

Event-detection based on the amplitude exceeding a threshold

The comments in the subpatch explain the procedure pretty succinctly. When a new level comes in
the left inlet, two conditions must be satisfied: the level must be greater than the threshold and
there must not already be a note on. If both those conditions are met, then we keep watching the
amplitude until it stops increasing, at which point we consider the note to be fully on so we send
the number 1 out the right outlet and send the peak level out the left outlet. We wait the “minimum
note time”, then open the gate to begin looking for indications (from the > object) that the level
has gone below the threshold. Once such a level has been detected, we wait the “minimum off
time” before deciding that the note is off. If another level above the threshold comes before the
minimum off time has elapsed, the stop message is sent to the delay object and a new note-off level
must detected. When the note is truly off, a 0 is sent out the right outlet, the fact that the note has
237

Tutorial 28 Audio Control of Video
been turned off is noted (in the == 0 object), and the gate is closed again. It's now ready for the
next time that the threshold is passed.

• Close the [detectevent] subpatch window. For this event-detector to work well on fast-
changing sounds, the peak amplitude should usually be tracked at a fairly rapid rate. Turn off
the Use Display Rate toggle so that the peakamp~ object will use its internal timer at an interval
of every 10 ms.

In the main patch you can see three demonstrations of ways to use the output of the [detectevent]
subpatch. In the bottom right corner of the patch we use the 1 from the right outlet of patcher
detectevent to trigger another subpatch, patcher flashbulbs, which places random colored dots in a
display window. We take the value out of the left outlet of patcher detectevent and expand its range
just the way we did for the original audio level, so that the value signifying the “note amplitude”
can cover the full available range. We use that to trigger MIDI notes, and also to choose different
pictures to display. Let's look at each of those procedures briefly.

Using Audio Event Information

The simplest use of an audio event is just to trigger something else when an event occurs.
Whenever an audio event is detected, we trigger the patcher flashbulbs subpatch. That subpatch
generates a 16x12 matrix of random colors, then uses scaling to turn most of the colors to black,
leaving only a few remaining cells with color. When that matrix goes out to the main patch, those
cells are upsampled with interpolation in the jit.pwindow and look like flashes of colored light.
Subsequent level values from peakamp~ are used in the [flashbulbs] subpatch to bang a bline
object, causing the colors to fade away after 20 bang messages.

The [flashbulbs] subpatch
 238

Tutorial 28 Audio Control of Video
In the patcher pickpicture subpatch, we simply divide the event amplitudes up into five equal ranges,
and use those values to trigger the display of one of five different pictures.

In the following example, you can see the use of audio information to trigger MIDI notes.

Peak level determines pitch and velocity of a MIDI note

We use the expanded decibel value coming out of the right outlet of the patcher expander to derive
MIDI pitch and velocity values. We first put the values in the range 0 to 120, then use those values
as MIDI velocities and also map them into the range 96 to 36 for use as MIDI key numbers. (Note
that we invert the range so as to assign louder events to lower MIDI notes rather than higher ones,
in order to give them more musical weight.) The note durations may set by the Min. Note Duration
number box, or they may be set independently by entering a duration in the number box just above
makenote's duration inlet.

• You can experiment further with this patch in a number of ways: by changing the rate of the
audio file with the Rate number box, by opening different soundfiles and movies, by choosing
Sound Input from the ubumenu to use live sound input, and by changing the various tracking
parameters such as Reporting Interval, Noise Floor Threshold, Note-On Threshold, and Min.
Note Duration.
239

Tutorial 28 Audio Control of Video
Summary

We've demonstrated how to track the peak amplitude of a sound with the peakamp~ object, how
to convert linear amplitude to decibels, and how to detect audio events by checking to see if the
amplitude level has exceeded a certain threshold. We used the information we derived about the
amplitude and the and peak events to trigger images algorithmically, select from preloaded
images, play MIDI notes, and alter video effects.
 240

Tutorial 29
Using the Alpha Channel

In this tutorial we'll look at how to composite two images using the alpha channel of a 4-plane char
Jitter matrix as a transparency mask. We'll explore this concept as a way to superimpose subtitles
generated by the jit.lcd object over a movie image.

• Open the tutorial patch 29jUsingTheAlphaChannel.pat in the Jitter Tutorial folder.

The upper-lefthand region of the tutorial patch contains a jit.qt.movie object that reads the file
ozone.mov when the patch opens. The metro object outputs a new matrix from the jit.qt.movie
object every 33 milliseconds and polls the time attribute of the object (the current playback
position of the movie, in QuickTime time units) by using a trigger object:

Play back the movie, getting the current time position with each new matrix

• Start viewing the movie by clicking the toggle box attached to the metro. The jit.qt.movie
object will start to output matrices as well as the current playback position within the movie.
You should see the movie (with subtitles!) appear in the jit.pwindow at the bottom of the
patch.

Nice kitty
 241

Tutorial 29 Using the Alpha Channel
First, we'll look at how the subtitles are being generated. Then we'll investigate how we composite
them with the image from the movie using the alpha channel.

The jit.lcd Object

The subtitles in our patch are generated by sending messages to the jit.lcd object (at the top of the
patch). The arguments to jit.lcd specify the planecount, type, and dim of the matrix generated by the
object (jit.lcd only supports 4-plane char matrices). The jit.lcd object takes messages in the form of
QuickDraw commands, and draws them into an output matrix when it receives a bang message.
We initialize our jit.lcd object by giving it commands to set its font and textface for drawing text and
its foreground (frgb) and background (brgb) color (in lists of RGB values). We then clear the jit.lcd
object's internal image and send out an empty matrix with a bang message:

An initialized jit.lcd object

The jit.lcd object outputs its matrix into a jit.rgb2luma object, which converts the 4-plane image
output by jit.lcd into a 1-plane grayscale image. The jit.rgb2luma object generates a matrix
containing the luminosity value of each cell in the input matrix. This 1-plane matrix is then sent to
a send object with the name alphamask and to a jit.pwindow object so we can view it. Note that the
jit.pwindow object has its border attribute set to 1. As a result, we can see a 1-pixel black border
around the white image inside.

Note: The jit.lcd object has the same complete set of QuickDraw commands and functions that
are available in the Max lcd object. Though we'll be using it in this patch for the purpose of gen-
erating text images, jit.lcd can be used to generate all manner of 2-dimensional vector graphics
as well. Tutorial 43 in the Max Tutorials and Topics manual demonstrates some of the features of
the lcd object, all of which can be applied just as easily to jit.lcd.
 242

Tutorial 29 Using the Alpha Channel
Our jit.lcd object also receives messages from elsewhere in the patch (via the receive object named
lcd attached to it). The subtitles are generated automatically by looking for certain times in the
movie playback:

Parsing the time values from the jit.qt.movie object

The jit.qt.movie object outputs its current playback position with every tick of the metro object,
thanks to the t gettime b object we have between the two. The time attribute is sent out the right
outlet of the jit.qt.movie object, where we can use a route object to strip it of its message selector
(time). We divide the value by 100 so that we can search for a specific time more accurately. Since
the metro only queries the time every 33 milliseconds, it's entirely possible that we'll completely
skip over a specific time—dividing the time value by 100 makes it easier to find the point in the
movie we want.

The time values are sent through a gate object where you can disable the subtitles if you so choose:

Control the flow of the time values with a gate object

• Click the toggle box attached to the gate. The subtitles should disappear. You can resume the
subtitles by clicking the toggle box again.
243

Tutorial 29 Using the Alpha Channel
The subtitles are finally generated when the time values 21 and 40 make it past the gate object. The
select object sends out a bang message when those values arrive. This triggers commands from the
message box objects to jit.lcd:

Performing the subtitling based on the time values

The clear message to jit.lcd erases the drawing canvas, filling all the pixels with white (our chosen
background color). The moveto message moves the cursor of the jit.lcd object to a specific
coordinate from which it will draw subsequent commands. The write message draws text into the
matrix using the currently selected font and textface. Once we've written in our subtitles, we send
the object a bang message to make it output a new matrix. With every subtitle, we also send a bang
message to a delay object, which clears and resends the matrix 1000 milliseconds later, erasing the
title.

Make Your Own Titles

The region of the tutorial patch to the right (with the magenta background) lets you use the
textedit object to generate your own subtitles. The number box labeled Offset determines the
 244

Tutorial 29 Using the Alpha Channel
horizontal offset for the text. The trigger object allows you to send all the necessary QuickDraw
commands to the jit.lcd object in the correct order.

Make your own subtitles

• Turn off the automatic subtitling with the toggle box above the gate. Type some text into the
textedit box and hit the return key. The text will appear superimposed over the image.

The new subtitle over the image

Now that we understand how the titles are generated, lets take a look at how they get composited
over the movie.

The Alpha Channel

The alpha channel of an ARGB image defines its transparency when it is composited with a second
image. If a pixel has an alpha channel of 0 it is considered completely transparent when compos-
ited onto another image. If a pixel's alpha channel is set to 255 it is considered completely opaque,
245

Tutorial 29 Using the Alpha Channel
and will show at full opacity when composited. Intermediate values will cause the pixel to fade
smoothly between the first and second image. In 4-plane char Jitter matrices, data stored in plane
0 of the matrix is considered to be the alpha channel.

The jit.alphablend object uses the values stored in the alpha channel (plane 0) of the matrix
arriving in the left inlet to perform a crossfade (on a cell-by-cell basis) between the matrices
arriving in its two inlets. Our patch replaces plane 0 of the jit.qt.movie object’s output matrix with
the output of the jit.lcd object. We then use this new alpha channel with the jit.alphablend object to
crossfade between the movie and an inverted copy of itself:

Inserting a new alpha channel with the jit.pack object

We use the jit.unpack and jit.pack objects to strip the original alpha channel from our QuickTime
movie. The 1-plane matrix containing the subtitle arrives at the jit.pack object from the receive
object above it. Notice how the trigger object is used to force jit.pack to output new matrices even
when no new matrix has arrived from the receive (jit.pack, like the Max pack object, will only
output a matrix when it has received a new matrix or a bang message in its leftmost inlet). The jit.op
object creates a negative of the original matrix from the QuickTime movie (by subtracting the
matrix values from 255 using the !- operator). The jit.alphablend object then uses our new alpha
channel—white values in the subtitle matrix cause the original image to be retained, while black
values bring in the inverted image from the righthand matrix.

Different techniques are often used for subtitling. The technique of superimposing white text over
an image (sometimes with a black border around it) is far more common than the technique used
here of filling an alpha mask with an inverted image. However, doing our subtitling this way gives
us a perfect excuse to use the jit.alphablend object, and may give you more legible subtitles in
situations where the background image has areas of high contrast.

Technical Detail: Color systems and software environments differ on whether the alpha channel
describes the transparency or the opacity of an image. In QuickTime movies (and hence in Jit-
ter) an alpha value of 255 means that the pixel is fully opaque. You may encounter programs
where the opposite is true (i.e. an alpha value of 255 denotes full transparency). The mode
attribute of the jit.alphablend object lets you treat the alpha channel in either way. The default
mode of 0 treats increasing alpha values as more opaque, while setting the mode attribute to 1
causes the object to treat increasing alpha values as more transparent.
 246

Tutorial 29 Using the Alpha Channel
The image below shows the compositing process with jit.pwindow objects showing intermediate
steps:

The compositing process, showing intermediate steps

Summary

The jit.lcd object offers a complete set of QuickDraw commands to draw text and 2-dimensional
graphics into a Jitter matrix. The jit.rgb2luma object converts a 4-plane ARGB matrix to a 1-plane
grayscale matrix containing luminance data. You can replace the alpha channel (plane 0) of an
247

Tutorial 29 Using the Alpha Channel
image with a 1-plane matrix using the jit.pack object. The jit.alphablend object crossfades two
images on a cell-by-cell basis based on the alpha channel of the lefthand matrix.
 248

Tutorial 30
Drawing 3D text

This tutorial shows you how to draw and position 3D text in a jit.window object using the
jit.gl.text3d and jit.gl.render objects. Along the way, we will cover the basics of drawing OpenGL
graphics using the jit.gl.render object.

The jit.gl.text3d object is one of the many Jitter OpenGL drawing objects that work in conjunction
with the jit.gl.render object. OpenGL is a cross-platform standard for drawing 2D and 3D
graphics, designed to describe images so that they can be drawn by graphics coprocessors. These
coprocessors, also known Graphics Processor Units or GPUs, speed up drawing operations
enormously, allowing complex scenes made of textured polygons to be animated in real time.
OpenGL graphics can help you create faster visual displays or interfaces without bogging down
your computer’s CPU. We refer to objects such as jit.gl.text3d and jit.gl.render as objects in the GL
group

• Open the tutorial patch 30j3DText.pat in the Jitter Tutorial folder.

In the lower left of the patch, there is a jit.window object named hello. This window will be the
destination for our OpenGL drawing.

• Click on the toggle labeled Start Rendering.

The toggle starts the qmetro object that sends bang messages to a trigger object. For each bang
received at its inlet, the trigger object sends the message erase out its right outlet, and then a bang
message out its left outlet. These messages are sent to the jit.gl.render hello object.

Creating a Drawing Context

All OpenGL graphics in Jitter are drawn with the aid of jit.gl.render objects. Each jit.gl.render
object must refer to a named destination for drawing. You can specify this destination using an ini-
tial argument to jit.gl.render. So in this case, jit.gl.render hello creates a jit.gl.render object that will
draw to the destination window that we have named hello.

We refer to this combination of a jit.gl.render object and a named destination as a drawing context.
A drawing context is required for OpenGL rendering. The objects on the left side of this patch are
sufficient to build a valid drawing context, and so when you click on the toggle object, the message

It’s important to note that hello is not the name of the jit.gl.render object—only its destination.
 249

Tutorial 30 Drawing 3D text
jit.gl.render: building GL on window ‘hello’ appears in the Max window. This tells you that the context is
being created.

A jit.gl.render object and a named destination create a drawing context

GL Objects in the Context
A variety of Jitter objects are provided for drawing different things into OpenGL contexts. These
Jitter objects have names that all start with “jit.gl”. Some examples are jit.gl.model (which draws
3D models), jit.gl.plato (which draws Platonic solids), and the jit.gl.text3d object, as seen in the
upper right of the Tutorial patch. These objects all take the name of a drawing context as an initial
argument, and are automatically drawn into that context by a jit.gl.render object each time it
receives a bang message. So in this example, as long as the metro object is sending bang messages,
the jit.gl.render object is performing the same set of operations: erase the screen, draw all objects,
repeat. The only reason that the jit.gl.text3d object’s output is not visible in the window is that it
has no text string assigned to it. Let’s remedy this.

• Click on the message box reading Hello\, Jitter!.

This sets the text contained in the jit.gl.text3d object. You should now see the word “Hello” in the
jit.window. Note that the comma in the text is preceded by a backslash; since commas normally
 250

Tutorial 30 Drawing 3D text
separate sequential messages in a message box, the backslash is needed to tell Max to treat the
comma as an ordinary text symbol.

Common 3D Attributes

All Jitter OpenGL objects which all begin with “jit.gl” share a common set of attributes that allow
them to be positioned in 3D space, colored, and otherwise modified—the ob3d group. Drawing
3D graphics can be a fairly complex task. The ob3d group simplifies this by insuring that the
messages you learn to draw one 3D object will work with all of them, whenever possible. This
group of common attributes are fully documented in the GL group section of the Jitter Object
Reference. To introduce the 3D group here, we will demonstrate the position, rotation, scale and
axes attributes by manipulating the jit.text3d object.

Technical Detail: The qmetro object is needed in this patch because, unlike most previous tuto-
rial patches, there are no jit.matrix objects present. In complex patches, the drawing or matrix
calculations being repeatedly triggered by a metro object may not complete before the next bang
is scheduled to arrive. In this example, this situation would occur if the text took more than 40
milliseconds to render. Normally, the Max scheduler would place this bang on its queue—a list
of pending messages. Max is not normally allowed to drop messages from the queue. So in this
patch, if each bang generated a sequence of events that take longer than 40 milliseconds, and no
dropping of messages was allowed, the queue would eventually overflow, or run out of space to
store additional pending messages. Then the scheduler would stop, and so would your show!
This is probably not what you had in mind.

The qmetro object (which is really just a combination of a metro object and the jit.qball object—
see Tutorial 16) helps you avoid this situation by dropping any bang messages that are still pend-
ing during a calculation. If a bang message is scheduled to occur while the rest of the patch is
rendering, it will be placed in a queue. If that bang still hasn't been passed to the rest of the patch
by the time the next bang occurs, the first bang will be usurped by the second, which will be
placed next in the queue. And so on.

Let’s say the output of a metro object set to output a bang message every 10 milliseconds is sent to
a jit.qt.movieobject, followed by some effects that take 100 milliseconds per frame to draw. So
the jit.qt.movie object will receive 10 bang messages during the time the effects are being calcu-
lated. The jit.qt.movie object knows in this case that the processing is not yet complete, and
instead of sending out ten jit_matrix messages next time it has a chance, it drops all but one.

While the jit.qt.movie and jit.matrix objects have this capability built in, the jit.gl.render object
does not. This is because the jit.gl.render object will often need matching groups of messages in
order to draw a frame properly. In this example, the erase message is needed to clear the screen,
and the bang message draws the text. If an erase message was dropped to avoid overflowing the
queue, multiple bang messages might be processed in a row, and multiple copies of the text
would be drawn at once, which is not what we want to do. As patches get more complex, differ-
ent kinds of visual artifacts might result.

So, the qmetro object is provided to let the designer of the patch decide what messages to drop
from the queue. In this example, as in most cases, simply substituting qmetro objects for metro
objects insures that the drawing will always look correct, and the queue will never overflow.
251

Tutorial 30 Drawing 3D text
W can add a set of spatial axes to the jit.text3d object to make our spatial manipulations easier to
see and understand—it's both easier to see how the text object is oriented, and also to see
additional information about exactly where the object’s origin is.

• Click on the toggle connected to the message box reading axes $1 in order to see the 3Dobject’s
axes.

The 3D text at the origin

The x axis, drawn in red, points to the right. Zero is at the center of the screen, and increasing x
values move in the direction of the right of the screen. The y axis, drawn in green, points upwards,
and the z axis, drawn in blue, points out of the screen towards you (since it is pointed directly
toward you, you will only see a small blue dot). These axes represent the object’s local coordinate
system as it moves through the world. When a GL group object is first created, its local coordinate
system is not rotated, translated, or scaled—it has the same coordinate system as the rest of the 3D
world, by default

The text “Hello, Jitter!” is displayed in the jit.window object's display area, but it starts at the center
of the screen, so the final part is cut off. Let’s move the text to the left.

• Set the number box labeled x in the Common 3D attributes section of the patch to the value –1.
 252

Tutorial 30 Drawing 3D text
The Number box sends a floating-point value to the pak object, which sends the message position
followed by three numbers to the jit.gl.text3d object. As you change the value in the number box,
you can see the text slide to the left until all of it is visible on the screen.

Changing the position attribute

We have just changed the position attribute of the jit.gl.text3d object. The position message can be
followed by three number arguments that set the position of the object in three dimensions. If
fewer than three numbers follow the position message, the axes are filled in the order [x, y, z], and
the position of the object on the unspecified axes is set to 0. For example, sending the message
position 5. will set the position of a GL group object to the location [5, 0, 0].

The operation of changing an object’s position is called translation.

Now, let’s rotate the text.

• Set the number box objects labeled x, y and z directly above the pak rotation object in the
Common 3D attributes section of the patch to the value 1. This sets the axis of rotation.
253

Tutorial 30 Drawing 3D text
• Drag the number box labeled angle to the value 320. You will see the text rotate around the axis
into the position shown in this screenshot.

The 3D text after translation and rotation

Sending the message rotate followed by from one to four numbers sets the rotation attribute of an
GL group object. The first number is an amount of rotation in degrees, counterclockwise around
the object’s axis of rotation. The other three numbers specify this axis of rotation as an [x, y, z]
vector. As with the position attribute, some values following the rotation attribute can be dropped
and default values will be understood. If the rotation message is followed by only one number, that
number is understood to mean the angle in degrees, and the axis of rotation is [0, 0, 1]. This
rotates the object around the z axis, or in other words, in the x-y plane of the screen. If two or more
numbers accompany the rotation message, the first one always specifies the rotation angle, and
following ones specify the vector of rotation in the order in which they appear.
 254

Tutorial 30 Drawing 3D text
• Set the number box labeled x directly above the pak scale object to 0.5. This scales the 3D text by
half along its local x axis.

The 3D text after translation, rotation and scaling

Note that the red axis scales along with the object. The dots along the line are now twice as close
together as they were before the scale operation. The axes are always drawn in the GL group’s local
coordinate system, which in this case has been translated, rotated, and scaled with respect to the
world coordinate system in the jit.gl.render object.

It's important to consider the order of operations when performing geometry transforms. You can
set the rotate, position and scale attributes of an object independently in any order you wish. But
each time it is drawn, the object is transformed in the following order:

1. Scaling

2. Rotation

3. Translation

Keeping this order is essential so that the attributes behave predictably. If rotation occurred before
scaling, for example, a scale 0.5 message would scale the object not just in its x coordinate, but in
some combination of x, y and z depending on the rotation of the object.
255

Tutorial 30 Drawing 3D text
The following example shows the difference that performing operations in different orders makes.

The order of operations makes all the difference

Summary

Creating a draw context is the first step to using OpenGL graphics in Jitter. A draw context consists
of a named destination, such as a window, and a jit.gl.render object drawing to that destination.

A variety of Jitter objects exist which draw OpenGL graphics in cooperation with jit.gl.render;
their names all start with “jit.gl.” The jit.gl.text3d object is one example. All the Jitter OpenGL
objects share a common set of attributes for moving them in 3D space. This group of objects is
referred to as the GL group.
 256

Tutorial 31
Rendering Destinations

In the previous tutorial, we saw how to draw OpenGL graphics into a jit.window using the
jit.gl.render object. Now we will look at the other kinds of destinations into which a jit.gl.render
object can draw, what to use them for, and how to switch between destinations.

• Open the tutorial patch 31jRenderDestinations.pat in the Jitter Tutorial folder.

In the upper left is, among other objects, a jit.gl.render object with an argument of inky. We saw in
Tutorial 30 that the initial argument to jit.gl.render specifies a named rendering destination. In the
upper right of the patch, we have such a destination: the jit.window object named inky.

• Click on the toggle in the upper left of the patch labeled “Start Rendering”.

You should see a red ball appear in the jit.window object. The jit.gl.gridshape object is drawing the
ball. Its first argument, inky, specifies the drawing context currently being drawn by the jit.gl.render
object to the jit.window. The other arguments set the color and scale attributes of the ball.

Draw a red ball in the window named inky

Drawing and Swapping Buffers

Clicking the toggle starts the qmetro object, which sends bang messages to the object t b b erase. This
object first sends an erase message followed by a bang message to the jit.gl.render object, and then a
bang message that is used elsewhere in the patch.

When the jit.gl.render object receives the bang message, it draws all of the GL group objects which
share its destination, then copies its offscreen buffer, if any, to the screen. An offscreen buffer is an
area of memory not visible on the screen, the same size as the drawing destination. By default, all
 257

Tutorial 31 Rendering Destinations
drawing contexts have an offscreen buffer. Drawing is done into the buffer, which must then be
copied to the screen in order to be seen.

The offscreen buffer makes flicker-free drawing and animation possible, as we see here. Even
though the buffer is being erased before the red ball is drawn each time, we never see the buffer in
its erased state. To see what drawing looks like without the offscreen buffer, click on the message
box doublebuffer 0 in the upper right of the patch. You will probably see the image start to flicker.
This happens because the erase message now causes the window itself to be erased, not the
offscreen buffer. The window remains blank for a short but indeterminate period of time before
the red ball is drawn, so you can see the area under the ball flickering between red and the dark
gray of the erased window. Click the message box doublebuffer 1 to remake the offscreen buffer and
stop the flickering.

Setting Fullscreen Mode

The p fullscreen subpatch contains a key object, a select object, a toggle, a message box and an outlet
object that sends the results of the subpatch to the jit.window object. This is standard Max stuff, so
we won’t go over it in too much detail— the result is that the escape key toggles between sending
the messages fullscreen 0 and fullscreen 1 to the jit.window object. (See the “Full Screen Display”
section of Tutorial 14.)

• Press the ‘esc’ key to change the jit.window object to fullscreen mode and back.

You can use the fsmenubar message in conjunction with the fullscreen message to hide the menubar
in addition to covering the screen.

Setting a jit.pwindow Destination

The jit.gl.render object can draw to three different kinds of destinations. The right side of the
tutorial patch contains an object example of each destination: a jit.window, a jit.pwindow, and a
jit.matrix. Right now we are rendering to the jit.window object. To change the destination to the
jit.pwindow object, we need to first name the jit.pwindow object and then set the destinations of the
jit.gl.render object and the jit.gl.gridshape object.

• Click on the message box name blinky above the topmost of the jit.pwindow objects.

Note: The fullscreen and hidemenubar attributes of the jit.window object are available on Macin-
tosh systems only.

The escape key seems to be a common way to toggle fullscreen mode, so we’ve used this setup
in many of the example patches. It’s important to note, however, that this is just a convention—
there’s nothing built into Jitter that forces you to use one key or another for this purpose.
 258

Tutorial 31 Rendering Destinations
This names the jit.pwindow object, which allows it to be used as a rendering destination. To switch
the drawing to this destination, we need to send messages to both the jit.gl.render object and the
jit.gl.gridshape object, telling them about the new destination.

• Click on the message box blinky in the Switch Destinations section of the patch.

The symbol drawto is prepended to the message blinky, and the result is sent to the s dest object. Two
objects receive this message—jit.gl.gridshape and t l b erase. The trigger object sends a sequence of
messages to the jit.gl.render object, which tell it to:

1. Erase its current destination’s draw buffer

2. Swap that buffer to the screen, visibly clearing the old destination, and

3. Switch future drawing to the new destination.

The result is that the red ball is displayed on the jit.pwindow object at the right of the patch.

Viewing our rendered output in a jit.pwindow object

Setting a jit.matrix Destination

In addition to drawing to jit.window objects and jit.pwindow objects, we can draw to jit.matrix
objects. We introduced offscreen buffers in the discussion of jit.window destinations, above. When
a 2D jit.matrix object is a rendering destination, the jit.matrix data is used as the offscreen buffer.
This puts an image of an OpenGL scene into the same format as video data, so that any of Jitter’s
video-processing effects can be applied to the image.

The jit.matrix object must meet a few criteria in order for OpenGL graphics to be drawn into it:

 • It has to have four planes of char data.

 • It has to have two dimensions.

• It has to be bigger than eight pixels in both width and height.
259

Tutorial 31 Rendering Destinations
We have such a matrix in the bottom right corner of the tutorial patch. It is 160 pixels wide by 90
pixels high—the same dimensions as the jit.pwindow object below it.

• Click on the message box clyde in the Switch Destinations section of the patch to draw into the
jit.matrix object.

You should see a cyan ball on a light gray background. This is because the red ball image generated
by OpenGL is processed through the jit.op object, which subtracts each color component from
255, inverting the image.

Rasterizing the output into a jit.matrix

There’s one more important detail about drawing to jit.matrix objects. Note that underneath the
qmetro object there’s a trigger object t b b erase. The leftmost (and therefore last) bang message from
this object is sent to the jit.matrix object into which we are drawing. This is necessary to see the
image in the jit.pwindow. When the jit.gl.render object receives a bang message, it finishes
constructing the drawing in the offscreen buffer belonging to the jit.matrix object. But to send the
resultant matrix out for viewing or further processing, it’s necessary to send a bang message to the
jit.matrix object.

Hardware vs. Software Rendering: One of the great advantages about using OpenGL for
rendering graphics is that most of the work can be done by the graphics accelerator hardware in
your computer, freeing the CPU up for other work such as generating audio. When drawing
into jit.window objects or jit.pwindow objects, the hardware renderer can be used. Unfortu-
nately, the hardware renderer cannot draw directly into jit.matrix objects. This is not a limita-
tion inherent in OpenGL, and may change in the future. Now, however, this means that
drawing directly into Jitter matrices is significantly slower than drawing to jit.window or
jit.pwindow objects, especially for complex scenes or those involving textures.
 260

Tutorial 31 Rendering Destinations
Multiple Renderers and Drawing Order

To move an OpenGL scene to a different destination, the jit.gl.render object as well as any GL
group objects involved in drawing the scene must receive the drawto message. Why not just send a
message to the renderer, telling it to move the entire scene? The reason is that each GL group
object can have an independent destination, as well as each renderer. Objects in the GL group can
be moved between multiple renderers. To see an example of why this might be useful, please look
at the other patch for this tutorial.

• Open the tutorial patch entitled 31jMoreRenderDestinations.pat.

At the right are three jit.pwindow objects named A, B and C. The message box objects above them
are not strictly necessary, because once a jit.pwindow object has been named, its name is stored
with it in the patch. But they are useful here as labels and as a reminder of what messages to send to
name the objects.

There are also three jit.gl.render objects in the patch. Each of them is pointed at a different
destination.

• Click the toggle labeled Start Rendering.

This repeatedly sends the erase message followed by a bang message to each of the three renderers.
You should see a yellow circle within a blue circle in the topmost drawing destination. This simple
OpenGL scene is created by the two jit.gl.gridshape objects in the bottom left of the patch. We can
move each of these objects to any of the three drawing destinations present.

Rendering to jit.pwindow A

• Click the topmost message box reading B in the Switch Destinations section of the tutorial
patch. This changes the destination of the blue circle to the draw context named “B”—it now
appears on the center jit.pwindow.

• Click the lower message box reading B in the Switch Destinations section of the tutorial patch.
This changes the destination of the yellow circle to the draw context named “B”. The two
objects are reunited.
261

Tutorial 31 Rendering Destinations
Each time a jit.gl.render object receives a bang message, it draws all of the GL group objects that
have been added to its context. It draws the objects in the order in which they were added to the
context. In this case, the yellow circle was added to the draw context named “B” after the blue
circle, so it appears on top. To change this order, we can send the message drawto B to the
jit.gl.gridshape object drawing the blue circle again. This will remove it from its present place in the
list of objects for the context named B, and add it again at the end of the list.

• Click the upper message box reading B in the Switch Destinations section of the tutorial patch
again. The blue circle should now obscure the yellow circle.

The blue circle obscures the yellow one

Summary

We have introduced a flexible system for creating multiple OpenGL renderers and drawing
destinations, and for moving objects in the GL group between them using drawto messages.

Three Jitter objects can function as drawing destinations: jit.window, jit.pwindow, and jit.matrix.
Each kind of destination has different uses. A jit.window object can be moved to different monitors
and quickly enlarged to cover the screen. A jit.pwindow object keeps its location in the patch. A
jit.matrix object may be used as an offscreen buffer for rendering. The output of the jit.matrix
object is a rasterized image of the 3D scene, to which further video processing may be applied.
 262

Tutorial 32
Camera View

This tutorial shows you how to set up the camera view and how to position and rotate GL group
objects using jit.gl.handle. It will cover the group of components which together make up the
camera view: the camera's position, the point at which the camera is looking, the “up” vector, the
type of projection, the lens angle, and the clipping planes.

• Open the tutorial patch 32jCameraView.pat in the Jitter Tutorial folder.

In the middle left of the patch, there is a jit.window object named mister. This window will be the
destination for our OpenGL drawing. You will notice that the jit.window object has an attribute
argument @depthbuffer 1 to specify the creation of a depth buffer. A depth buffer allows the
OpenGL renderer to determine which drawing command is visible at a given pixel based on the
proximity of the geometry to the camera. Without depth buffering, OpenGL uses what is often
referred to as the “Painter's Algorithm”—i.e. the visible results of drawing commands correspond
to sequence in which they are performed.

• Click on the toggle object labeled Start Rendering.

We now see large gray circle and some yellow lines. These are being drawn by two instances of the
jit.gl.gridshape object. The jit.gl.gridshape object can draw a variety of 3D shapes, including
spheres, tori, cylinders, cubes, planes, and circles. The grey circle we see drawn in the window is
actually a sphere and is being drawn by section of the patch labeled Grey Shape. The yellow lines
are actually a plane and are being drawn by the section of the patch labeled Yellow Plane. The
yellow plane is being rendered with poly_mode 1 1, which means that the shape is being drawn with
outlined polygons rather than filled polygons for both the front and back faces of the plane. If you
 263

Tutorial 32 Camera View
switch off the toggle object connected to the message box poly_mode $1 $1, you can see the plane
rendered with filled polygons.

The mister drawing context

• In the Grey Shape section of the patch, click on the message box scale 0.3 0.3 0.3 and then click
on the message box containing shape torus. You should now see what looks like a grey
doughnut.

• Click on the toggle object connected to the message box lighting_enable $1 and then click on the
toggle object connected to the message box smooth_shading $1. We are now staring at a lit,
smoothly shaded, 3D gray torus.

By default, Jitter's GL group objects have lighting and smooth shading disabled, so it is neces-
sary to turn these on. Lighting will be covered in detail in Tutorial 36.
 264

Tutorial 32 Camera View
Rendered shapes with smooth shading and lighting enabled

• In the Camera View section of the patch, click on the toggle object labeled jit.gl.render axes.

You should see a red line from the center of the window to the right of the window and a green line
from the center of the window to the top of the window. These are the x and y axes, respectively.
They help us to determine the origin of our scene. Since the default camera position is at [0.,0.,2.],
and the default lookat position is [0.,0.,0.], the camera is looking directly at the origin of our scene
along the z axis. Hence, we do not see the blue line which represents the z axis along which the
camera is looking.

• Under the camera position label, set the x value to be 1. Now the camera is at the position
[1.,0.,2.], it is still looking at the position [0.,0.,0.], and the blue line of the z axis has become
visible.

The axes with a different viewing position
265

Tutorial 32 Camera View
• Now let's set the camera position x value to 6., y value to -6., and z value to 6. so that the camera
position is [6,–6,6]. You can see that the yellow plane and the axes are, in fact, finite.

Viewing the edge of the plane

So far, the y axis has always been pointing upwards with respect to the camera view. This is
because the default “up” vector is [0.,1.,0.]—i.e. the unit y vector.

• Under the up vector label, let's set the y value to 0. and the z value to 1. We see that the view has
rotated, and the blue line of the z axis is now pointing upwards.

Using a different “up” vector

You may have noticed, as we've moved the camera further away from the origin, that the torus,
plane, and axes have become smaller. This is because the default viewing mode uses a perspective
projection, which is similar to the way we see things in the 3-dimensional world we inhabit. If you
are familiar with camera lenses, you may also know that depending upon the angle of the lens,
objects will be smaller as the lens angle increases to accommodate a larger field of view. Similarly,
we can change the lens angle of our perspective transformation to increase the field of view, and in
doing so the objects will become yet smaller.
 266

Tutorial 32 Camera View
• The default lens angle is 45 degrees, so let's change it to something like 60 degrees by changing
the number box connected to the message box lens_angle $1.

Using a 60-degree lens angle

Another type of projection supported by OpenGL is the orthographic projection. This type of
projection does not diminish the size of objects based on camera position. The orthographic
projection is common to 3D CAD software used for tasks such as mechanical engineering. Many
early video games like Q-Bert also used an orthographic projection. You can switch between the
perspective projection and the orthographic projection by clicking on the toggle box labeled
orthographic projection. The message ortho 1 will turn on orthographic projection. If you try
moving the camera with orthographic projection turned on, you should not see the objects
become any smaller. However, changing the lens angle will still change the field of view, and the
size of objects relative to the view.

Viewing our scene using orthographic projection

• Click on the toggle again to turn off the orthographic projection with an ortho 0 message.
267

Tutorial 32 Camera View
Let's examine the clipping planes that determine the extent along the camera's view that will be
rendered. OpenGL has a near clipping plane and a far clipping plane, and only geometry which
lies in between these two planes will be rendered. These clipping planes are specified in units of
distance from the camera along the viewing vector using the clip_near and clip_far messages. By
default, the near clipping plane is set to 0.1 and the far clipping plane is set to 100.

• Try increasing the near clipping plane to 10 and decreasing the far clipping plane to 12. You
should see the near and far edges of the yellow plane that fall outside the clipping planes
disappear.

Using a more constrained clipping plane

• Set the near clipping plane back to the default of 0.1 and the far clipping plane back to the
default of 100.

So far, the camera has always been looking at the origin [0.,0.,0.]. If we change the lookat position's
x value to 3., the camera is now looking at [3.,0.,0.].
 268

Tutorial 32 Camera View
• Let's move the torus to the position [3.,0.,0.], by clicking on the message box containing
position 3. 0. 0. in the section of the patch labeled UI Rotation and Position Control. The torus is
now again located at the center point of the view, [3.,0.,0.].

Changing the viewing position and the position of the shape

Not only did this send the position 3. 0. 0. message to the torus, but also to the jit.gl.handle object.
The jit.gl.handle object is a GL group object that uses mouse information to move and rotate
objects in the 3D scene. Like the jit.gl.gridshape object, the jit.gl.handle object requires a named
draw context into which to draw. Unlike the jit.gl.gridshape object, it's also a user interface object
that translates mouse activity in the draw context's destination to Max messages.

In this patch, messages from the jit.gl.handle object are sent to the jit.gl.gridshape object. They are
also sent to the route rotate position object and formatted so you can see exactly what is being sent.
These messages are the only communication from the jit.gl.handle object—there is nothing going
on “behind the scenes.”

If you click on the torus and drag the mouse, you will see the torus being rotated by the
jit.gl.handle object as though it were a virtual trackball. You can move the torus left, right, up,
and down by holding down the Command key on Macintosh or the Control key on
Windows while dragging. You can move the torus towards you or away from you by
holding down the Option key on Macintosh or the Alt key on Windows while dragging.
Using the shift key as you perform any of the above mouse actions will constrain the
action to a single axis.
269

Tutorial 32 Camera View
• Try manipulating the orientation of the torus by clicking on it in the jit.window object. Get a
feel for how the jit.gl.handle object translates the 2-dimensional mouse information into 3-
dimensional rotation information.

Using the jit.gl.handle object to manipulate the object’s position

Summary

We have examined the several components which make up an OpenGL scene's camera view, and
the necessary attributes of the jit.gl.render object which control them. The camera attribute
specifies the camera position; up specifies the upwards vector; lookat specifies the position at which
the camera is looking; ortho specifies whether to use an orthographic or perspective projection;
and near_clip and far_clip specify the clipping planes. Lighting and smooth shading attributes can
be enabled by setting the lighting_enable and smooth_shading attributes of the GL group object
handling the geometry (in this case the jit.gl.gridshape object).

The jit.gl.handle object lets us rotate and reposition GL group objects using the mouse and the
modifier keys on the keyboard. The jit.gl.handle object takes the name of a valid draw context to
attach itself to, and sends messages to any connected object that is also using that context, setting
the rotation and position attributes of that object.

As with the displayable axes of the jit.gl.render object, the jit.gl.handle object shows colored
lines that correspond to the x (red), y (green), and z (blue) planes of the object being rotated.
The lines appear as circles around the relevant object being “handled.” The mouse controls the
axes whose circles are nearest to the front of your current field of view. By manipulating the
image so that those circles move to the back of the object, you can control a different pair of axes
with the next mouse click. The modifier keys let you reposition the object by relocating it on the
three axes. The jit.gl.handle object outputs the relevant messages to set the rotate and position
attributes of the GL group object attached to it. Note that if you are displaying a GL context in a
jit.pwindow, the Help in Locked Patchers option of Max (which you can change under the
Options menu) needs to be disabled in order for zooming to work using jit.gl.handle. Other-
wise, clicking while holding down the Option key on Macintosh or the Alt key on Windows will
cause the help file for the jit.pwindow object to appear.
 270

Tutorial 33
Polygon Modes, Colors and Blending

In the previous tutorial, you saw how to position the camera and objects in the GL group to
construct an OpenGL scene in Jitter. After understanding this tutorial, you’ll be able to hide
selected polygons of a GL group object based on their spatial orientations, draw selected polygons
in filled and wireframe modes, and add the results to the draw buffer using antialiasing and
blending.

• Open the tutorial patch 33jPolyColorBlend.pat in the Jitter Tutorial folder. Click on the toggle
box labeled “Start Rendering.”

You should see a gray sphere in the pwindow in the tutorial patch. It is drawn by a jit.gl.gridshape
object, connected to a jit.gl.handle object that allows you to control its rotation. The jit.gl.handle
object's auto_rotate attribute is on, so once you rotate it the sphere will continue to rotate along the
axis you set. If you like, give it a spin.

The gray sphere

Wireframe Mode and Culling Faces

Just below the label “OpenGL Objects to Render” in the example patch is an object pak poly_mode 1
1. This object generates messages that set the polygon mode attribute of the jit.gl.gridshape object.
 271

Tutorial 33 Polygon Modes, Colors and Blending
• Click both toggle objects on above the pak poly_mode object. You should see the gray sphere in
wireframe mode.

The sphere in wireframe mode.

Turning wireframe mode on allows you to see clearly that the jit.gl.gridshape object approximates
a sphere using polygons—in this case, quadrilaterals. Every polygon drawn in OpenGL has a front
side, defined as the side from which its vertices appear to wrap in a clockwise direction. Each
polygon in a scene can, therefore, be categorized as either front-facing or back-facing, depending
on whether its front side is pointed towards or away from the camera.

OpenGL can automatically hide either front-facing or back-facing polygons, which can serve to
speed up drawing greatly or highlight certain aspects of data being visualized. In Jitter, you can
control polygon visibility on an object-by-object basis using the cull_face attribute.

• Set the number box above the prepend cull_face object to 1.

The front-facing polygons of the sphere.
 272

Tutorial 33 Polygon Modes, Colors and Blending
The cull_face attribute of a GL group object can be set to 0, 1 or 2. A setting of 0 shows all polygons
in the object. A setting of 1 hides the back-facing polygons. A setting of 2 hides the front-facing
polygons. With the current setting of 1, the wireframe sphere appears solid, because the hidden
lines—polygon edges that would not be visible if the sphere were made of a solid material—are
not drawn. The rotation (did you give it a spin?) convincingly depicts that of a real-world solid
object.

• Set the number box above the prepend cull_face object to 2.

The back-facing polygons of the sphere.

Now the front-facing polygons are hidden. It’s as if you are looking through the sphere and seeing
only the inside part that faces towards you. You can see from this picture that the perspective is
somewhat strange, but watching the rotation in the patch makes it really obvious that the scene is
not drawn “normally.”

In general, setting cull_face 1 will do a good job of removing the polygons that should be hidden for
solid, convex objects such as the sphere. But for objects that aren’t solid, a combination of the
front-facing and back-facing polygons may be in view.
273

Tutorial 33 Polygon Modes, Colors and Blending
• Set the number box above the prepend cull_face object to 0, to show all the polygons. Set the left
toggle box above the pak poly_mode object to 1 (on) and the right toggle box to 0 (off). Set the
ubumenu above the prepend shape object to “opencylinder”.

Open cylinder, with solid front-facing polygons and wireframe back-facing polygons.

Using this new shape, we can see the distinction between front- and back-facing polygons. The
message poly_mode a b, given two integers a and b, sets the front-facing polygons to wireframe mode
if a equals 1, and the back-facing ones to wireframe if b equals 1.

RGBA Colors

The colors of objects in the GL group are specified using the message color [R] [G] [B] [A], where R is
the red component of the color, B is blue, G is green, and A is the alpha or opacity component. All
values range from 0 to 1.

• Set the number box objects above the pak color… object to the values 1., 0., 0., 0.5. This specifies
pure red at 50% opacity.

You will see the color of the cylinder turn red, but the opacity is not visible. This is because
blending, the mixing of pixels with those previously in the draw buffer, is turned off by default.
 274

Tutorial 33 Polygon Modes, Colors and Blending
• Click the toggle box above the blend_enable $1 message box to turn blending on for the
jit.gl.gridshape object. You should see something like this:

The red cylinder with blending enabled.

Erase Color and Trails

Right now, each time the jit.gl.render object receives the erase message, the draw buffer is filled with
the dark gray that is the default erase color. You can set a different erase color using the RGBA
number box objects above the renderer object.

• Set the number box objects above the jit.gl.render object to the values 0, 0, 0.5 and 0.1.

The background changes to a dark blue (Red = 0, Green = 0, Blue = 0.5). If the cylinder is
spinning, you will also see trails in the image. This is because the background is being erased with
an opacity of 0.1. When the dark blue pixels are drawn on top of the existing pixels in the draw
buffer, they are overlaid such that the result is one-tenth dark blue and nine-tenths whatever color
was at each pixel previously. As a result, previous frames linger for some time before being fully

ARGB vs. RGBA: If you’ve been using Jitter’s video-manipulation objects, you know that colors
in those objects are stored in planes and specified in arguments n the order A, R, G, B. In the GL
group of objects, the order is RGBA, with alpha last, as we’re seeing here. This may seem odd, so
you are due bit of explanation. Jitter objects are tied as closely to native formats as possible in
both the OpenGL and video domains, to allow the fastest possible processing. OpenGL stores
colors of objects and vertices in RGBA format, and QuickTime stores its images in ARGB for-
mat. So the Jitter objects reflect this. If you want to combine OpenGL and video matrix pro-
cessing in your patch, the pack, unpack, jit.pack and jit.unpack objects provide an easy way to
convert between the two systems. You can also convert a matrix of char values from ARGB to
RGBA by sending the matrix through a jit.matrix object with the planemap attribute set to 1 2 3 0
(effectively shifting all the planes by one). Tutorial 6 shows more examples of using the planemap
attribute of the jit.matrix object.
275

Tutorial 33 Polygon Modes, Colors and Blending
erased. Note that while the blend_enable attribute must be set in order to see draw colors with
partial opacity, it is not necessary for erasing with partial opacity.

The spinning cylinder, leaving trails.

Blend Modes

When the blend_enable attribute of an object in the GL group is on, each pixel is applied to the draw
buffer using a blend function. The blend function is the basic operation in image compositing. It
controls the application of new pixels, the source, over existing pixels, the destination. The
function has two parts: a source blending factor and a destination blending factor. The source
blending factor specifies how the source’s contribution to the finished image should be computed.
The destination blending factor specifies the destination’s contribution.

Jitter recognizes eleven possible modes for blending factors. Some can be applied only to the
source, some only to the destination, and some to both. Each mode specifies a different set of
multiplier values for red, green, blue and alpha. The message blend_mode [src_factor] [dest_factor]
allows you to specify both factors for any of the drawing objects in the GL group.
 276

Tutorial 33 Polygon Modes, Colors and Blending
The default source and destination blend modes for all objects in the GL group are 6 and 7,
respectively. These correspond to the GL blend factors GL_SRC_ALPHA and
GL_ONE_MINUS_SRC_ALPHA. This is a very commonly used blending operation, and you
may never need another one. It allows you to crossfade intuitively between the source and
destination by changing the source’s alpha value.

Other values are useful for simulating various real-world lighting situations, as well as special
effects that have no physical counterpart.

The Blend Modes: The source and destination blend factors are RGBA quadruplets which are
multiplied componentwise by the RGBA values of the source and destination pixels, respec-
tively. The corresponding components of the source and destination are added and then
clamped to the range [0, 1] to produce the output pixel.

This table shows how the blend factors are calculated. The “Mode” column lists the number
passed in the Jitter message blend_mode [src_factor] [dest_factor]. The “OpenGL name” column lists
the name of the mode. The “Relevant to” column lists whether the mode can apply to the source
factor, the destination factor, or both. Finally, the “Blend Factor Equation” column specifies the
actual formula that is used to calculate the pixel. The subscripts s and d refer to source and des-
tination components, respectively. For example, Rs refers to the red component of the source
pixel.

Mode OpenGL name Relevant to Blend Factor Equation

0 GL_ZERO both (0, 0, 0, 0)

1 GL_ONE both (1, 1, 1, 1)

2 GL_DST_COLOR source (Rd, Gd, Bd, Ad)

3 GL_SRC_COLOR destination (Rs, Gs, Bs, As)

4 GL_ONE_MINUS_DST_COLOR source (1, 1, 1, 1)-(Rd, Gd, Bd, Ad)

5 GL_ONE_MINUS_SRC_COLOR destination (1, 1, 1, 1)-(Rs, Gs, Bs, As)

6 GL_SRC_ALPHA both (As, As, As, As)

7 GL_ONE_MINUS_ SRC_ALPHA both (1, 1, 1, 1)- (As, As, As, As)

8 GL_DST_ALPHA both (Ad, Ad, Ad, Ad)

9 GL_ONE_MINUS_ DST_ALPHA both (1, 1, 1, 1)-(Ad, Ad, Ad, Ad)

10 GL_SRC_ALPHA_SATURATE source (f, f, f, 1); f = min(As, 1-Ad)
277

Tutorial 33 Polygon Modes, Colors and Blending
• Set the RGBA number box objects above the jit.gl.render object, which control the erase_color
attribute, to the values 1.0, 1.0, 0.5 and 1.0. This will set the background color to yellow and
remove the trails, making the blend effect more visible.

• Set the left and right number box objects above the object pak blend_mode to 0 and 7,
respectively. This specifies a source blend factor of GL_ZERO and a destination blend factor
of GL_SRC_ALPHA.

The cylinder with a setting of blend_mode 0 7.

Let’s examine how this blend _mode produces the image we see here. The source factor is
GL_ZERO. This means that all the components of the source pixel are multiplied by zero—the
source pixel has no effect. You can verify this by trying different RGB values for the cylinder. They
all produce the same colors.

The destination factor is GL_SRC_ALPHA. Looking in the table above, we can find the blend
factor equation this corresponds to: (As, As, As, As). Each component of the destination pixel is
multiplied by the source’s alpha, in this case 0.5, before being added to the source pixel times the
source factor, which in this case is 0. So, each time a pixel is drawn, it has its brightness reduced by
one half.

Antialiasing

When OpenGL draws polygons and lines, it approximates their ideal geometric shapes by filling
in pixels on a raster grid. This process is prone to difficulties that parallel those in reconstructing
ideal waveforms with digital audio. Inevitably, aliasing, spatial frequencies that are not included in
the ideal image, will be introduced once it is reconstructed from discrete pixels. This aliasing is
visible as what are commonly known as “jaggies,” especially in near-horizontal or near-vertical
lines or edges.
 278

Tutorial 33 Polygon Modes, Colors and Blending
OpenGL has some antialiasing techniques for reducing the jaggies. We’ve made these available in
Jitter through attributes of the GL group of objects. Using these attributes, you can specify
whether any given object in the GL group will use antialiasing when it is drawn.

• Turn on the toggle box above the message box antialiasing $1 to send the message antialias 1 to the
jit.gl.gridshape object.

Antialiasing off

Antialiasing on

The antialiased lines have a smoother appearance, and also a fatter one. They may also draw more
slowly, so if you’re concerned about drawing speed, you have to decide whether the improved
appearance is worth the extra time.

The behavior of antialiasing in OpenGL is implementation-dependent. This means that makers of
OpenGL hardware and drivers have some leeway in deciding what exactly happens when you
request antialiasing. In the pictures above, for example, note that while the jaggies on the lines are
reduced, the polygon edges in the lower left appear just the same. When you turn antialiasing on,
Jitter requests that polygon edges be antialiased. But the particular OpenGL implementation that
generated these pictures (an ATI Rage 128 accelerator with version 5.9.8 drivers) does not offer
any help in this regard. Your implementation may differ.

Summary

We have defined front-facing and back-facing polygons, and seen how to draw them in both solid
and wireframe modes (using the poly_mode and cull_face attributes). The renderer’s erase_color
attribute and its use to draw trails have been introduced. We defined in detail what happens when
a source pixel is applied to a draw buffer destination, taking opacity and blend modes into
account. And finally, the handy if somewhat unpredictable antialiasing feature of OpenGL was
introduced.
279

Tutorial 34
Using Textures

This tutorial shows you how to create and apply textures to 3D geometry data generated by the GL
group. It will cover the creation of a named texture with jit.gl.render, assigning a named texture to
a GL object, the use of colors in conjunction with textures, the conversion of image/video data to a
texture, and various ways to wrap the geometry with a texture.

• Open the tutorial patch 34jUsingTextures.pat in the Jitter Tutorial folder, and click on the
toggle object labeled Start Rendering.

You will see a white parallelogram, but it is actually a tetrahedron being drawn by the jit.gl.plato
object. The jit.gl.plato object is capable of rendering several platonic solids including tetrahedrons,
hexahedrons (also known as cubes), octahedrons, dodecahedrons, and icosahedrons. Since
lighting is not turned on and there is no texture being applied to the tetrahedron, it is difficult to
tell that it is actually a 3D shape.

• Use the mouse to rotate the tetrahedron with the jit.gl.handle object, as covered in Tutorial 32.

This should illustrate that it is actually a 3D shape, but by applying a texture to the jit.gl.plato
object, this will become even more apparent.

Rotating the platonic solid
 280

Tutorial 34 Using Textures
What is a Texture?

A texture is essentially an image that is overlaid upon geometry. Just like other images in Jitter,
textures have an alpha, red, green, and blue component. In order to make use the alpha
component, blending must be enabled. Blending is covered in detail in Tutorial 33.

In Jitter, a texture has a name and belongs to the jit.gl.render object. Other objects that are attached
to the drawing context associated with a given jit.gl.render object may make use of any of the
named textures owned by that jit.gl.render object.

For efficiency reasons, most OpenGL implementations require that the dimensions of texture data
must be integer powers of two—16, 32, 64, and so on. While there are some implementations that
permit arbitrarily sized textures, this is not supported in the current version of Jitter. There is a
minimum size of 1 by 1 and a maximum size dependent upon the OpenGL implementation,
usually 1024 by 1024.

Creating a Texture

• Create a texture named grid by clicking the message box labeled texture grid 64 64 in the section
of the patch labeled Textures. This message is being sent to the jit.gl.render object.

The first argument to the texture message is the texture name, and the two following arguments
specify the width and height of the texture. This creates a 64 by 64 texture named grid, and fills it
with the default pattern (a white and grey checkerboard). You will not see any of the results yet,
because the texture has not yet been applied to the geometry.

• Apply the texture to the tetrahedron by clicking on the message box labeled texture grid in the
section of the patch labeled Platonic Solid. This sets the jit.gl.plato object's texture attribute, and
when drawing, it will use the texture named grid. You should now see a checkered tetrahedron.

Tetrahedron with a checkerboard texture applied to it.
281

Tutorial 34 Using Textures
The jit.gl.plato object uses a “gift-wrapping” strategy to apply the texture to the tetrahedron. In the
jit.gl.plato help file, the texture_maps subpatch illustrates exactly how the different platonic solids
are wrapped.

How texture maps are applied to different platonic solids.

Textures and Color

When applying a texture to geometry, OpenGL also takes into account color and lighting
information, so the current color and lighting values will be multiplied with the texture image
when drawn. If the color is white and lighting is turned off, the texture colors will be unaltered.

• In the section of the patch labeled Platonic Solid, set the color of the tetrahedron to red by
setting the number box labeled red to 1, the number box labeled green to 0, and the number box
labeled blue to 0.

Manipulating the color of the rendered object.

Important Note: You will notice that both the jit.gl.render and jit.gl.plato objects use the texture
message in different ways. The jit.gl.render object uses this message to create a texture, while the
jit.gl.plato and other GL group objects use this message to apply a texture. The jit.gl.render
object also has a message to apply one of its named textures to raw geometry data passed as Jit-
ter matrices. That message is usetexture. The jit.gl.render object's ability to render raw geometry
data passed as Jitter matrices will be covered in Tutorial 37.
 282

Tutorial 34 Using Textures
• Set the color of the tetrahedron back to white (1. 1. 1.) for our next section.

Converting an Image or Video to a Texture

While illustrative, typically you will want to make use of textures other than the default grey and
white checkerboard. This can be accomplished by loading an image or a movie into the
jit.qt.movie or jit.matrix objects and sending the message texture [texture-name] jit_matrix [matrix-name]
to the jit.gl.render object. If the texture specified by [texture-name] already exists, the incoming
matrix will be resampled to the current dimensions of the texture. If no texture with that name
exists, a new texture will be created. Its dimensions will be the nearest power of two greater than or
equal to the dimensions of the Jitter matrix.

• Click the message box containing texture picture 128 128 in the section of the patch labeled
Textures. This creates a 128 by 128 texture named picture, and like before, fills it with the default
white and grey checkerboard pattern.

• Click the message box containing read colorbars.pict, bang to load the colorbars.pict image into the
jit.qt.movie object, and send it on its way to the texture named picture.

You still won't see any of the results yet, because the jit.gl.plato object is still using the texture
named grid.

• Click the message box containing texture picture in the section of the patch labeled Platonic
Solid.

Now you should see the color bars image wrapped around the tetrahedron.

Using an image as a texture

In many instances you will only need to use still images as textures, but Jitter also supports the use
of moving video as textures by repeatedly copying the output of the jit.qt.movie object into the
named texture.

• Click the message box containing read dishes.mov to load dishes.mov into the jit.qt.movie object.
283

Tutorial 34 Using Textures
• Click on the toggle object connected to the metro object to start copying the video to the
texture named picture.

Texture-mapping using a movie

Interpolation and Texture size

By default, texture interpolation is turned on, so screen pixels which are between texture pixels
will use an interpolated value of its neighbors within the texture image. This has the effect of
blurring or smoothing out the texture. To apply textures without interpolation, the interpolation
may be turned off using the jit.gl.render object's interp message. This message only affects the
jit.gl.render object's current texture, so prior to sending the interp message, you can send the
message usetexture [texture-name] to make the current texture the one specified by [texture-name]
argument.

• Click the toggle object connected to the message box containing usetexture picture, interp $1 to
have the jit.gl.render object use the texture named picture and then to turn interpolation on and
off for the texture named picture.

Once a texture has been created, the texture size can be changed, by sending the message texture
[texture-name] [width] [height] where [width] and [height] specify the new dimensions.
 284

Tutorial 34 Using Textures
• Set the number box labeled Resize texture to 16. This will send the jit.gl.render object the
message texture picture 16 16, resizing the texture picture to be a 16 by 16 image.

Using an uninterpolated texture

Mapping Modes

So far we have only addressed the explicit texture mapping that the jit.gl.plato object provides.
OpenGL also provides a few other implicit texture mappings for applying textures to geometry
data. These are the object linear, eye linear, and sphere map mapping modes.

The object linear mode applies the texture in a fixed manner relative to the object's coordinate
system. As the object is rotated and positioned in the 3D scene, the texture mapping remains the
same. In contrast, the eye linear mode applies the texture in a fixed manner relative to the eye's
coordinate system. As the object is rotated and positioned in the 3D scene, the application of the
texture to the object will change. Lastly, the sphere map mapping mode will produce the effect
commonly called “environment mapping”; the object is rendered as though it is reflecting the
surrounding environment, and assumes that the texture contains a sphere mapped image of the
surrounding environment. As the object is rotated and positioned in the 3D scene, the application
of the texture to the object will change.

These implicit mapping modes may be used by setting the GL group tex_map attribute. A tex_map
value of 0 is the default and will use the GL group object's explicit texture coordinates. A tex_map
value of 1 will use OpenGL's object linear mode. A tex_map value of 2 will use OpenGL's sphere map
mode. A tex_map value of 3 will use OpenGL's eye linear mode.

Textures may be deleted in order to free up memory by sending jit.gl.render the message
deletetexture [texture-name].
285

Tutorial 34 Using Textures
• Try changing the number box connected to the message box containing tex_map $1. Position
and rotate the tetrahedron with your mouse, and see how the various modes affect the texture
mapping.

Using different implicit mapping modes: object linear (left), sphere map (middle), eye linear (right)

OpenGL's object linear and eye linear mapping modes have additional parameters that affect the
way in which they apply the texture. These are set with the GL group tex_plane_s and tex_plane_t
attributes. These attributes are each vectors in 4 dimensional homogenous coordinates. The scalar
product of tex_plane_s and a given point in 4 dimensional homogenous coordinates determines
the horizontal position of the texture image to apply. The scalar product of tex_plane_t and a given
point in 4 dimensional homogenous coordinates determines the vertical position of the texture
image to apply. By default, tex_plane_s is equal to (1. 0. 0. 0.) and tex_plane_t is equal to (0. 1. 0. 0.).

A more detailed description of how the tex_plane_s and tex_plane_t attributes affect the texture
mapping are out of the scope of this tutorial, but that doesn't mean you can't play with it anyway
to generate interesting effects. For the curious, please consult the OpenGL Red Book or Blue Book.

• Experiment with the number box objects under the texture plane s and texture plane t labels
(tex_map should be set to 1 or 3 in order to have any effect).

Experimenting with additional parameters
 286

Tutorial 34 Using Textures
Summary

We described how to create textures and various ways to apply them to the geometry created by
the GL group. The jit.gl.render object's texture message may be used to create, size, and copy image
or video data to named textures. The GL group texture attribute specifies which named texture to
use, and the GL group tex_map attribute selects either the explicit texture mapping mode or one of
the three implicit OpenGL texture mapping modes: object linear, eye linear, or sphere map.
287

Tutorial 35
Lighting and Fog

Lighting—the illumination of objects in the real world—is a very complex subject. When we view
objects, our eyes focus and detect photons throughout a range of energies that we call visible light.
Between their origin in the Sun, lightning, fireflies or other light sources and our eyes, they can
travel on a multitude of complex paths as they are reflected from or refracted through different
materials, or scattered by the atmosphere. Our computers won’t be dealing with this level of
complexity anytime soon, so OpenGL simplifies it greatly.

The OpenGL Lighting Model

Lighting in OpenGL is based on a very rough model of what happens in the real world. Though
very crude compared to the subtlety of nature, it is a good compromise, given today’s technology,
between the desire for realism and the cost of complexity.

We have already seen how colors in OpenGL are described as RGB (red, green and blue) values.
The lighting model in OpenGL extends this idea to allow the specification of light in terms of
various independent components, each described as RGB triples. Each component describes how
light that’s been scattered in a certain way is colored. The continuum of possible real-world paths
is simplified into four components, listed here from most directional to least directional.

The specular light component is light that comes from a certain direction, and which also reflects
off of surfaces primarily in a given direction. Shiny materials have a predominant specular
component. A focused beam of light bouncing off of a mirror would be a situation where the
specular component dominates.

Diffuse light comes from one direction, but scatters equally in all directions as it bounces off of a
surface. If the surface is facing directly at the light source, the light radiation it receives from the
source will be the greatest, and so the diffuse component reflected from the surface will be
brightest. If the surface is pointing in another direction, it will present a smaller cross-section
towards the light source, and so the diffuse component will be smaller.

Ambient light is direction-less. It is light that has been scattered so much that its source direction is
indeterminate. So it appears equally bright from all directions. A room with white walls would be
an environment with a high ambient lighting component, because so many photons bounce from
wall to wall, scattering as they do so, before reaching your eye.
 288

Tutorial 35 Lighting and Fog
Finally, emissive lighting is another component that doesn’t really fall anywhere on the
directionality scale. It is light that only reaches your eye if you’re looking directly at the object. This
is used for modeling objects that are light sources themselves.

These components are used to describe materials and light sources. Materials made of specular,
diffuse, ambient and emissive components are applied to polygons to determine how they will be
colored. Polygons with materials applied are lit based on their positions and rotations relative to
light sources and the camera, and the specular and diffuse properties of light sources, as well as the
ambient light component of the scene.

Getting Started

• Open the tutorial patch 35jLightingAndFog.pat in the Jitter Tutorial folder. Click on the toggle
(in the lower left, this time) labeled Start Rendering.

• Click the message box reading name lt, depthbuffer 1 above the jit.pwindow object. This creates a
depth buffer so that hidden-surface removal can be done.

You will see a flat gray torus and a small white circle in the jit.pwindow object. The jit.gl.gridshape
object in the center of the tutorial patch draws the torus. The other jit.gl.gridshape object in the
patch, towards the right, draws the white circle. The scene is all presented in flat shades because
lighting is not yet enabled.

• Click the toggle box objects above the top three message box objects reading lighting_enable $1,
smooth_shading $1, and auto_material $1 to set those attributes of the jit.gl.gridshape object
drawing the torus to 1.

Lighting is off by default for each object, so you must enable it. The same goes for smooth shading.
When you set these two attributes, you will see the torus go through the now-familiar progression
(assuming you’ve been doing these tutorials in order) from flat shaded to solid faceted to solid and
smooth. When you set the auto_material attribute to 1, you won’t see any change, because its default
value is already 1.

• Click the toggle objects above the message box labeled auto_material $1 again, to set the
auto_material attribute of the jit.gl.gridshape object to 0.
289

Tutorial 35 Lighting and Fog
Now you should see a change in the lighting of the torus. Instead of the dull gray appearance it
started with, you will see a shiny gray appearance like this:

The lit torus with the auto_material attribute off.

The auto_material attribute is provided in Jitter so that you don’t always need to specify all the
components of a material just to see an object lit. When the auto_material attribute of an object in
the GL group is on and lighting is enabled for the object, the diffuse and ambient material
components for the object will be set to the object’s color, and the specular and emissive lighting
components are disabled. This resulted in the flat gray torus we saw initially. In this tutorial,
though, we want to see what happens when all the lighting components are specified explicitly, so
we have turned the auto_material attribute off.

The image that results appears shinier, because the material applied to the torus now has a
specular component.

Moving the Light

The jit.gl.gridshape object drawing the white circle has a jit.gl.handle object attached to it. As we’ve
seen before, this allows you to move the circle by clicking and dragging over it with the Command
key on Macintosh or the Control key on Windows held down. By dragging with the Option key on
Macintosh or the Alt key on Windows held down, you can move the circle towards and away from
the camera in the scene.

The x, y and z position values from the jit.gl.handle object are also routed to an unpack object,
which sends them to number box objects for viewing. A pak object adds the symbol light_position to
the beginning and another value to the end of the list. This message is sent to the jit.gl.render
object to set the position of the light in the scene. Note that the light itself is not visible, except in its
effect on other objects. The white circle is a marker we can use to see the light’s position.
 290

Tutorial 35 Lighting and Fog
• Click and drag the white circle with the Command key on Macintosh or the Control key on
Windows held down to move it to the lower left corner of the scene. Then drag with the
Option key on Macintosh or the Alt key on Windows held down to move it away from the
camera.

The light source moves with the white circle. If you move it to the right place, you can create an
image like this.

The same scene with the light source moved.

The diffuse and specular components of the light are combined with the diffuse and specular
components of the material at each vertex, according to the position of the light and the angle at
291

Tutorial 35 Lighting and Fog
which the light reflects toward the camera position. When you move the light, these relative
positions change, so each vertex takes on a different color.

Specular Lighting

Let’s change the specular components of the lighting to get a better feel for them.

• Locate the swatch object above the prepend mat_specular object. Move the circle in the swatch to
the far left, centered vertically. This sends the mat_specular message to the jit.gl.gridshape
object, followed by RGB color values that describe a pure red color.

Normals: For lighting to take place, each vertex of a model must have a normal associated with
it. The normal is a vector that is defined to be perpendicular to the surface of the object at the
vertex. This is the value used to determine the contribution of the specular and diffuse lighting
components to the image. Creating reasonable normals for a complex object can be a time-
consuming process.

Jitter attempts to prevent you from worrying about this as much as possible, in a couple of ways.
First, most objects in the GL group have normals associated with them. These are calculated by
the object that does the drawing. The jit.gl.gridshape object is one example. If its shape is set to a
sphere, it generates a normal at each vertex pointing outwards from the center of the sphere.
Each shape has a different method of calculating normals, so that the surfaces of the various
shapes are smooth where curved, yet the edges of shapes like the cube remain distinct and
unsmoothed.

Secondly, if you send geometries directly to the jit.gl.render object in matrices, the jit.gl.render
object will automatically create normals for you to the best of its ability. If you draw a connected
grid geometry by sending a matrix followed by the tri_grid or quad_grid primitives, the generated
normals will be smoothed across the surface of the grid. If you send a matrix using other prim-
itives such as triangles, jit.gl.render will make no attempt to smooth the vertices, but will gener-
ate a normal for each distinct polygon in the geometry.

If you want to make your own normals, you can turn automatic normal generation off with by
setting the attribute auto_normals of the jit.gl.render object to 0.

Tutorial37, “Geometry Under the Hood” describes how vertices, colors and normals can be
passed in Jitter matrices to the jit.gl.render object. For more information on how to specify nor-
mals for geometry within a matrix, please refer to the Jitter OpenGL Appendix in this manual.
 292

Tutorial 35 Lighting and Fog
The swatch object sends it output as a list of three integers from 0 to 255. The vexpr object divides
each integer in the list by 255. to generate a floating-point value in the range 0. to 1., which is the
range Jitter’s GL group objects use to specify colors.

Setting the specular material component to red.

The resulting torus with red highlights.

The highlights of the image now have a red color. The specular component of the light source,
which is currently white, is multiplied by the specular material component to produce the color of
the highlights.

The red, green and blue values of the specular light source are multiplied by the red, green and
blue values of the specular material component, respectively. So if the light source component and
the material component are of different colors, it’s possible that the result will be zero, and no
highlights will be generated. This more or less models the real-world behavior of lights and
materials: if you view a green object in a room with red light, the object will appear black.

• Try moving the circle in the swatch object above the prepend light_specular object to a green
color. The highlights will disappear. Different colors with varying amounts of red will produce
different brightnesses of red. When you are done, move the circle to the top of the swatch
object so that the highlights are red again.
293

Tutorial 35 Lighting and Fog
The shininess attribute of objects in the GL group is an important part of the material definition. It
specifies to what extent light is diffused, or spread out, when it bounces off of the object. To model
a mirror, you would use a very high shininess value. Values of approximately 2 to 50 are useful for
making realistic objects.

• Set the number box above the prepend shininess object to 50.

This makes the contribution of the specular lighting components much smaller in area.
Accordingly, you can see the specular lighting in red quite distinctly from the diffuse lighting,
which is still gray.

A very shiny torus.

Diffuse Lighting

Let’s manipulate the colors some more to see the effect of the diffuse component.
 294

Tutorial 35 Lighting and Fog
• Locate the swatch object above the prepend mat_diffuse object. Move the circle in the swatch
approximately to the location in the illustration below, to produce a deep blue diffuse material
component.

Setting the diffuse material to blue.

The diffuse reflections from the torus are now blue, and the highlights are magenta. This is
because the color components of an object’s material, after being multiplied with the lighting
components depending on positions, are added together to produce the final color for the object
at each vertex.

Red highlights added to blue diffuse lighting.

Ambient Lighting

We have yet to change the ambient component of the object’s material. Currently, this is set to its
default of medium gray, which is multiplied by the dark gray of the global ambient component to
produce the dark gray areas of the torus in the picture above. The global ambient component is
multiplied by all ambient material components in a scene, and added to each vertex of each object.
You can set this with the light_global_ambient attribute of the jit.gl.render object.
295

Tutorial 35 Lighting and Fog
• Set the circle in the swatch object above the prepend mat_ambient to a green color to produce a
green ambient material component.

Green ambient illumination.

The ambient material component is multiplied by the global ambient illumination component to
make the dark green areas that have replaced the gray ones.

The moveable light in the scene has an ambient component associated with it, which is added to
the global ambient component. To change this, you can move the circle in the swatch object above
the prepend light_ambient object. If you change this to a bright color, the whole object takes on a
washed out appearance as the intensity of the ambient component gets higher than that of the
diffuse component.

That’s Ugly!

A green torus with blue diffuse lighting and magenta highlights is probably not something you
want to look at for very long. If you haven’t already, now might be a good time to play with the
color swatches and come up with a more harmonious combination.

Note that control over saturation isn’t provided in this patch for reasons of space. But it’s certainly
possible to specify less saturated colors for all the lighting and material components.

Directional vs. Positional Lighting

The moveable light in a scene can be either directional or positional. In the message light_position
[x] [y] [z] [w] sent to jit.gl.render, the value [w] decides whether directional or positional lighting is
used. If [w] is zero, the light is a directional one, which means that the values [x], [y] and [z] specify a
 296

Tutorial 35 Lighting and Fog
direction vector from which the light is defined to come. If [w] is nonzero, the light is a positional
one—it illuminates objects based on its particular location in the scene. The position of the light is
specified by the homogeneous coordinates [x]/ [w], [y] /[w] and [z]/ [w].

Positional lights are good for simulating artificial light sources within the scene. Directional lights
typically stand in for the Sun, which is so far away that moving objects within the scene doesn’t
change the angle of the lighting perceptibly.

• Turn on the toggle above the p mover subpatch to start the torus moving towards and away
from the camera.

Notice how the lighting shifts across the surface of the torus as it moves, if the torus moves past the
general vicinity of the light. You may have to move the light’s position to see this clearly.

• To see the effects of directional lighting, change the last number box above the pak light_position
0. 0. 0. 1. object to 1, than back to 0.

Now, notice that because directional lighting is on, the lighting no longer shifts when the object
changes its position.

Fog

Like other aspects of lighting, the simulation of fog in OpenGL is primitive compared to the real-
world phenomenon. Yet, it offers a convenient way to a richer character to an image. OpenGL fog
simply blends the color of the fog with the color at each vertex after lighting calculations are
complete, in an amount that increases with the object’s distance from the camera. So faraway
objects disappear into the fog.

In Jitter, fog can be turned on or off for each object in the GL group by using the fog attribute.
Some objects in a scene can have fog applied to them while others don’t.

• Turn on the toggle above the fog $1 message box, which turns fog on for the jit.gl.gridshape
object drawing the torus.

• Set the rightmost number box above the pak fog_params… object to the value of 10, which will
send all the fog parameters listed in the same jit.gl.gridshape object.

You should see the torus receding into the fog as it gets farther from the camera, assuming the p
mover subpatch is still active.

• Set the red number box above the pak fog_params object to 1. This specifies a fog color of 1., 0.2,
0.2.

Now, when the torus gets farther away, it doesn’t disappear. Rather, it turns bright red. Fog makes
faraway objects tend toward the fog color, which may or may not be equal to the background
297

Tutorial 35 Lighting and Fog
color. Only if the fog color and the color of the background are nearly equal will realistic fog effects
be achieved.

Torus receding into the fog.

If you like, try manipulating the other parameters of the fog with the number box objects above the
fog_params message.

Summary

We have described OpenGL’s lighting model and its implementation in Jitter in some detail. We
discussed the specular, diffuse and ambient components of the GL lighting model, how they
approximate different aspects of a real world scene, and how they combine to make an image. The
distinction between positional and directional lighting was introduced. Finally, we saw how to add
fog to a scene on an object-by-object basis.

Implementation Dependent: Like antialiasing, which was introduced in Tutorial 33, the
effects of fog parameters may vary from system to system, depending on what OpenGL ren-
derer is being used. The basic characteristics of fog discussed above should be basically the
same, but details such as how the density parameter affects the fog may vary.
 298

Tutorial 36
3D Models

In this tutorial, we will show how to load 3D models using the jit.gl.model object and render them
in Jitter with lighting, materials and texture mapping.

Review and Setup

• Open the tutorial patch 36j3Dmodels.pat in the folder “Tutorial 36” in the Jitter Tutorial folder.
Click on the toggle labeled “Start Rendering.”

You will see a brown background in the jit.pwindow object. The brown color comes from the
erase_color attribute of the jit.gl.render object.

• Click on the message box name me, depth buffer 1 above the jit.pwindow object.

The name attribute allows the jit.pwindow object to be used as a drawing destination, although this
was already done and saved with the tutorial patch in this case. The message depth buffer 1 causes a
depth buffer to be attached to the destination, so that automatic hidden-surface removal can be
done.

• Click on the texture grid 64 64 message box above the jit.pwindow object.

As we saw in the tutorial introducing textures, this message send to the jit.gl.render object causes it
to build a texture 64 pixels in both width and height, filled in with a default checkerboard pattern.
The texture can be used by any objects in the GL group which are drawing to its context. We are
now ready to load some models and render them.

Reading a Model File

The jit.gl.model object reads descriptions of 3D objects as collections of polygons. These
descriptions are stored in the .obj file format. The model files must have an .obj extension in order
to load. This format is widely used, and has the advantage of being readable and modifiable in
ordinary text editors.

• Click on the toggle above the verbose $1 message box in the upper left of the “Draw a Model”
section of the patch.
 299

Tutorial 36 3D Models
This sends the message verbose 1 to the jit.gl.model object, enabling verbose mode. When this
mode is on, you will see information about the model file you are loading printed in the Max
window. It’s not good to leave verbose mode on while you are rendering real-time graphics, but the
messages can be very helpful while you are setting up and debugging a patch.

• Click on the read mushrooms.obj message box. This object can be found above the jit.gl.model
object.

The file mushrooms.obj should have been installed into Max’s search path when Jitter was installed.
If for some reason this file has been moved, you will see the message • error: jit.gl.model: can’t find
mushrooms.obj in the Max window. If the file is found correctly, you will see the following in the Max
window:

reading mushrooms.obj
done.
jit.gl.model: rebuilding
groups: 11
materials: 0
triangles: 10560
vertices: 6199
texture coords: 5589
normals: 6046
636408 bytes used

When the file you specify after the read message is found and determined to be a valid model file,
the message reading [file].obj is printed. Then the dots are printed out every so often while the file
loads. Reading large models from text files can take quite a while, so it’s nice to see the dots
appearing in order to know that something hasn’t gone wrong.

When the model is done loading, jit.gl.model: rebuilding is printed. Some operations besides reading
a new model cause the model’s representation to be rebuilt internally—all of them print this
message so you know what’s going on.

The groups: 11 message tells you that there are eleven polygon groups in the model. A model need
not consist of one like an apple or mushroom, it can be a group of things or an entire scene.
Assigning different objects in the model to different polygon groups allows them to be
manipulated independently in your patch.

The materials:0 message tells you how many material definitions there are in the model file. A
material definition can specify the ambient, diffuse and specular components of an object’s
surface color, as we saw in Tutorial 35. A model file can have multiple material definitions which
can be applied to one or more polygon groups in the model. This model, however, has none.

We can also see that this model consists of 10,560 triangles joining 6,199 vertices, 5,589 texture
coordinates and 6,046 normals. There are fewer texture coordinates and normals than vertices by
a bit, because these numbers are referenced in a big index when the model is read, and can be
reused when the triangles are constructed.
 300

Tutorial 36 3D Models
Finally, we see that approximately 636 kilobytes of memory have been used by Jitter to store the
model internally. Though memory is getting more plentiful all the time, this amount is not
insignificant. Memory usage is definitely something to keep an eye on when debugging larger
patches.

Model Attributes

If you followed the directions, you’ve been reading all this dry text about messages in the Max
window, while eleven mushrooms hover tantalizingly in the tutorial patch. Now let’s examine the
attributes which affect how the model is rendered.

Lighting and Shading

We see the mushrooms in space, but their outlines are simply filled in with the medium gray which
is the default color for objects in the GL group.

The flat-shaded mushrooms

• Click on the toggle above the lighting_enable $1 message box to send the message lighting_enable 1
to the jit.gl.model object.

Now, the model has a more solid appearance because some polygonal areas are brighter and
others darker. But each polygon has its own color uniformly over its entire area. The result is rather
crude.

.obj Model File Compatibility: There are many extensions to the basic .obj file format in exist-
ence. Some of these are NURBS and parametric surfaces. Right now, only vertices, polygons,
groups, materials and texture coordinates are supported.
301

Tutorial 36 3D Models
• Click on the toggle object above the smooth_shading $1 message box to send the message
smooth_shading 1 to the jit.gl.model object.

With smooth shading on, the shade of each polygon in the model is blended from vertex to vertex.
This hides the polygon edges and gives a smoother appearance—we are beginning to get
somewhere, if realism is our goal.

Mushrooms with lighting and smooth shading enabled

Texture Mapping

Like other objects in the GL group, you can set the texture applied to the entire model with the
texture message.

• Click on the grid message box above the prepend texture object to send the message texture grid to
the jit.gl.model object.

This sets the texture of the model. Since there is a jit.gl.handle object connected to the jit.gl.model
object in this patch, we can rotate and move the model as discussed in Tutorial 32, in order to get a
better look at how the texture is applied.

Notice the care with which the texture is wrapped around the mushrooms. The caps are covered
radially, the stems cylindrically, and there are small variations in the look of each mushroom.
 302

Tutorial 36 3D Models
These texture coordinates were created in a 3D modeling program by the maker of the model. The
coordinates specify what point on the 2D texture to use at each vertex.

Mushrooms texture-mapped with care

To see what the model looks like with automatically generated coordinates, you can use the
tex_map message. As discussed in tutorial 34, tex_map modes of 1, 2 and 3 specify object linear,
sphere map, and eye linear mappings respectively. tex_map 0 uses the coordinates specified in the
model.

• Experiment with these modes if you like, by changing the number box above the tex_map $1
message box. When you are done, restore the model to its built-in texture coordinates by
setting the number box to 0.

In addition to the standard GL group facilities for applying textures, the jit.gl.model object can be
used to apply a different texture to each polygon group in the model.

• Click on the 0 message box above the prepend texture object to turn off texturing for the model.

• Click on the texgroup 1 grid message box.

The texgroup [group-number] [texture-name] message sets the texture of polygon group [group-
number] in the model to the texture [texture-name]. As a result of the message just sent, polygon
group 1 should be set to the grid texture, and thus one of the mushrooms is grid-covered while the
other ones remain solid gray. This message could be used in conjunction with the methods for
updating textures covered in Tutorial 34 to apply a different picture or movie to each polygon
group in the model.
303

Tutorial 36 3D Models
If a texgroup message is received for a given polygon group, that group uses the texture named in the
message, instead of any texture which may have been sent to the whole model using the texture
message. If a texgroup [group-number] 0 message is received, the named texture is no longer used for
that group, and the group reverts to the model’s overall texture.

• Click on the texgroup 1 0 message box to remove the grid texture from polygon group 1.

Drawing Groups

In addition to being texture differently, the polygon groups in a model can be drawn separately.
You can control this drawing using the drawgroup message.

• Click on the button object above the counter object on the right-hand side of the tutorial patch.

This increments the counter, which causes the message drawgroup 1 to be sent to the jit.gl.model
object. The polygon groups are indexed starting at the number 1. When the jit.gl.model object
receives the message drawgroup [n], it only draws polygon group n of the model until further notice.
So now you should see a lone mushroom in the frame.

By clicking the button object repeatedly, you can cycle through each mushroom in turn. You could
use this technique to load a 3D animation, by storing one frame of the animated object in each
polygon group of the model.

When it receives the message drawgroup 0, the jit.gl.model object turns the drawing of all polygon
groups back on.

• Click on the drawgroup 0 message box to turn all the polygon groups back on.

Material Modes

Models can contain material definitions, but this particular model doesn’t have any. Let’s load one
that does.

• Click on the read apple.obj message box to load the apple model in the Jitter Tutorial folder.

This model is less complicated than the previous one, so it will load much faster. By reading the
output of the jit.gl.model object in the Max window, we can see that it has 4,452 triangles. We can
also see in the Max window that it has 3 materials. In the rendered image of the model, we can see
 304

Tutorial 36 3D Models
the effects of these materials. Even though no textures have been applied, the apple is red with a
brown stem.

The apple model showing two materials

The material_mode attribute of the jit.gl.model object determines to what extent the materials
specified in the model file will be used to render the model. Right now the material mode is 1, the
default.

• Set the number box above the message box reading “material_mode $1” to the value 2.

You will notice that the skin of the apple takes on a shinier and slightly bluer appearance, while the
stem remains the same flat brown. This is because the specular components of the materials are
now being used in the rendering. When we first loaded the apple with the default setting for the
305

Tutorial 36 3D Models
material_mode attribute of 1, only the diffuse components of the materials were being used in the
rendering.

The apple with specular material components enabled

• Set the same number box to the value 0.

Now, none of the material properties of the model are being used in the rendering. Instead, the
color attribute of the object is used to determine the object’s diffuse color. So, the model appears in
the default gray. Let’s try one more setting to see how the various material modes can be useful.

• Click on the toggle object above the lighting_enable $1 message box off. Then, try all the
different settings for the material_mode attribute.
 306

Tutorial 36 3D Models
You will see that with lighting disabled, only in material mode 1 do the object’s materials have any
effect. Since the diffuse component of the material is being used to determine the object’s color,
the flat-shaded drawing takes on a different color for each polygon group.

The flat-shaded apple with a material mode of 1

Here’s a quick recap of the settings of the material_mode attribute:

material_mode 0: Don’t use materials from model file. The object’s color attribute determines
the diffuse color, and the flat color if lighting is not enabled.

material_mode 1: Use diffuse material component from model file to determine the diffuse
color or flat color of the rendered model.

material_mode 2: Use all material components from the model file.

Summary

We have seen how to load complex, multi-part 3D models from .obj format files on disk. The
attributes of the jit.gl.model object can be used to affect the model’s lighting and shading and to
determine how its materials affect the rendering. The model file may contain different polygon
groups which may be drawn and texture-mapped individually.

Thanks to Oliver Ffrench (http://o.ffrench.free.fr/meshbank) for the use of these elegant freeware
models.
307

Tutorial 37
Geometry Under the Hood

This tutorial demonstrates the low-level support in Jitter to specify geometry data as matrices and
render them with the jit.gl.render object. Since the data is contained in an ordinary Jitter matrix,
this opens up a world of possibilities where arbitrary matrix operators may be used to generate
and/or process the geometry matrices. The tutorial will cover the matrixoutput attribute of the GL
group, the organization of data in geometry matrices, an example of how geometry matrices can
be processed using matrix operators, and introduce various drawing primitives supported by the
jit.gl.render object.

• Open the tutorial patch 37jGeometryUnderTheHood.pat in the Jitter Tutorial folder, and click
on the toggle box labeled Start Rendering.

Matrix Output

• Click on the toggle box labeled Turn matrixoutput on/off.

Wait a minute—the sphere that was just there a moment ago has disappeared. What's going on?

Some of the objects in the GL group support the matrixoutput attribute, and jit.gl.gridshape is one
such object. This attribute determines whether or not the object's geometry is rendered directly in
the object's associated drawing context or if the object sends a matrix containing geometry data
out its left outlet. The geometry is not visible because it is being sent to a gate, which is closed.

• Select the menu item print from the ubumenu object labeled “Matrix Destination”

In the max window you should see a series of messages like print: jit_matrix u26300000007 quad_grid.
This is similar to what you've seen in previous tutorials as the output of objects, which pass matrix
data, with the exception, that there is an extra element. Rather than sending the message jit_matrix
[matrix-name], as you should be familiar with, the jit.gl.gridshape object sends the message jit_matrix
 308

Tutorial 37 Geometry Under the Hood
[matrix-name] [drawing-primitive]. In this case the drawing primitive is quad_grid, which means
interpret the matrix as a grid of quadrilaterals.

The output of the jit.gl.gridshape object in the Max window

There is still no excitement in our window, but this is easily remedied.

• Select the menu item direct from the ubumenu object labeled Matrix Destination.

The sphere is now visible again, because the message jit_matrix [matrix-name] [drawing-primitive] is
being sent to the jit.gl.render object. In response to this message, the jit.gl.render object draws the
supplied matrix using the specified drawing primitive. If no drawing primitive is specified, the
jit.gl.render object's current drawing primitive will be used. Valid drawing primitives are: points,
lines, line_strip, line_loop, triangles, tri_strip, tri_fan, quads, quad_strip, polygon, tri_grid, and quad_grid.

In the same fashion that you can change the dimensions of video data, you can change the
dimensions of the matrix output by sending the jit.gl.gridshape object the dim message. By default
the dimensions of the matrix output by the jit.gl.gridshape object are 20 by 20.

• Click on the toggle box labeled Wireframe.

• Change the number box labeled Matrix Dimensions.

At the time this tutorial was written, the only objects that support the matrixoutput attribute are
the jit.gl.gridshape, jit.gl.nurbs, and jit.gl.plato objects. However, by the time you read this, there
may be other objects, which support this mode of operation.

The jit.gl.render object's current drawing primitive may be set by sending the message [drawing-
primitive] where [drawing-primitive] is any one of the valid drawing primitives mentioned above.
309

Tutorial 37 Geometry Under the Hood
• Try rotating the wireframe sphere with the mouse

“The Death Star plans are not in the main computer.”

Geometry Matrix Details

Video in Jitter is typically represented by 4-plane char data, but how is the geometry data being
represented?

Each vertex in the geometry is typically represented as float32 data with 3, 5, 8, 12, or 13 planes.
Planes 0-2 specify the x, y and z position of the vertex. Planes 3 and 4 specify the texture co-
ordinates s and t. Planes 5-7 specify the normal vector nx, ny and nz used to calculate the effects of
lighting on the geometry. Planes 8-11 specify the red, green, blue, and alpha vertex color. Plane 12
specifies the edge flag e.

The output matrix of the jit.gl.gridshape object has 12 planes, but since we are not applying a
texture to the geometry, and lighting is not enabled, the texture coordinates and normal vectors
are ignored.

Processing the Geometry Matrix

Instead of simply rendering the geometry unaltered, as you've done so far, it is possible to process
this geometry with matrix operators.

• Select the menu item xfade from the ubumenu object labeled Matrix Destination.

You may have noticed that in this patch the jit.gl.handle object is communicating with the
jit.gl.render object rather than the jit.gl.gridshape object. This has the effect of rotating and posi-
tioning the entire scene. The @inherit_transform 1 argument is necessary in order to do this cor-
rectly, otherwise the rotation would be composited again with the scene's rotation, causing
major confusion.
 310

Tutorial 37 Geometry Under the Hood
Now the matrix is being sent through the jit.xfade object to cross fade the geometry matrix with a
matrix of noise. Just as the jit.xfade object may be used to crossfade between video matrices, it may
be used to crossfade between geometry matrices.

• Click on the button object labeled “Generate Noise”

• Gradually change the number box labeled “Crossfade Value” to 0.1.

• Turn wireframe rendering on and off by clicking the toggle box labeled Wireframe. Notice how
the noise deforms both the geometry and the color of the shape.

This will subtly deform the sphere with noise, as well as introduce random colors. The texture
coordinates and normal vectors are also being affected, but this is not visible since there is no
texture being applied, and lighting is not enabled.

A slightly distorted sphere (wireframe and filled)

• Click on the button object labeled “Generate Noise” several more times, or turn on the toggle
box labeled “Rapid Noise” to generate a new matrix of noise for each time the geometry is
drawn

• Gradually change the number box labeled “Crossfade Value” to 1.0. Again, turn wireframe
rendering on and off to see how the noise is visualized.
311

Tutorial 37 Geometry Under the Hood
Now the geometry being drawn is pure noise.

White noise expressed as a geometry (wireframe and filled)

• Set the number box labeled “Crossfade Value” back to 0.

Drawing Primitives

You will notice that despite the fact that jit.gl.gridshape is outputting the message jit_matrix [matrix-
name] quad_grid, we are appending the output of jit.xfade with quad_grid. This is because most
matrix operators will ignore the drawing primitive argument and simply output the message
jit_matrix [matrix-name]. Hence we need to append the name of the drawing primitive to the
message. This provides a good opportunity to experiment with various drawing primitives.

• Try selecting the various menu items available in the ubumenu labeled Drawing Primitive.

Using different drawing primitives: points (left), line_strip (center), and triangles (right)
 312

Tutorial 37 Geometry Under the Hood
Summary

In addition to drawing directly to their associated drawing contexts, some objects in the GL group
support the matrixoutput attribute. When enabled, the geometry matrix is sent out the object's left
output with the message jit_matrix [matrix-name] [drawing-primitive].

Geometry matrices are typically float32 data with a plane count of 3, 5, 8, 12, or 13 planes, and may
be processed using arbitrary matrix operators in a similar fashion to processing video matrices.

The jit.gl.render object supports various drawing primitives to render these geometry matrices:
points, lines, line_strip, line_loop, triangles, tri_strip, tri_fan, quads, quad_strip, polygon, tri_grid, and
quad_grid.
313

Appendix A
QuickTime Confidential

The Structure of QuickTime Movies

When you imagine a QuickTime movie, chances are good that you think of something similar to
film: a single series of frames arranged linearly in time, with or without sound.

In fact, the structure of QuickTime movies is far more similar to the model you may be familiar
with from MIDI and audio sequencers.

QuickTime movies are containers for tracks. Each track contains a particular type of media—
such as audio or video—and defines the spatial and/or temporal boundaries of that media. For
instance, a QuickTime movie might be 320x240 in size, and 3 minutes in length, while one of its
video tracks is 80x60 in size, and only 30 seconds long. QuickTime movies are never longer than
the end of their longest track.

Each track in a QuickTime movie might be of a different type—video, audio, sprites, MIDI
(QuickTime calls these music tracks), and VR Panoramas are some of the available types—and
might start at a different point within the movie. You can have several tracks of identical types in a
single movie as well. Tracks are independent—they can be turned on and off individually, and
they can all be of different lengths.

The visual priority of tracks is determined by the track’s visibility layer. Track layers are numbered
from –32768 to 32767. Tracks with low visibility layer values will be displayed in front of tracks
with high visibility layer values. Audio tracks will automatically mix, regardless of their layer value.

The QuickTime music track is a container for a Standard MIDI File. Using the QuickTime Set-
tings Control Panel, you can set the output for these tracks. By default, QuickTime uses the
QuickTime Music Synthesizer, which is a General MIDI software synthesizer built into Quick-
Time.
 314

Appendix A QuickTime Confidential
The jit.qt.movie object offers a number of track-centered functions. A brief list of some useful
messages follows:

General Track Editing
addtrack: create a new track
deletetrack: delete a track
gettrackinfo: displays several pieces of track information (index, name, type, enabled status,
visibility layer)
gettrackoffset: displays a track’s temporal offset (set using the trackoffset message)
gettrackduration: displays a track’s duration (set using the trackduration message)
gettrackdim: displays a track’s spatial dimensions (set using the trackdim message). You can
adjust a track’s size further using the mxform message to generate a matrix transformation
for a particular track.
gettrackname: displays a track’s name (set using the trackname message)
gettracktype: displays a track’s type (type cannot be set—use addtrack to create a new track)
gettracklayer: display a track’s visibility layer (set using the tracklayer message)
gettrackcodec: display a track’s codec (codec cannot be set)
gettrackenabled: displays a track’s enabled status (set using the trackenabled message)
getgmode: displays a track’s drawing mode—the manner in which it interacts with other
tracks (set using the gmode message)

QuickTime VR
vrpan: set the pan for a VR movie
vrtilt: set the tilt for a VR movie
vrfov: set the field of view for a VR movie
vrnode: set the current node for a multi-node VR movie (use the getvrnodelist message to
enumerate available nodes)

QuickTime Effect (see Tutorial 24: QuickTime Effects for more information)
addfxtrack: create a QuickTime Effects track set (1 to 3 actual tracks), by importing a .qfx
file
deletefxtrack: delete any and all QuickTime Effects tracks created by the addfxtrack message

Background Color
addbgtrack: create a background color track
deletebgtrack: delete a background color track created by Jitter.

Time in QuickTime

Unlike most hardware-based media, QuickTime does not use a frame-based time system.
Instead, QuickTime uses a system based on timescale and time values. Timescale is an integer value

Important: Track edits of any sort, including adding or deleting tracks, will not be automati-
cally saved with a movie when it is closed. Use the savemovie, savemovieas or savemoviecopy mes-
sages to permanently save your changes, or set the jit.qt.movie object’s autosave attribute to 1
(on).
315

Appendix A QuickTime Confidential
that indicates how many time values make up one second of a movie. By default, a new
QuickTime movie has a timescale of 600—meaning that there are 600 time values per second.

Frame rate is determined by the concept of interesting time—times where the movie changes. If a
movie changes every 40 time values, then it has an effective frame rate of 15 frames per second
(since 600 divided by 40 equals 15). When Jitter determines how many frames are in a movie with
the getframecount message, it scans the movie for interesting times, and reports their number. The
frame and jump messages move the “play head” between different points of interesting time.

For more information on the relationship between timescale and frame rate, refer to Tutorial 4:
Controlling Movie Playback.

In Jitter, recording operations permit you to specify a frame rate, and Jitter takes care of the
calculations for you as it constructs a new movie. Editing operations, in contrast, use time values
to determine their range of effect.

Optimizing Movies for Playback in Jitter

Although Jitter will gladly play any movie you throw at it, there are some guidelines you can follow
to improve performance. Sadly, there is no precise recipe for perfection—performance in a real-
time application such as Jitter is the result of the interaction between a movie’s track codecs (which
affect data bandwidth and processor load), movie dimensions, frame rate and, to some extent, the
complexity of the media being processed.

Codecs

Visual media, in particular, contain large amounts of data that must be read from disk and pro-
cessed by your computer before they can be displayed. Codecs, or compressor/ decompressors,
are used to encode and decode data. When encoding, the goal is generally to thin out the data so
that less information has to be read from disk when the movie plays back. Reading data from disk
is a major source of overhead when playing movies.

When decoding, the goal is to return the data to its pre-encoded state as quickly as possible.
Codecs, by and large, are lossy, which means that some data is lost in the process. As users, our
goal is to figure out which codec offers the greatest quality at the greatest speed for our particular
application.

If you have enough RAM, you can use the loadram message to jit.qt.movie to copy a movie’s
(compressed) media to RAM. Since accessing RAM is significantly faster than accessing a hard
disk, movie playback will generally improve, although the jit.qt.movie object still has to decom-
press each frame as the movie plays. To buffer decompressed matrix data to RAM, use the
jit.matrixset object.

To determine a QuickTime movie’s track codecs, use the gettrackcodec message to jit.qt.movie.
 316

Appendix A QuickTime Confidential
Audio Codecs

Codecs are available for both video and audio tracks. For online distribution, you might want to
use an MPEG 2 Level 3 (.mp3) or QDesign audio codec to create smaller files. In Jitter, however, if
you are playing movies with video and audio tracks, you’ll achieve the best results with uncom-
pressed audio (PCM audio) simply because there will be no audio codec decompression over-
head.

Video Codecs

Video codecs may be handled in hardware—you may have a special video card that provides
hardware compression and decompression of a particular codec, like MPEG or Motion-JPEG—
or more typically in software. In Jitter, hardware codec support is only relevant to Video Output
Components.

Movie playback will always use a software codec, with the important exception of the jit.qt.movie
object’s direct to Video Output Component feature (see Tutorial 22: Video Output Components and
the Object Reference entry for the jit.qt.movie object for more information).

Video codecs generally use one or both of the following schemes: spatial and temporal
compression.

Spatial compression is probably familiar to you from the world of still images. JPEG, PNG and
PICT files each use types of spatial compression. Spatial compression schemes search a single
image frame for patterns and repetitions that can be described in a simpler fashion. Most also
simplify images to ensure that they contain these patterns. Nevertheless, more complex images are
harder to compress, and will generally result in larger files. Spatial compression does not take time
into account—it simply compresses each frame according to its encoding algorithm.

Temporal compression is unique to the world of moving images, since it operates by creating a
description of change between consecutive frames. In general, temporal compression does not
fully describe every frame. Instead, a temporally compressed movie contains two types of frames:
keyframes, which are fully described frames (usually spatially compressed, as well), and regular
frames, which are described by their change from the previous keyframe.

Technical Note: .mp3 files can be read by jit.qt.movie as audio-only movies (they are com-
pressed with the MPEG 2 Layer 3 codec). Although you can’t process the audio data with any
other Jitter objects besides the jit.qt.movie object, you can use the jit.qt.movie object’s soc
attribute to send the audio to MSP via the spigot~ object (see Tutorial 27: Using MSP Audio in a
Jitter Matrix for more information).

Technical Note: Video Output Components support is only available for the Macintosh at the
present time.

Technical Note: Video cards that provide hardware support of codecs usually only support
them for onscreen decompression of media. Since Jitter generally decompresses media into an
offscreen buffer (with the exceptions noted above), software codecs are used.
317

Appendix A QuickTime Confidential
For applications where a movie will be played from start to finish, temporal compression is quite
useful. Codecs like Sorenson use temporal compression to create extremely small files that are
ideal for web playback. However, temporal compression is not a good choice if you need to play
your movie backwards, since the order of the keyframes is vital to properly describing the
sequence of images. If we play a temporally compressed movie backwards, the change
descriptions will be processed before the keyframe that describes the initial state of the frame!
Additionally, the Sorenson codec is quite processor-intensive to decompress. Playback of a
Sorenson-compressed movie will be slower than playback of a movie compressed using a “lighter”
method.

For Jitter playback, we recommend using a video codec without temporal compression, such as
Photo-JPEG or Motion-JPEG (Photo- and Motion-JPEG compression use the same compression
method, but Motion-JPEG is optimized for special hardware support [see note above]). At high
quality settings, JPEG compression offers a nice compromise between file size and image quality.
It’s also relatively simple to decode, so your processor can be put to better use than decompressing
video.

If image quality is of principle importance, the Animation codec looks better than Photo-JPEG,
but creates much larger files.

Different versions of QuickTime support different audio and video codecs. For instance, Quick-
Time 5 doesn’t support the MPEG-4 codec, although QuickTime 6 does. You should experiment
with different codec settings to find the best match for your particular use of Jitter.

Movie Dimensions and Frame Rate

Compared to codec, movie dimensions and frame rate are more straightforward factors in Jitter
performance. Simply put, a bigger image frame or a higher frame rate indicates that Jitter has more
data to process each second.

A 640x480 movie produces 1,228,800 individual values per frame for Jitter to process (640 times
480 times 4 (separate values for alpha, red, green and blue channels). A 320x240 movie produces a
mere 307,200 individual values per frame, one quarter the size of the larger movie. Where
possible, we recommend using smaller movies if you intend to use Jitter for processing. On most
machines, 320x240 movies will give fine performance.

If you are working with DV media, your movies are recorded at 29.97 frames per second (in
NTSC) or 25 frames per second (in PAL). Even using a 320x240 movie, Jitter has to process
9,206,784 values per second in NTSC and 7,680,000 values per second in PAL. Thinning this
data, by reducing the frame rate to 15 or 20 frames per second, will improve performance
significantly if you are using Jitter for processing. On most machines, 15 fps is a good choice.

Discreet’s Codec Central provides an excellent online educational resource about codecs. At the
time of this writing, it is offline, but Discreet claims that the site will be up again soon, at http://
www.codeccentral.com/
 318

Appendix A QuickTime Confidential
Our Favorite Setting

We’ve found that, for most movies, the following parameters yield consistently good results:

• 320x240 frame size

• 15 frames per second

• Video tracks: Photo-JPEG codec, using a medium to high spatial quality setting

• Audio tracks: no compression

 Summary

QuickTime movies can contain many tracks of different types—audio, video, QuickTime VR and
text, to name a few. In Jitter, we can both get and set basic information about these tracks—
including their temporal offset, spatial dimensions, duration, visibility layer and graphic transfer
mode—using the jit.qt.movie object’s track messages.

QuickTime’s time model is somewhat different from the standard frame-based model, relying on
a timescale value to determine the number of time values in a second of QuickTime media. The
jit.qt.movie object allows for playback navigation using both frame and timescale models. All
editing functions in the jit.qt.movie object use the timescale model to determine the extent of their
effect.

Determining the ideal settings for a movie used in Jitter is an inexact science. Actual performance
depends on a number of factors, including codec, dimensions, frame rate and media complexity.
For best results on current hardware, we recommend using 320x240, 15 fps, Photo-JPEG
compressed movies.
319

Appendix B
The OpenGL Matrix Format

Matrices, Video and OpenGL

OpenGL is a standard which specifies a virtual machine for turning lists of numbers into 2D
images. The lists may contain the 3D locations of vertices to connect with lines or polygons. They
can also contain other data such as coordinates for texture mapping, normals for lighting, colors
and edge flags.

Jitter treats video as a type of data which can be processed in its general matrix system. When
manipulating video data in Jitter, each cell of a matrix represents one pixel. The four planes of the
matrix store the A, R, G and B components of that pixel. This is Jitter's convention for storing video.

Jitter also has a convention, used by all the objects in the GL group, for storing OpenGL-
compatible image descriptions in a matrix. Like video data, these descriptions can be read,
processed, and output by various objects. This document specifies Jitter’s convention for storing
OpenGL data in matrices and the syntax of messages to the jit.gl.render object containing these
matrices.

When You Need This Reference

Objects in the GL group send out matrices in the format described here when they have their
matrixoutput attributes set to 1. In order to process these geometries through your own patches, you
will need to know this format. If you want to make geometries directly using the jit.op object and
other matrix operators, you will also need to know the format. But if Jitter’s GL group objects are
flexible enough for your drawing needs, you can continue to let these objects draw “behind the
scenes” without any knowledge of the OpenGL matrix format.

GL Matrix Reference

Message Format

OpenGL data can be passed to the jit.gl.render object in Max messages of the forms

jit.matrix [geometry matrix]

jit.matrix [geometry matrix] [draw primitive]

and

jit.matrix [geometry matrix] [connections matrix] [draw primitive].
 320

Appendix B The OpenGL Matrix Format
Draw Primitive

The draw primitive specifies how to draw the connections between vertices in the geometry
matrix. When a draw primitive is not passed to the jit.gl.render object along with the geometry
matrix, the current primitive of the jit.gl.render object is used. The current primitive can be
changed by sending a message containing just the primitive. When a draw primitive accompanies
the geometry matrix, it is used only to draw the given geometry and the current primitive is
unchanged.

The draw primitive can be one of the following symbols:

points Draws each vertex as a single point.

lines Connects every other pair of vertices with a line. Given a geometry matrix
with vertices A, B, C and D, it draws line segments AB and CD.

line_strip Connects each pair of vertices with a line. Given a geometry matrix with
vertices A, B, C and D, it draws line segments AB, BC and CD.

line_loop Like line_strip but a line segment is drawn connecting the last vertex in the
matrix back to the first one.

triangles Draws unconnected triangles. Given vertices A B C D E F, draws triangles
ABC and DEF.

tri_strip Draws a strip of connected triangles. Given vertices A B C D E F, draws
triangles ABC, CBD, CDE and EDF. Note the order of the vertices, which is
swapped so that all the triangles face the same way (see Tutorial 33: Polygon
Modes, Colors and Blending).

tri_fan Draws a fan of triangles. Given vertices A B C D E F, draws triangles ABC,
ACD, ADE and AEF.

quads Draws unconnected quadrilaterals. Given vertices A B C D E F G H, draws
quadrilaterals ABCD and EFGH.

quad_strip Draws connected quadrilaterals. Given vertices A B C D E F, draws
quadrilateral ABCD and CDFE.

polygon Draws a single polygon using all the vertices in the matrix. If the polygon is
not simple and convex, the results are undefined.

tri_grid If the geometry matrix has two dimensions, triangles are drawn which link
each vertex to its neighbors in the matrix to form a surface.

quad_grid If the geometry matrix has two dimensions, quadrilaterals are drawn which
link each vertex to its neighbors in the matrix to form a surface.
321

Appendix B The OpenGL Matrix Format
The Connections Matrix

A connections matrix must be one-dimensional and contain either long or char data. If present, it
specifies the order in which to connect the vertices in the geometry matrix. By leaving the
geometry matrix constant and changing the connections matrix which indexes into it, a changing
set of connections between the same vertices can be drawn.

The Geometry Matrix

Geometry matrices must contain data in long, float32, or float64 format, float32 being the most
common choice. The float64 data type has more precision than is normally needed for rendering
to the screen. The long data type restricts values to integers, which is generally not desired when
specifying coordinates.

Each cell of the matrix represents one vertex. The image is rendered by drawing connections
between vertices, either along the rows or the columns of the matrix. A one cell wide matrix will be
connected along columns (its only column). A one cell high matrix will be connected along rows.
If the matrix is more than one cell in both width and height, the geom_rows attribute of the
jit.gl.render object determines whether rows or columns will be followed. If the tri_grid or quad_grid
primitives are specified, both the rows and the columns of the matrix are always connected.

Matrices with anywhere from two to 13 planes can be used. Planes 13 and up are reserved for later
use and will currently be ignored. Each plane represents a different value in one of five groups:
vertices, texture coordinates, normals, vertex color and edges. If enough planes are present to
specify a given group, that group is used in rendering the matrix. To be used, each group must be
totally present, with the exception of vertices. If only x and y values for vertices are present, the z
coordinate of all vertices is set to 0, and an 2D image on the xy plane results.

plane 0: x coordinate of vertex

plane 1: y coordinate of vertex

plane 2: z coordinate of vertex

plane 3: s coordinate of texture at vertex, if textured

plane 4: t coordinate of texture at vertex, if textured

plane 5: x component of lighting normal at vertex

plane 6: y component of lighting normal at vertex

plane 7: z component of lighting normal at vertex

plane 8: red component of vertex color

plane 9: green component of vertex color

plane 10: blue component of vertex color

plane 11: alpha component of vertex color

plane 12: edge flag for connection to next vertex: if < 0, no line is drawn.
 322

Appendix C
A Jitter Bibliography For Your Further Reading Pleasure

Jitter Reference List

The following is a list of books, articles, and web sites you might find helpful for learning more
about different Jitter-related topics.

Video

Jim Blinn, Jim Blinn's Corner: Dirty Pixels (San Francisco: Morgan Kaufmann,
1998)

An excellent introduction to a diverse array of topics including analog and digital
video formats, aliasing, compositing, tensor arithmetic, and the world's largest
Easter Egg.

A. Bovik et al., Handbook of Image and Video Processing (San Diego: Academic
Press, 2000)

Richard Rickitt, Special Effects: The History and Technique (London: Virgin
Books, 2000)

A very readable introduction to the history and technology of special effects in
film.

Image Processing

W. K. Pratt, Digital Image Processing (New York: John Wiley and Sons, 2001)

A. S. Glassner, Principles of Digital Image Synthesis (San Francisco: Morgan
Kaufmann, 1995)

OpenGL and 3D Graphics

E. Angel, OpenGL 1.2: A Primer (Reading: Addison-Wesley, 2001)

David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, Steven Worley,
Texturing and Modeling: a Procedural Approach (AP Professional, July 1998)

This book gives the reader a working knowledge of several procedural texturing,
modeling, and animation techniques, including two-dimensional texturing, solid
texturing, hypertextures, volume density functions, and fractal algorithms.
Emphasis is placed on practical applications with many code examples.

A. Watt, 3D Computer Graphics (Essex: Addison-Wesley, 2000)
 323

Appendix C Jitter Bibliography
M. Woo et al., OpenGL Programming Guide (Reading: Addison-Wesley, 1999)

http://www.sgi.com/grafica/

2D Graphics and Vector Animation

A. S. Glassner et al., Graphics Gems (San Diego: Academic Press, 1990)

http://www.esil.univ-mrs.fr/~elingsys/cours/black-book/

http://www.faqs.org/faqs/graphics/

Video Art

Gene Youngblood, Expanded Cinema (New York: Dutton, 1970)

An overview of "synaesthetic cinema" techniques in film and video with an
introduction by R. Buckminster Fuller. Covers the work of the Whitneys, Carolee
Schneeman, Jordan Belson, Stan Brakhage, Nam June Paik, Michael Snow and
others. The first book on video and computer graphics as an art medium. An
essential historical connection, unfortunately out of print.

Generative Art

http://www.red3d.com/cwr/

Linear Algebra and Mathematical Matrix Operations

G. Stephenson, An Introduction to Matrices, Sets, and Groups forScience Students
(Toronto: Dover, 1986)

http://archives.math.utk.edu/topics/linearAlgebra.html

http://www.math2.org/index.xml

http://mathworld.wolfram.com/

http://www.sosmath.com/matrix/matrix.html

Miscellaneous

Don Ritter, E's for Artists: a handbook for New Media Artists (forthcoming,
publisher to be determined.)

Randall Packer and Ken Jordan, eds., Multimedia: From Wagner to Virtual Reality
(New York: Norton, 2001)
 324

Appendix C Jitter Bibliography
Stephen Wolfram, A New Kind of Science (Champaign: Wolfram Media, 2001)

A wide-ranging exploration of the potential of cellular automata for solving
problems in mathematics, biology, and theoretical physics. Most of the concepts
and algorithms illustrated in this book could be realized using Jitter.
325

Index

Symbols
.jxf format 157
.obj files and 3D models 299
.obj model file compatibility 301
.qfx files 196
@ symbol and attributes 20

Numerics
2D matrices

source and destination regions 119
3D drawing attributes 251
3D model loading 300
3D models

drawing groups 304
lighting and shading 301
material modes 304
textures 302

3D transforms 255

A
adapt mode 17
adaptation in matrices 44
alpha channel 15, 52

as opacity component 274
transparency or opacity 246

alpha channel compositing 241
Alt key (Windows) 269, 290
ambient light 288
ambient lighting 295
anchor point 123
animation without flicker 258
antialiasing 278
arguments 21, 28

dim 21
planecount 21
type 21

arguments and attributes 19
array 13
ASCII 163
aspect ratio 14
attribute/argument order 20, 21, 315
attributes 19

@ symbol 20
0/1 (toggle) 123
0b3d group 251
changing 20

default values 20
matrixoutput and rendering 309
movie header info 49
querying 22
setting 20, 22

audio as a control source 232
audio codecs 317
audio control

event detection 235
setting amplitude ranges 234
tracking peak amplitude 233

Audio Devices properties (Windows) 91
Audio Video Control (AV/C) specification
181

B
bang message 26
blend mode 277
blend modes 276
boundmode attribute 126
brightness 69

C
camera position 265
camera view 263
cell indices 13, 115
changing attributes 20
char data and math operations 59
Chebyshev polynomials 104
chromakeying 82
clear (boundmode attribute) 126
clear message 136
clear message (jit.matrix) 36
clip (boundmode attribute) 126
clipping planes 268
codec 148

Jitter binary format 157
optimizing for playback 316

codec and hardware settings 171
codecs

audio 317
spatial compression 317
temporal compression 317
video 317
 326

Index

color

converting ARGB to RGBA 275
RGBA 274
texture 282

color data
char, long, or float 53

color spaces
RGB 15

color tracking 200
deriving velocity 208
problems and solutions 202
setting min and max values 204

color trails 275
column (in a matrix) 13
column major description 31
combining matrices 77
Command key (Macintosh) 269, 290
compositing

alpha channel 241
blend modes 276
clear message 136
using jit.op 230

compression for codecs
spatial 317
temporal 317

contrast 69
Control key (Windows) 269, 290
CoreMIDI 91

D
data type

as an attribute 21
destination rectangle 171
diffuse lighting 294
dim attribute 21
dimension (in a matrix) 13
dimension sizes 115
dimensions

as an attribute 21
dimensions (of a movie) and frame rate 318
display

fullscreen mode 258
downsampling 146
drawing context 249
drawing groups for models 304
drawing order and multiple renderers 261

drawing primitives 309
drawing without flicker 258
drawing/swapping buffers 257
DVD format aspect ratio 14

E
emissive light 289
erase color 275
event scheduling

jit.qball 137
qmetro object 251

exportimage message to jit.qt.movie 159
exporting

QuickTime movies 155
single matrices 155

exportmovie arguments 156
exportmovie message 156
eye linear mapping 285

F
face culling 272
feedback using named matrices 139
FireWire camera control 181
flicker-free animation/drawing 258
flipping an image 116
fog 297
fold (boundmode attribute) 126
frame rate and movie dimensions 318
frame rate and QuickTime 316
framedump message and non-realtime re-
cording 152
full screen 121, 258

G
geometry transforms 255
get message 22
getattribute message 23
getcell message (jit.matrix) 36
getstate message 23
grabbing video to disc 166

H
hardware settings and video quality 171
hardware vs. software rendering 260
HDTV aspect ratio 14
header info for movies 49
327

Index

hiding the Max menu bar 121
hue rotation 120

I
image 70
image adjustment

contrast 69
hue rotation 120
luminosity 70
rotation 123
saturation 70
zooming 123

image compositing
blend modes 276

image quality and sequence grabbing 169
Image Sequence 159
image sequence export from jit.qt.movie 159
images as texture 283
importing

QuickTime movies 155
single matrices 155

importmovie message 157
interpolation 113

and texture size 284
iterative processes 141

J
jit.alphablend 246
jit.avc 181

time-lapse recording 186
jit.brcosa 68
jit.charmap 100
jit.chromakey 82
jit.conway 139
jit.fill 88

2D matrices 93
multiple-plane matrices 91

jit.fill and the multiSlider object 89
jit.findbounds 200
jit.gl.handle 263

manipulating object position 269
jit.gl.model 250, 299
jit.gl.plato 250, 280
jit.gl.render 249

drawing context 249
hardware rendering 260

rendering destinations 258
software rendering 260
texture 281
texture message 282

jit.gl.text3d 249
jit.glue 109
jit.gradient 102
jit.hatch 152
jit.hue 71
jit.iter 95
jit.lcd 241
jit.matrix 30

adapt attribute 44
clear message 36, 117
dim attribute 113
downsampling 146
getcell message 36
name attribute 131
planemap attribute 64
rendering requirements 259
setall message 36
thru attribute 152
upsampling 146

jit.matrixset
write and read messages 158

jit.noise 138
jit.op 38

compositing two matrices 230
matrix combination 77
mixing 76
scalar values 39

jit.pack 54
jit.poke~ 223
jit.print 31
jit.pwindow 34

size message 43
jit.qball 136
jit.qt.effect 187

tweening 195
jit.qt.grab 166

VDIG components for Windows 166
jit.qt.movie 29

autodetecting frame rates 151
exportimage message 159
exporting

multiple images 160
 328

Index

header information 49
image export methods 159
non-realtime playback 152
QT effect track names 199
QT effect tracks 197
setting independent frame rates for re-

cording 152
Sound Output Component 224
sound output using spigot~ 223

jit.qt.record 148
input movie frame rate 150
non-realtime recording 152
record enable 150

jit.qt.videoout 176
codec selection 178
video output component list 178

jit.rgb2luma 242
jit.rota 123

anchor point 126
boundmode 126
offset 126
theta attribute 123
theta calculation 129
trigonometry and rotation 124
zoom attributes 125

jit.scalebias 59
mixing 76

jit.scissors 107
outlets determined at creation 107
output matrix dimensions 107

jit.spill 94
jit.str.fromsymbol 164
jit.str.tosymbol 165
jit.streak 146
jit.textfile 162
jit.unpack 54
jit.window 29, 111

floating attribute 111
jit.xfade 73
jit_matrix message 26
Jitter arguments before attributes 20, 21, 315
Jitter binary format 157
Jitter object arguments 21

dim 21
planecount 21
type 21

Jitter object attributes 19
Jitter objects

arguments 28
jit.matrix

clear message 36
getcell message 36
setall message 36

jit.op 38
jit.poke~ 223
jit.window 111
qmetro 251
router 108
spigot~ 223
suckah 83

Jitter reference 12
Jitter reference launcher 12

L
lighting

ambient 288, 295
components 288
diffuse 294
directional vs. positional 296
emissive 289
fog 297
modes 288
moving the light source 290
normals 292
smooth shading 289
specular 288, 292

lighting and shading attributes for models 301
lists and matrices 88
live recording to disc 166
live video/audio input 166
loading models 300
lookup tables 99
luminosity 70

jit.lcd 242

M
Macintosh

Command key 269, 290
help file location 12
MIDI setup 91
Option key 269, 290

manipulating OpenGL object position 269
329

Index

material modes for models 304
math operations on a matrix 38
math with char data 61
mathematical scalars and data types 43
Matrices

filling a matrix algorithmically 35
setting values 32

matrices
adapt mode 17
and geometry data 308
changing, resizing, and moving source

image 119
column major, row major 31
combining 77
compositing using jit.op 230
converting symbol to/from string matri-

ces 165
cutting up/pasting together 107
downsampling 146
feedback 139
flipping an image with indices 116
geometry and rendering 310
grabbing live video 166
iterative processes 141
named 133
names 87
processing geometry matrices 310
resampling 141
resizing an output matrix 116
sending and receiving 131
single matrix import/exporting 155
string matrix 164
text and matrices 162
upsampling 146

matrices and lists 88
matrices converting to/from symbols 165
matrix 13

array 13
cell 13
column 13
dimension 13
isolating a portion 114
plane 16
plane numbering 16
row 13
video frame 15

matrix adaptation 44
matrix dimensions 31
matrix names 26
matrix source and destination messages 114
matrixctrl and signal routing 216
message box

using semicolons 213
message order 134

determining 134
send and receive 132

message queueing and jit.qball 136
messages

bang 26
get 22
getattributes 23
getstate 23
jit_matrix 26
outputmatrix 26

MIDI data and video control 211
mixing video 73
models

attributes 301
drawing groups 304
lighting and shading 301
material mode 304
texture attributes 302

movie
structure of QuickTime movie 314

movie tracks 314
moving a light source 290
multiple renders and drawing order 261
multiSlider 89
music tracks (QuickTime) 314

N
named matrices 133
named matrices and feedback 139
naming matrices 87
noise and matrices 138
non-realtime playback and recording 152
normals 292

O
ob3d group 251
object linear mapping 285
objects and textures 281
 330

Index

opacity 274
opacity and the alpha channel 246
OpenGL 249

blend mode 277
camera view 263
destination 249
drawing context 249
lighting modes 288
loading .obj models 300
manipulating object position 269
normals 292
RGBA color 274
texture 280

parameters 281
optimizing QT audio for playback 317
optimizing QT video for playback 317
Option key (Macintosh) 269, 290
orthographic projection 267
outputmatrix message 26

P
patchers and Jitter display 34
plane 16
plane (in a matrix) 16
plane numbering 16
planecount attribute 21
planes and rendering 310
Platonic solids

jit.gl.plato 280
PLAY group (VTR mode) 183
playback

optimizing for it 316
polygon mode 271
polygons

back-facing 272
face culling 272
front-facing 272

Q
qmetro 251
querying objects 22
QuickDraw

jit.lcd 242
QuickTime

alpha channel and opacity 246
audio codecs 317

effects parameter files 196
event-driven models 148
frame rate 316
image compression 148
importing and exporting movies 155
input movie frames rates and recording

150
live recording 166
movie dimensions and frame rate 318
movie structure 314
movie tracks 314
music track 314
non-realtime playback and recording 152
optimizing for playback 316
QT Effect track names 199
QT effect tracks and jit.qt.movie 197
QT Effects architecture 187
QT effects argument data types 192
QT effects dialog box 187
recording movies 148
the Jitter QT Effects patch 190
timescale 315
track editing functions 315
tweenable effects parameters 195
video codecs 317

QuickTime component
getting device names 167

QuickTime components 166
switching between inputs 168

QuickTime effects
listing 315

QuickTime VR
functions 315

R
RECORD group (VTR mode) 185
recording QuickTime movies 148
331

Index

rendering

ambient light 288
ambient lighting 295
antialiasing 278
blend modes 276
diffuse lighting 294
directional vs. positional lighting 296
drawing order with multiple destinations

261
drawing primitives 309
emissive light 289
erase color and trails 275
eye linear 285
fog and lighting 297
front or back-facing polygons 272
geometry matrix 310
hardware vs. software 260
interpolation and texture 284
lighting components 288
lighting modes 288
matrices to geometry 308
matrixoutput attribute 309
model attributes 301
moving a light source 290
normals 292
object linear 285
opacity component 274
polygon mode 271
processing geometry matrices 310
smooth shading 289
specular light 288
specular lighting 292
sphere mapping 285
texture and color 282
texture mapping modes 285
texture planes 286
video/images as texture 283
wireframe mode 272

rendering destination
jit.matrix 259

rendering destinations 258
rendering Platonic solids 280
resampling matrices 141
RGB 15
RGB color 52
RGB values and suckah 83

rotation, image 123
router 108
router and signal routing 216
routing inputs to outputs 108
row (in a matrix) 13

S
saturation 70
scalar values and matrix operations 39
screen coordinates 115
semicolons in a message box 213
send and receive message order 132
setall message (jit.matrix) 36
setting attributes 20
setting attributes with arguments 22
setting values in a matrix 32
shading attributes for models 301
size message 43
software vs. hardware rendering 260
Sound Output Component 224
sound outputs from movies 223
source rectangle 171
spatial compression 317
specifying MIDI devices 91
specular light 288
specular lighting 292
sphere mapping 285
spigot~ 223
srcdimend attribute 114
srcdimstart attribute 114
string matrix 164
string matrix to symbol conversion 165
structure of QuickTime movies 314
suckah 83
swapping/drawing buffers 257
switching between video inputs 168
symbol to string matrix conversion 165

T
television monitor aspect ratio 14
temporal compression 317
 332

Index

texture 281

attributes for models 302
color 282
jit.gl.render 282
mapping modes 285
planes 286
size and interpolation 284
using video or images 283
wrapping 282

texture and rendering 280
texture parameters 281
theta attribute 123
time scales in QuickTime 315
time-lapse recording 186
toggle attributes 123
Trace 134
track editing functions (QuickTime) 315
tracking

using the location of an object 204
tracking color

deriving velocity 208
tracking colors 200

setting min and max values 204
tracks

in a QuickTime movie 314
transforms and order of operations 255
transparency and the alpha channel 246
transport control

time message 184
transport controls 181
trigonometry and rotation 124
tweening 195
type attribute 21

U
up vector 266
upsampling 146
usedstdim attribute 116
usesrcdim attribute 114

V
VDIG components for Windows 166
video codecs 317
video control using audio 232
video control using MIDI 211
video frame 15

video mixing 73
video noise 138
video output component list 178
Video Output Components support 10, 176,
178
video to disc 166
video/images as textures 283
voc 178
VR track functions (QuickTime) 315
VTR mode

PLAY group 183
RECORD group 185
WIND group 183

W
WIND group (VTR mode) 183
Windows

Alt key 269, 290
Control key 269, 290
help file location 12
MIDI setup 91
QuickTime VDIG 166
Video Output Components support 10,

176, 178
wireframe model 272
wrap (boundmode attribute) 126
wrapping textures 282

Z
zooming, image 123
333

	Table of Contents
	Copyright and Trademark Notices
	Credits
	About Jitter
	Video
	2D/3D Graphics
	Ease of Use
	Matrices
	More Details

	How to Use The Jitter Documentation
	Matrices: What is a Matrix?
	A Video Screen is One Type of Matrix
	What is a Plane?
	The Data in a Matrix

	Attributes: Editing Jitter Object Parameters
	What are Attributes?
	Setting Attributes
	Jitter Object Arguments
	Querying Attributes and Object State
	Summary

	Tutorial 1: Playing a QuickTime Movie
	How Jitter Objects Communicate
	Causing Action by Jitter Objects
	Arguments in the Objects
	Summary

	Tutorial 2: Create a Matrix
	What's a Matrix?
	The jit.matrix object
	The jit.print Object
	Setting and Querying Values in a Matrix
	The jit.pwindow Object -
	Filling a Matrix Algorithmically
	Other jit.matrix Messages
	Summary

	Tutorial 3: Math Operations on a Matrix
	Operation @-Sign
	Math Operations on Multiple Planes of Data
	Modifying the Colors in an Image
	Sizing it Up
	Summary

	Tutorial 4: Controlling Movie Playback
	Obtaining Some Information About the Movie
	Starting, Stopping, and Slowing Down
	Time is on My Side
	Scrubbing and Looping
	Summary

	Tutorial 5: ARGB Color
	Color in Jitter
	Color Components: RGB
	The Alpha Channel
	Color Data: char, long, or float

	Isolating Planes of a Matrix
	Color Rotation
	Automated Color Changes
	Summary

	Tutorial 6: Adjust Color Levels
	The jit.scalebias Object
	Math with char Data
	Some More Examples of Math with char Data
	Adjust Color Levels of Images
	Adjust Planes Individually

	Reassign Planes of a Matrix
	Reading and Importing Images
	Summary

	Tutorial 7: Image Level Adjustment
	Brightness, Contrast, and Saturation
	Hue and Cry
	Summary

	Tutorial 8: Simple Mixing
	Mixing Two Video Sources
	The jit.xfade Object
	Automated Crossfade
	Summary

	Tutorial 9: More Mixing
	Mixing and Crossfading Made Explicit
	Mixing Revisited

	Combine Matrices Using Other Operators
	jit.scalebias vs. jit.op with the * Operator
	Summary

	Tutorial 10: Chromakeying
	The jit.chromakey Object
	The suckah Object
	The Blue Screen of Death
	Summary

	Tutorial 11: Lists and Matrices
	Matrix Names
	The jit.fill Object
	The offset Attribute
	Using the multislider Object
	Using the zl Object
	Using the jit.fill Object with Multiple-plane Matrices
	Using the jit.fill Object with 2D Matrices

	The jit.spill Object
	The jit.iter Object
	Summary

	Tutorial 12: Color Lookup Tables
	Lookup Tables
	Generating the Lookup Table
	The jit.gradient Object
	Summary

	Tutorial 13: Scissors and Glue
	Cut it Up
	Routing the Matrices
	The Glue That Keeps It Together
	Summary

	Tutorial 14: Matrix Positioning
	Positioning Data in a Matrix
	The jit.window Object
	From One jit.matrix to Another
	Interpolation
	Isolate a Part of the Matrix
	Flip the Image
	Resize the Output Matrix
	Moving the Image Data Around in the Matrix
	Changing, Resizing, and Moving the Source Image

	One More Word About Dimensions
	Hue Rotation
	Full Screen Display
	Summary

	Tutorial 15: Image Rotation
	Rotating and Zooming with the jit.rota Object
	Basic Rotation
	Automated Rotation
	Zoom In or Out
	Beyond the Edge
	Some Adjustments-Anchor Point and Offset
	Rotary Control

	Summary

	Tutorial 16: Using Named Jitter Matrices
	Order of Importance
	What's in a Name?
	The Destination Dimension
	Jumping the Queue
	Summary

	Tutorial 17: Feedback Using Named Matrices
	Jitter Matrix Feedback
	The Game of Life
	Summary

	Tutorial 18: Iterative Processes and Matrix Re-Sampling
	Getting Drunk
	The Feedback Network
	Downsampling and Upsampling
	Summary

	Tutorial 19: Recording QuickTime movies
	Your Mileage May Vary
	On the Clock
	Off the Clock
	Summary

	Tutorial 20: Importing and Exporting Single Matrices
	Import and Export From the jit.matrix Object
	QuickTime Export and Import
	Jitter Binary Export and Import

	Import and Export From the jit.qt.movie Object
	The exportimage Message
	General Export From the jit.qt.movie Object

	The jit.textfile Object
	Summary

	Tutorial 21: Working With Live Video and Audio Input
	The Basics of Sequence Grabbing
	First Grab
	Switching Between Inputs

	Grabbing for Quality
	Grabbing to Disk
	Grabbing Video to Disk

	Summary

	Tutorial 22: Working With Video Output Components
	End of the Line
	Just Passing Through
	Summary

	Tutorial 23: Controlling Your FireWire Camera
	Plug and Play
	Basics
	PLAY and WIND groups (VTR mode)
	Avez-vous le Temps?
	RECORD Group

	Summary

	Tutorial 24: QuickTime Effects
	The Dialog Box Interface
	To the Max
	Listing and Loading Effects
	Parameter Types
	Listing Parameters

	In Practice
	Making Changes to Parameters
	Tweening

	Saving and Loading Parameter Files
	Using QuickTime Effects in QuickTime Movies
	Summary

	Tutorial 25: Tracking the Position of a Color in a Movie
	Color Tracking
	The jit.findbounds Object
	Tracking a Color in a Complex Image
	Using the Location of an Object
	Playing Notes
	Playing Tones
	Deriving More Information

	Summary

	Tutorial 26: MIDI Control of Video
	The MIDI-Video Relationship
	Mapping MIDI Data for Use as Video Control Parameters
	Using send and receive
	Using MIDI Notes to Trigger Video Clips
	Routing Control Information
	Routing Around (Bypassing) Parts of the Patch

	User Control of Video Effects
	Summary

	Tutorial 27: Using MSP Audio in a Jitter Matrix
	The Sound Output Component
	Poke~ing Around
	Sync or Swim
	Putting it All Together
	Summary

	Tutorial 28: Audio Control of Video
	Audio as a Control Source
	Tracking Peak Amplitude of an Audio Signal
	Using Decibels
	Focusing on a Range of Amplitudes
	Audio Event Detection
	Using Audio Event Information

	Summary

	Tutorial 29: Using the Alpha Channel
	The jit.lcd Object
	Make Your Own Titles
	The Alpha Channel
	Summary

	Tutorial 30: Drawing 3D text
	Creating a Drawing Context
	GL Objects in the Context
	Common 3D Attributes
	Summary

	Tutorial 31: Rendering Destinations
	Drawing and Swapping Buffers
	Setting a jit.pwindow Destination
	Setting a jit.matrix Destination
	Multiple Renderers and Drawing Order
	Summary

	Tutorial 32: Camera View
	Summary

	Tutorial 33: Polygon Modes, Colors and Blending
	Wireframe Mode and Culling Faces
	RGBA Colors
	Erase Color and Trails
	Blend Modes
	Antialiasing
	Summary

	Tutorial 34: Using Textures
	What is a Texture?
	Creating a Texture
	Textures and Color
	Converting an Image or Video to a Texture
	Interpolation and Texture size
	Mapping Modes
	Summary

	Tutorial 35: Lighting and Fog
	The OpenGL Lighting Model
	Getting Started
	Moving the Light
	Specular Lighting
	Diffuse Lighting
	Ambient Lighting
	That’s Ugly!
	Directional vs. Positional Lighting
	Fog
	Summary

	Tutorial 36: 3D Models
	Review and Setup
	Reading a Model File
	Model Attributes
	Lighting and Shading
	Texture Mapping
	Drawing Groups
	Material Modes

	Summary

	Tutorial 37: Geometry Under the Hood
	Matrix Output
	Geometry Matrix Details
	Processing the Geometry Matrix
	Drawing Primitives
	Summary

	Appendix A: QuickTime Confidential
	The Structure of QuickTime Movies
	Time in QuickTime
	Optimizing Movies for Playback in Jitter
	Codecs
	Audio Codecs
	Video Codecs
	Movie Dimensions and Frame Rate
	Our Favorite Setting

	Summary

	Appendix B: The OpenGL Matrix Format
	Matrices, Video and OpenGL
	When You Need This Reference

	GL Matrix Reference
	Message Format
	Draw Primitive
	The Connections Matrix
	The Geometry Matrix

	Appendix C: A Jitter Bibliography For Your Further Reading Pleasure
	Jitter Reference List
	Video
	Image Processing
	OpenGL and 3D Graphics
	2D Graphics and Vector Animation

	Video Art
	Generative Art
	Linear Algebra and Mathematical Matrix Operations
	Miscellaneous

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

