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Introduction

The concepts of learning and memory are the fundamental bases of computation with neural
networks. The representation of these concepts in neural computing architectures is almost
universal. Memories are represented by patterns of activation of the active elements, or nodes, in
the network. These patterns are determined by the magnitudes of the weighted connections
between the nodes. The learning process, the formation of memories, is represented by the
manipulation of these weighted connections in response to the presentation to the network of
selected relevant training examples. The memory retrieval process is represented by the
computational process of allowing the nodes in the network to acquire specific levels of
activation (the memory), often in response to exogenous stimulus applied to the network during
the retrieval process. In this case what is retrieved is an internal representation (a memory)
associated with the stimulus.

It is likely that in the biological brain memories are also represented by patterns of acivation
amongst populations of neurons. How these memories are formed, retrieved and reach conscious
awareness are unsolved problems. However it is also likely that the patterns of activity by which
memories are represented are determined by, amongst other things, the strength of the
connections which exist between the neurons which are involved in the representation. But it is
clear that the biological connection between neurons is a much more complex entity than that
which is implemented in most neural computing architectures. In particular they display temporal
and spatial characteristics which are strongly determined by the intricate and complex biophysical
and biochemical mechanisms which underlie the connection.

If we are to achieve with neural computing architectures, the levels of performance, robustness,
etc which are manifest in biological networks, one possible approach is to incorporate into these
architectures at least some of the more complex characteristics of the biological network. This has
already been done in the case of network architectures which employ pulse trains as the mode of
communication between neurons, so-called pulse-coupled networks. This approximates the
biological situation in which trains of action potentials ("spikes") provide the means by which
neurons communicate with each other. An obvious further extension is to increase the complexity
of neuronal connections, from simple multiplicative weights to a form which includes some of the
temporal and spatial characteristics mentioned above. This is particularly appropriate in the case
of pulse-coupled networks, or their more abstract fomulation as networks of computational
models of "spiking" neurons, since the dynamic and spatial behaviour of neuronal connections are
often determined by the detailed temporal and spatial structure of the trains of action potentials
which impinge on the connections to a given neuron.



In this talk, I will review the recent knowledge which has been gained in the field of experimental
neuroscience concerning the dynamic (both temporal and spatial) characteristics of biological
connections between neurons, and their modification under "pairing", the experimental equivalent
of Hebbian learning.. I will restrict my remarks to the case of chemical synapses, although it is
clear that other connections, eg electrical gap junctions, are also extensive and important in
processing in the biological neural network. I will describe briefly some of the computational
models of these characteristics which have recently been developed. A greater understanding of
how to represent and exploit these biological phenomena computationally could be important for
learning how neural computing architectures might achieve the high levels of performance of
biological networks.

The dynamics of synapses

In several experimental studies of the characteristics of synaptic transmission its has been
observed that the efficacy of this tranmission can undergo transient variations according to the
time history of the activity of the presynaptic neuron . This can either take the form of an short-
term and short timescale increase (facilitation) or decrease (depression) of synaptic efficacy
(Thomson and Deuchars, 1994;  Markram and Tsodyks, 1996; Abbott et al, 1997; Ali and
Thompson, 1998). Synaptic depression has been particularly widely observed in  synapses in the
developing brain, and may undergo a switch to facilitation in cortical synapses in adult brains
(Reyes and Sakmann, 1999).

A  model of the dynamics of  synaptic depression was described recently by Tsodyks and
Markram (1997).  In fact, this model of the postulated presynaptic dynamics of neurotransmitter
release had been proposed previously by Grossberg (1968, 1969) and used subsequently by
Grossberg in more recent years, for example to explain a number of important perceptual features
involving the visual cortex (see Grossberg, 1998).

An alternative form of the model was described recently by Abbott et al (1997). This can be
derived from the differential equation form originally proposed by Grossberg (1968, 1969) and
later employed by Tsodyks and Markram (1997). Abbott et al (1997) show that their equations
can be used to model many aspects of their own experimental data relating to synaptic depression,
in particular the sensitivity of the synaptic response to abrupt changes in firing rate of the
presynaptic cells. A number of similar models of synaptic facilitation and depression, based on
the generic synaptic decoding method of Sen et al (1996), have been discussed recently by Varela
et al (1997).

The dynamic synapse model characterises the synapse by defining a “resource”, eg the amount of
neurotransmitter in the synapse, a proportion of which can be in one of three states: available,
effective, inactive. The dynamical behaviour of the proportions of the resource that are in each of
these states is determined by a system of three coupled differential equations (1)-(3) below. In
these we use notation similar to that in (Grossberg, 1969, see equations (58)-(63)):
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where x(t) is the amount of effective resource, eg activated neurotransmitter within the synaptic
cleft, as a proportion of the total resource, y(t) is the amount of  available resource, eg free
neurotransmitter in the synapse, and w(t) is the amount of inactive resource, eg neurotransmitter
being reprocessed.

The input signal=Ι=(t) represents the occurrence of a presynaptic AP and is set equal to one at the
time of arrival of the AP and for a small period of time δt thereafter, and otherwise is set equal to
0. The instantaneous efficacy of the synapse is determined by the variable g(t), which can be
interpreted as the fraction of available resource released as a result of the occurrence of the
presynaptic AP. It takes a value in the range zero to one.

The key idea behind the model is that there is a fixed amount K = x(t)+y(t)+w(t) of total resource
available at the synapse, a proportion g(t) . y(t) (0<g(t)<1) of which is activated in response to
presynaptic activity, rapidly becomes inactive (at a rate α), and is then subsequently made
available again through reprocessing (at a rate β) .  Thus, if the synapse is very active, ie it is
bombarded by a large number of presynaptic APs occurring over a short period of time, the
amount of available resource y(t) is rapidly reduced. There must then follow a period during
which the synapse must recover in order to respond fully once more. This process appears to
replicate the experimentally observed characteristics of synaptic depression, for example as
reported in (Markram and Tsodyks, 1996; Tsodyks and Markram, 1997).

The EPSP at the synapse, e(t),  can be computed from the effective synaptic current x(t) in (1)
using the following equation for the passive membrane mechanism (Tsodyks and Markram,
1997):
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Markram and Tsodyks (1996) showed that pairing of the action potential generation in both the
pre- and postsynaptic neurons, experimentally equivalent to the condition of Hebbian or
associative learning, appears to result in a dynamic change in synaptic efficacy, rather than a
simple increase in gain. After pairing, the shape of the EPSP resulting from a high-frequency
train of presynaptic APs altered substantially, in that the amplitude of the initial transient part of
the EPSP was significantly increased, and the rate of depression of the EPSP to subsequent APs
was also greater, whilst the steady state value of the EPSP, on average, remained unchanged, for
sufficiently high frequency stimuli (>20 Hz), and increased by up to 70% for low frequency
stimuli (<20 Hz).

As Markram and Tsodyks (1996) point out, in during most observations of biological neural
networks during information processing, neurons are firing irregularly and at a wide range of
frequencies. The kind of changes in the dynamics of synaptic connections resulting from
Hebbian-type pairing that they observed will therefore result in significant modification of the



temporal structure of EPSPs generated by such irregular presynaptic spike trains, rather than that
which a simple synaptic gain change would elicit.

The dynamics of learning

As we have seen, the changes which occur in synaptic efficacy as the result of Hebbian pairing of
pre- and postsynaptic activity can substantially alter the dynamic characteristics of the synaptic
connection. In addition it has been observed that the induction of long-term changes in synaptic
efficacy, ie either long-term potentiation (LTP) or depression (LTD), by such pairing depends
strongly on the relative timing of the onset of  the EPSP generated by the pre-synaptic AP, and
the post-synaptic AP (Levy and Steward, 1983; Debanne et al, 1995; Markram et al, 1997;
Debanne et al, 1998; Guo-quiang Bi and Mu-ming Poo, 1998).

The precise cellular mechanisms which are responsible for the induction of LTP and LTD are not
known. However the process seems to involve the initiation in the neuron's axon of an AP which
actively and rapidly propagates back into the dendritic tree of the cell. The pairing of this AP with
a subthreshold EPSP results in a amplification of the dendritic AP and a localised influx of Ca2+

near the site of the synaptic input. This also induces significant LTP of the synapse and
corresponding increases in the average amplitude of unitary EPSPs (Magee and Johnston, 1997)

Back-propagating APs reduce in amplitude with their distance from the cell body, although
pairing with synaptic activity increases AP amplitude, and this increase is greater with increasing
distance of the synapse from the cell body. APs are also attenuated or their back-propagation
blocked by dendritic hyperpolarisation. Thus the occurence of synaptic input to the dendritic tree
can have the effect of closely controlling the back-propagation of the APs to more distal parts of
the tree, thus introducing a complex spatio-temporal dynamics into the synaptic modification
process. In particular, synapses are only modified in those parts of the tree which back-
propagating APs are allowed to access, which depends on the precise timing and location of
EPSPs and IPSPs at the inputs to the tree, relative to the APs.

Markram et al (1997) are amongst the most recent researchers (others are cited above) to observe
that this relative timing of EPSPs and APs can either result in LTP or LTD of the synapse. The
former occurs if the onset of the EPSP occurs around 10 ms before the AP then LTP is induced; if
the AP preceeds the onset of the EPSP by the same amount of time, LTD occurs. Relative timings
of 100 ms either way resulted in no change to the synaptic strength. Several authors have
suggested different forms of simple Hebbian learning rule which attempt to capture
computationally this temporal asymmetry (Grossberg, 1969; Senn et al,1997; Denham and
Denham, 1998; Kempter et al, 1999). Most recently Migliore et al (1999) have captured this
effect, together with the modulation of the amplitude of the back-propagating AP, in a
computational model of a hippocampal CA1 pyramidal neuron, modelled using a total of 202
compartments for the cell's axon., soma and dendrites. They show how the modulation and timing
effects may depend on the properties of a transient K+ conductance that is strongly expressed in
hippocampal dendrites.



Conclusion

In the biological neural network, synaptic connections and their modification by Hebbian forms
of associative learning have been shown in recent years to have quite complex dynamic
characteristics. As yet, these dynamic forms of connection and learning have had little impact on
the design of computational neural architectures (eg Gerstner, 1998). It is clear however that for
the processing of various forms of information, in which the temporal nature of the data is
important, eg in temporal sequence learning and in contextual learning, such dynamic
characteristics may play an important role. Much work is required in order to fully explore this
possibility. It is only one of many lessons which can be drawn from neuroscience which can
informus about how the biological neural network achieves its remarkable robustness and
efficiency.
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