
From COBOL to Enterprise JavaBeans with Net Express®

Author : John Billman, Net Express Product Manager, MERANT

Table of Contents

From COBOL to Enterprise JavaBeans with Net Express.. 1
Table of Contents ... 1
Abstract.. 1
The business landscape... 1
Application Mining .. 2
Accessing Legacy COBOL assets from Java ... 3

Example of Calling Legacy COBOL from Java ... 4
Java Considerations .. 4
COBOL Considerations .. 5

Calling Java from COBOL.. 5
COBOL Considerations .. 6

Calling JDBC ... 7
Calling COBOL Classes from Java ... 8

Writing a Class in COBOL for the Java Domain.. 9
COBOL Enterprise JavaBeans.. 10
Combination ActiveX/Java Classes... 13

Abstract

After presenting an overview of the business and technical background that is leading to an increased
demand to mix COBOL and Java, this paper explains in detail how MERANT Micro Focus Net
Express® can be used to:

• Access Legacy COBOL Assets from Java and Enterprise JavaBeans (EJBs)

• Access Java Objects from COBOL applications

• Invoke Object COBOL methods from Java and Enterprise JavaBeans

• Wrap COBOL assets as COBOL Enterprise JavaBeans

The business landscape

The emergence and rapid growth of e-business means that the ability of IT organizations to deliver
existing services across the internet, is a key and significant business driver for many enterprises today.
In essence the challenge this brings many such organisations is to bridge discrete “Islands of
technology” and rapidly extend existing applications to the web. Since these legacy systems include an
estimated 200 billion lines of COBOL code, the ability of such enterprises to rapidly and reliably
deliver this invaluable COBOL business logic to the internet is the starting point to future success.

This paper seeks to present technically how users can establish their legacy applications upon a
strategic platform for extension towards e-business, connect these legacy systems with new code
written in Java, and reuse rather than rewrite legacy business logic delivering it with key industry
Application Servers such as IBM WebSphere, BEA WebLogic, and others as part of an Enterprise Java
Bean.

Application Mining

While this paper primarily presents how you can use Net Express (under Windows) to deliver COBOL
code into the Java world under Windows or UNIX (using MERANT Micro Focus Server ExpressTM),
much of the 200 billion lines of code of COBOL are not well-structured COBOL applications running
on a distributed platform. This huge volume of code is contained in mainframe COBOL applications
that have evolved over time into a complex structure, which is difficult to maintain, and where the
COBOL business logic you want to preserve is deeply intertwined with presentation logic you don’t.

If you are in this position you can still use the technology presented here, but first you must separate
the wheat from the chaff, and extract the business logic from your application. This process, known as
Application Mining, is growing in popularity and products such as MERANT AssetMinerTM will
analyze and modularize your application, forming an excellent basis from which to deliver your
rehosted and rearchitectured application to e-business using COM, or as presented in this paper by
interfacing with Java and wrapping the COBOL as an Enterprise JavaBean.

Fig 1. Asset Miner and Net Express combine to deliver mainframe legacy applications as
Enterprise JavaBeans.

Mainframe Windows

AssetMiner
Mine Business
Rules

Existing Legacy Application

Application
Inventory

COBOL Component Creation

Option to Redeploy
Mined Application

on Mainframe

Net Express
Extend and Test Application

Build COBOL Application
Components

COM EJB

Deploy on Windows Deploy on UNIX

The Technical Landscape

Net Express is the successor to a long line of products that have spread COBOL beyond the mainframe
world. With the emergence of the web many companies rolling out internet or intranet applications
started using COBOL CGI (or ISAPI/NSAPI) programs to handle any business logic on the server.

However, as the number of users or the application’s complexity increases a more common route is
Web Application Servers, in the Microsoft model with Net Express COBOL business logic is
componentized as COM objects and MTS is used to handle transactions. However beyond this model,
on both Windows and UNIX, there are a number of Application Servers available from numerous
vendors. While in the past the interfaces and capabilities provided by these Web Application Servers
differed considerably, one thing in common was that they primarily targeted Java and/or C++, making
it difficult for COBOL applications to use them. With the growing prominence of the Enterprise Java-
Bean (EJB) model, Application Servers are converging on support for EJB.

Therefore the convergence towards the EJB model, the power of delivering existing COBOL business
logic into that model and utilizing Java classes from COBOL all combine to establish interoperability
between Java and COBOL as a keystone of our bridge between technologies.

While Java and COBOL interoperability has long been possible, it has not necessarily been easy.
There is a mechanism built into the Java platform that allows Java methods to call non-Java (or native)
methods. This mechanism is the Java Native Interface (JNI). Although the JNI is powerful, it is not
intuitive, especially for COBOL programmers, due to the need to perform low-level API functions.

This paper explains how you can more easily mix COBOL and Java and wrap COBOL applications as
EJBs. In doing this we are not simply defining an alternative way to deliver existing COBOL code to
the web, a key advantage of this approach is the creation of an infrastructure that is a strategic platform
for extension and maintenance in the future.

All of the COBOL/Java and EJB support described here is implemented and available today on
Windows in Net Express 3.1 (with the exception of extensions to create EJB JARs which will be
available in early 2001). The core COBOL/Java and EJB support will soon also be available on UNIX
in MERANT Micro Focus Server Express 2.0.10.

Accessing Legacy COBOL assets from Java

The existing (or legacy) COBOL applications contained within enterprises represent the result of a
huge investment over many years, embodying the core of the business practices within COBOL
business logic. The last thing you want to do is throw that all away and rewrite everything in Java.
However you may have newer systems already written in Java, or wish to take advantage of Java for
less business orientated new development.

The ability to call legacy COBOL programs from Java (and as we will see later from EJBs) provides a
fast way to make existing COBOL business logic available to Java programs and does not require any
knowledge of Object COBOL syntax.

The support is provided through a special Java class (mfcobol.runtime) that provides functions that
enable you to load, call and cancel COBOL programs. It also enables you to pass parameters to a
COBOL program using a Java array with functions to unpack the array and pass the data to your
COBOL program in a form it can use. The diagram below shows how this works a Java program
calling a COBOL program and passing it two parameters.

A constant challenge of mixed language programming is different data types, this is exasperated when
Java is involved by the fact that data is stored as Unicode. One of the key things provided here is that
the data format and encoding is converted for you, leaving you only to make sure you have correctly
matching data item declarations in the Java and COBOL programs (For example, a Java int is
equivalent to pic s9(9) comp-5 in COBOL).

Example of Calling Legacy COBOL from Java
This section shows you a short example of calling a Legacy COBOL program from Java. This is a
simple COBOL subroutine, named legacy.cbl:

 working-storage section.
 01 wsResult pic s9(9) comp-5.

 linkage section.
 01 wsOperand1 pic s9(9) comp-5.
 01 wsOperand2 pic s9(9) comp-5.
 01 wsOperation pic x.

 procedure division using wsOperand1 wsOperand2 wsOperation.
 evaluate wsOperation
 when "a"
 add wsOperand1 to wsOperand2 giving wsResult
 when "s"
 subtract wsOperand1 from wsOperand2 giving wsResult
 end-evaluate
 exit program returning wsResult.

Below is a Java program which calls this subroutine:

import mfcobol.* ;

class SimpleCall
{
 public static void main(String argv[]) throws Exception
 {
 Object theParams[] = {new Integer (4),
 new Integer(7),
 new Byte((byte)'a')} ;
 int i = runtime.cobcall_int("legacy", theParams) ;
 System.out.println(i) ;
 theParams[2] = new Character ('s') ;
 i = runtime.cobcall_int("legacy", theParams) ;
 System.out.println(i) ;
 }
}

Java Considerations

To make COBOL support available to your Java program, include the following statement at the start
of your Java source file:

import mfcobol.*;

Calling COBOL from Java is a straightforward process, in the case of Legacy COBOL this involves the
use of static cobcall_ functions provided by the classes supplied and imported above.

As discussed earlier parameters are converted between Java and COBOL data. There are different
cobcall_ functions, each named according to the Java equivalent of the data type returned by the
COBOL program or entry being called. In the example above the COBOL program is returning a

signed integer (such as a pic s9(9) comp-5) equivalent to the Java data type int. So you would call the
COBOL program using the cobcall_int function.

COBOL Considerations

Java run-time systems are multi-threaded, so any COBOL program you are going to use with Java must
be linked with the COBOL multi-threaded run-time system whether or not the Java program calling it
uses multi-threading. If your COBOL program is going to be called from a multi-threaded Java
program, you need to take care that COBOL data accessed from one thread is not corrupted by another
thread.

This need not involve rewriting a line of code, compiler directives can provide protection by allocating
separate user data areas for each thread or by controlling access to your program to one thread at a
time.

However, there is a decision here in terms of functionality and speed, another option would be to add
multi-threading intelligence into your COBOL application. In a Legacy scenario you would not
typically want to re-architect your whole application to achieve this. More typically this would be done
by writing COBOL driver programs to sit between the Java run-time environment and your legacy
programs. Your driver program would be responsible for controlling access to the legacy programs,
and would have to use semaphores or some similar mechanism to prevent two threads from accessing
the same code at the same time

Also as we have seen data types are a necessary consideration. No user conversion is necessary but the
interface presented to Java must be a COBOL equivalent to a valid Java data type. Therefore you must
use COBOL fields of the correct length and type for interfacing to Java.

Calling Java from COBOL

Calling Java from COBOL translates to calling Java objects since Java is an Object-Oriented language.

This doesn’t however mean that you have to rewrite the whole of your COBOL application in Object
COBOL or as an Object COBOL Class, but you will be using some Object COBOL syntax to call (or
invoke) Java. This isn’t a contradiction – it’s easy to add a Class-Control section to a program and use
the INVOKE verb each time you want to call a Java function – and it can be done without touching
your business logic.

The Java support works by creating a COBOL proxy object for each Java object, as shown in the
diagram below. The class itself that you declare is a proxy for the static methods of the Java class.

COBOL Considerations
Java classes can easily be declared for use in a COBOL program with a single entry in Class-Control
section, For example:

 class-control.
 jRectangle is class "$java$java.awt.Rectangle"
 .

Once declared the class must be instantiated, each Java class has one or more constructor methods to
instantiated objects. In Java, constructor methods have the same name as the class. When you invoke
these methods from COBOL, they are mapped to the "new" method name on the proxy. The different
constructors on a Java class take different numbers and combinations of parameters to initialize the
instance you are creating.

For example, the Java Rectangle class can be instantiated in several different ways, including the two
shown below in Java code:

 Rectangle r1 = new Rectangle ()
 Rectangle r2 = new Rectangle(4, 5, 10, 20)

The equivalent COBOL code is shown below:

 working-storage section.

 01 r1 object reference.
 01 r2 object reference.
 ...

 procedure division.
 ...
 invoke jRectangle "new" returning r1
 invoke jRectangle "new" using 4, 5, 10, 20
 returning r2

The COBOL run-time system uses the number and type of parameters to call the appropriate
constructor on the Java class.

You can call any of the methods on a Java object by sending it a message with the same name as the
method. Java allows method overloading - where one method name has different implementations
according to the number and type of parameters passed. COBOL handles this transparently for you, so
that the correct Java method is always called.

For example, the Rectangle class has three different add() methods, which take different parameters.
The Java code below shows three different ways you can call the add() method on a rectangle.

 Rectangle r1 = new Rectangle(0,0,0,0) ;
 Point pt = new Point(6,6) ;
 Rectangle r2 = new Rectangle(3,4,9,9) ;
 r1.add(4,5) ;
 r1.add(pt) ;
 r1.add(r2) ;

The equivalent code in COBOL looks like this:

 class-control.
 jRectangle is class "$java$java.awt.Rectangle"
 jPoint is class "$java$java.awt.Point"
 .
 working-storage section.
 01 r1 object reference.

 01 r2 object reference.
 01 pt object reference.

 procedure division.
 invoke jRectangle "new" returning r1
 invoke jPoint "new" using 4 5 returning pt
 invoke jRectangle "new" using 3 4 9 9 returning r2
 invoke r1 "add" using 4 5
 invoke r1 "add" using pt
 invoke r1 "add" using r2

Although r2 and pt are both data items of type object reference, the COBOL run-time system
determines the type of Java object represented and calls the correct Java method.

An exception thrown by Java is passed back to COBOL as an exception raised against the javexpt
class. The default exception behavior is for the COBOL run-time system to display a message warning
of the exception, and then terminate. You can trap the exception yourself though, and handle it with
your own error processing code.

Calling JDBC

In the same way as any other COBOL code COBOL wrapped EJBs can of course call ODBC and
therefore take advantage of Net Express aids in this area such as the Pre-processor support Open ESQL
Assistant. However as an alternative, just as you can call Java objects from COBOL, this means that
you can also call JDBC from COBOL using exactly the same mechanisms. You can either connect to
JDBC in the Java part of the EJB class, and pass any necessary objects to the COBOL part in order to
talk to the database, or you can perform the whole operation in COBOL and connect to the database
using the JDBC’s classes in COBOL instead

There's not a lot of difference between calling JDBC in Java and calling it from COBOL - and
it is reasonably straightforward.

For example (code fragment):

jdbcDriverManager is class "$JAVA$java.sql.DriverManager"
...
invoke jdbcDriverManager "new" returning aManager
invoke aManager "getConnection" using z"jdbc:weblogic:oracle"
 propertiesobj
 returning theConnection
invoke theConnection "createStatement" returning theStatement
invoke theStatement "executeQuery" using z"select..."
 returning aResultSet
invoke theStatement "finalize" returning theStatement
invoke theConnection "close"
invoke theConnection "finalize" returning theConnection
etc.

The context object can be queried from the Java class using:

invoke objectcontext "getTransactionContext" using self returning theObjectContext
(where objectcontext is class "objectcontext")

or by directly querying the context variable (eg _context) stored in the java class:
invoke <class> "get_context" returning theNativeContext
(Note: These are objects of two different classes)

This context object can then be used in the COBOL to abort or commit the transaction. Doing
this should ensure that any database updates made in the COBOL using the JDBC methods
stay within "transaction scope".

Calling COBOL Classes from Java

With Net Express you can write COBOL-wrapped Java classes, essentially these are classes in COBOL
which can be called from Java programs as though they were Java classes. You do this by providing a
simple Java wrapper class, which provides a function for each method in the COBOL class. The Net
Express class and method wizards make this easy for you, by generating the Java code at the same time
as the COBOL code.

The functions in the Java wrapper class put all the parameters for the method into a Java array, and
then call one of the member functions of Java class mfcobol.runtime to invoke the method in the
COBOL class and return the result. This is shown in the diagram below:

Writing a Class in COBOL for the Java Domain

If you are using Net Express by far the easiest way to start this process is by using the Class and
Method wizards to create a complete class infrastructure for you. This is an Object COBOL
infrastructure, into which you can slot your COBOL business logic, either within the class itself or by
calling out to existing COBOL applications. The class generated by the wizard differs little from any
other COBOL Class, the most important point being that it inherits from javabase, the Java Domain
supplied in COBOL.

The following code fragments illustrates the definition of a class and method in COBOL and Java code
which invokes it.

 *>---
 *> Class description
 *>---
 class-id. javaCalc
 inherits from javabase.

 object section.
 class-control.
 javaCalc is class "javacalc"

 *>---
 working-storage section. *> Definition of global data
 *>---

 *>---
 class-object. *> Definition of class data and methods
 *>---
 object-storage section.
 01 currentRate pic 9(2).9(2) value 0.
 01 currentRate-x pic x(5) redefines currentRate.

 *>---
--
 method-id. "setInterestRate".
 local-storage Section.
 *>---USER-CODE. Add any local storage items needed below.
 linkage Section.
 01 rate pic x(5).
 procedure division using by reference rate.

 *>---USER-CODE. Add method implementation below.
 move rate to currentRate-x

 exit method.
 end method "setInterestRate".
 *>---

 public static void setInterestRate (String rate) throws
Exception, COBOLException
 {
 // Parameters are passed to COBOL in an array
 Object[] params = {rate};
 cobinvokestatic_void ("setInterestRate", params);
 }

COBOL Enterprise JavaBeans

We have seen how with Net Express you can create COBOL-wrapped Java classes. This same
technology can be applied one step further facilitating the creation of COBOL-wrapped Enterprise
JavaBeans. The Net Express class wizard enables you to create a COBOL classes for use as an
Enterprise JavaBean (EJB).

Enterprise JavaBeans are software components which run on application servers. The application
server is responsible for all the services required by the bean, such as security, transaction integrity and
persistence, so that EJBs only need to implement business logic. By calling your business logic within
COBOL-wrapped EJBs you can combine the benefits of an Application Server environment with the
performance gain of compiled COBOL code.

For a COBOL-wrapped EJB the Net Express class wizard will create the following files:

• classname.cbl
The COBOL file for your class that includes required EJB methods:

• ejbCreate
• ejbRemove
• ejbActivate
• ejbPassivate
• setSessionContext

These methods are part of the SessionBean interface, which is implemented by all Enterprise
JavaBeans

• classname.java
The Java wrapper class that corresponds to the COBOL class and contains the EJB methods
listed above.

• classnameHome.java
The home interface to your Java wrapper.

• classnameRemote.java
The remote interface to your Java wrapper.

• ejb-jar.xml
 The EJB Deployment Descriptor

Each method you add to the COBOL class must be added to the Java wrapper class, and also to the
remote interface class. If you use the Net Express method wizard, it updates the wrapper and remote
interface automatically for you.

Now you have a COBOL EJB, which can be tightly, or loosely coupled with your legacy COBOL
application, maintaining the connectivity to a defined interface will maximize your ability to deliver the
same business logic to multiple component technologies either now or in the future.

The following diagram illustrates the main development steps:

Net Express
Class &
Method
Wizards

COBOL
EJB Source

Java
Wrapper

EJB Home
Interface

EJB Remote
Interface

Deployment
Descriptor

Legacy
COBOL

Net Express
Integrated
Development
Environment

Built
COBOL EJB
Application

EJB JAR
Java Wrapper
Class
EJB Home
Class

EJB Remote
Class

Java
Compiler

Java
Application
Class
(Optional)

Java
Application
Source
(Optional)

Deploying your COBOL EJB Application

At deployment time, COBOL wrapped Enterprise JavaBeans require the presence of the
COBOL Run-Time (also known as Application Server) which can be deployed either on
Windows (with Net Express Application Server) or major Unix platforms (with Server Express
Application Server). The architecture is the same in each case and is best illustrated
diagrammatically as follows:

Legacy
COBOL

COBOL EJB
Application

EJB JAR

Java Wrapper
Class

EJB Home Class

EJB Remote
Class

Deployment
Descriptor

Java
Application Class

(Optional)

Web
Application

Server

Net Express/
Server

Express

Application
Server

User EJBs
Java Servlets

etc.

COBOL
Data Files

ODBC
Data

Source

JDBC
Data

Source

Web Browsers

Combination ActiveX/Java Classes

You can also create Object COBOL classes that can be used either by Java as Java classes or through
OLE automation as ActiveX classes. The support that enables you to create combination ActiveX/Java
classes is provided through an Object COBOL class called componentbase. ActiveX servers usually
inherit from a class called olebase, and Java classes inherit from a class called javabase.

If you change the inheritance of one of these classes to componentbase it can be used within either the
Java or OLE automation domains. The domain to which your class is available depends on how it was
first loaded within a process. The simplest way to create your class is to use the class wizard to create
your class for OLE automation, and create the Java wrapper class and methods manually.

This technology also enables you to create an Object COBOL class that can be used as a Microsoft
Transaction Server (MTS) Object or as an Enterprise JavaBean (EJB).

This is a significant bridging of technologies, as well as being able to call COBOL subroutines,
middleware, ESQL, etc., as you would expect your COBOL EJB also has the ability to instantiate and
use ActiveX server components in a Windows environment. Effectively this delivers an EJB that can
also interface to COM/COM+ if needed.

Conclusion

In this paper we have seen how the two disparate worlds of COBOL and Java can be bridged and how
new existing COBOL business logic can be delivered as Enterprise JavaBeans (EJBs).

Enterprises have invested countless man years in encapsulating business rules in COBOL applications,
these assets have never been more valuable so why rewrite when you can reuse?

Further Information

1) MERANT Products

For further information about MERANT Products including Net Express®, Server ExpressTM,
Application Server, Revolve® and AssetMinerTM please see http://www.merant.com/.

The Java/COBOL Inter-Operability including EJB wrapping requires Net Express 3.1 which is
available today.

Java/COBOL Inter-Operability including EJB wrapping for UNIX requires Server Express 2.0.10
available from December 2000.

Automatic generation of deployment descriptors and EJB JAR packaging will be added to the
existing Net Express COBOL EJB support and provided via updates to Net Express 3.1 on the
http://support.merant.com/ website from early 2001. If you are interested in participating in an
early release of these enhancements please contact John.Billman@merant.com

2) Java

The standard reference site for Java is Sun’s excellent set of tutorials and specifications at
http://www.javasoft.com/.

3) Web Application Servers

There are numerous Application Servers on the market and it is beyond this article to recommend
any particular one or to list them all, examples include:

IBM WebSphere - http://www-4.ibm.com/software/webservers/appserv/

BEA WebLogic - http://www.bea.com/products/weblogic/server/index.html

Inprise Application Server - http://www.borland.com/appserver/

