University homepage In English
University of Helsinki CBRU

Cognitive Brain Research Unit

Menu:

Current view:

Contact information:

Cognitive Brain Research Unit,
Department of Psychology,
PO BOX 9 (Siltavuorenpenger 20 C)
00014 University of Helsinki,
Finland
tel. +358 9 191 29451
fax. +358 9 191 29450

Mismatch Negativity (MMN)

 Summary
The mismatch negativity (MMN) is a component of the auditory event related potential (ERP) which is elicited task-independently by an infrequent  change in a repetitive sound. The MMN can be recorded in response to any discriminable change in the stimulus stream. The MMN data imply the existence of a sensory-memory trace in which the features of the frequently occurring standard stimuli are represented. One can probe this trace by presenting deviant stimuli of different magnitudes and thus indirectly determine the accuracy of this central sound representation. Several recent studies have shown that these representations govern attentive auditory discrimination ability in humans. Therefore the MMN is an objective, easilyquantifiable index of the quality of sensory stimulus representations from which auditory percepts are built. The most recent studies have provided evidence that even complex, temporal, linguistic stimulus features and long-term learning effects are reflected in MMN responses, thus significantly broadening the theoretical scope of the MMN research. The MMN is consequently of great potential interest in attempts to understandcentral auditory function, its development, and various forms of its pathology.
(back)
 

Introduction
Processing of sensory stimulus features is essential for humans in determining their responses and actions. If behaviourally relevant aspects of the environment are not correctly represented in the brain, then the organism's behaviour cannot be appropriate. Without these representations our ability to understand spoken language, for example, would be seriously impaired. Cognitive neuroscience has consequently emphasised the importance of understanding brain mechanisms of sensory information processing, that is, the sensory prerequisites of cognition. Most of the data obtained, unfortunately, do not allow the objective measurement of the accuracy of these stimulus representations (see Näätänen, 1992). In audition, recent cognitive neuroscience seems to have succeeded in extracting such a measure, however. This is the mismatch negativity (MMN), a component of the event-related potential (ERP), first reported by Näätänen, Gaillard, and Mäntysalo (1978). An in-depth review of MMN research can be found in Näätänen (1992) while other recent reviews also provide information on the generator mechanisms of MMN (Alho 1995), its magnetic counterpart, MMNm (Näätänen, Ilmoniemi & Alho, 1994), and its clinical applicability (Näätänen & Alho, 1995).
(back)

The MMN for Basic Stimulus Features
MMN is evoked by an infrequently presented stimulus ("deviant"), differing from the frequently-occurring stimuli ("standards") in one or several physical parameters like duration, intensity, or frequency (Näätänen, 1992). In addition, it is generated by a change in spectrally complex stimuli like phonemes,  in synthesised instrumental tones, or in the spectral component of tone timbre. Also the temporal order reversals elicit an MMN when successive sound elements differ either in frequency, intensity, or duration The MMN is not elicited by stimuli with deviant stimulus parameters when they are presented without the intervening standards. The MMN has, therefore, been suggested to reflect a change detection when a memory trace representing the constant standard stimulus and the neural code of the stimulus with deviant parameter(s) are discrepant (Click here for more specific information)
(back)

MMN vs Auditory Sensory Memory
The MMN data provide evidence that stimulus features are separately analysed and stored in the vicinity of auditory cortex. The close resemblance of the behaviour of the MMN to that of the previously behaviourally observed "echoic" memory system strongly suggests that the MMN provides a non-invasive, objective, task-independently measurable physiological correlate of stimulus-feature representations in auditory sensory memory. (Click here for more specific information)
(back)

Relationship to Attentional Processes
The experimental evidence suggests that the auditory sensory memory index MMN provides sensory data for attentional processes, and, in essence, governs certain aspects of attentive information processing. This is evident in the finding that the latency of the MMN determines the timing of behavioural responses to changes in the auditory environment. Furthermore, even individual differences in discrimination ability can be probed with the MMN. The MMN is also a likely component of the chain of brain events causing attention switches to changes in the environment. In the light of these observations, it seems that at present the MMN provides the best available physiological measure of automatic central auditory processing.
(Click here for more specific information)
(back)
 

MMN in clinical research. The MMN has been documented in a number of studies to disclose neuropathological changes. Presently, the accumulated body of evidence suggests that while the MMN offers unique opportunities to basic research of the information processing of a healthy brain, it might be useful in tapping neurodegenerative changes as well. The clinical populations studied in CBRU include:

  • Alzheimer's disease
  • Parkinson's disease
  • schizophrenia
  • dyslexia
  • aphasia
  • alcoholism
MMN, which is elicited irrespective of attention, provides an objective means for evaluating possible auditory discrimination and sensory-memory anomalies in such clinical groups as dyslexics and patients with aphasia, who have a multitude of symptoms including attentional problems. Our recent results suggest that a major problem underlying the reading deficit in dyslexia might be an inability of the dyslexics' auditory cortex to adequately model complex sound patterns with fast temporal variation. According to the results of our ongoing study, MMN might also be used in the evaluation of auditory perception deficits in aphasia.

AD patients demonstrate decreased amplitude of MMN, especially with long inter-stimulus intervals; this is thought to reflect reduced span of auditory sensory memory. Parkinsonian patients do demonstrate a similar deficit pattern, whereas alcoholism would appear to enhance the MMN response. This latter, seemingly contradictory, finding could be explained by hyperexcitability of CNS neurones resulting from neuroadaptive changes taking place during a heavy drinking bout.

While the results obtained thus far seem encouraging, several steps need to be taken before the MMN can be used as a clinical tool in patient treatment. Recently, a project funded by EU, COBRAIN, has been assembled to tackle some of the key signal-analysis problems encountered in development of clinical use of MMN. Nevertheless, as it stands, clinical research employing the MMN has already produced significant knowledge on the CNS functional changes related to cognitive decline in the aforementioned clinical disorders.

(back)

 

(back to the top)


List of References

(back to the top)

Scroll down the list or just click on the letter to get straight to the references that start with it:
 

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Aaltonen, O., Niemi, P., Nyrke, T., & Tuhkanen, M. (1987). Event-related brain potentials and the perception of a phonetic continuum. Biological Psychology, 24, 197-207.

Aaltonen, O., Paavilainen, P., Sams, M., & Näätänen, R. (1992). Event-related potentials and discrimination of steady-state vowels within and between phoneme categories: A preliminary study. Scandinavian Journal of Logopedics and Phonetics, 17, 107-112.

Aaltonen, O., Tuomainen, J., Laine, M., & Niemi, P. (1993). Cortical differences in tonal frequency versus vowel processing as revealed by an ERP component called the mismatch negativity (MMN). Brain and Language, 44, 139-152.

Alho, K. (1995). Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes. Ear and Hearing, 16, 38-50.

Alho, K., Huotilainen, M., Tiitinen, H., Ilmoniemi, R.J., Knuutila, J., & Näätänen, R. (1993). Memory-related processing of complex sound patterns in human auditory cortex: An MEG study. NeuroReport, 4, 391-394.

Alho, K., Sainio, K., Sajaniemi, N., Reinikainen, K., & Näätänen, R. (1990). Event-related brain potential of human newborns to pitch change of an acoustic stimulus. Electroencephalography and Clinical Neurophysiology, 77, 151-155.

Alho, K., Tervaniemi, M., Huotilainen, M., Lavikainen, J., Tiitinen, H., Ilmoniemi, R.J., Knuutila, J., & Näätänen, R. (1996). Processing of complex sounds in the human auditory cortex as revealed by magnetic brain responses. Psychophysiology, 33, 369-375.

Alho, K., Woods, D. L., Algazi, A., Knight, R. T., & Näätänen, R. (1994). Lesions of frontal cortex diminish the auditory mismatch negativity. Electroencephalography and Clinical Neurophysiology, 91, 353-362.

Aulanko, R., Hari, R., Lounasmaa, O. V., Näätänen, R., & Sams, M. (1993). Phonetic invariance in the human auditory cortex. NeuroReport, 4, 1356-1358.

(to the top of the MMN page)

(to the top of the references list)

Bertrand, O., Perrin, F., & Pernier, J. (1991). Evidence for a tonotopic organization of the auditory cortex observed with auditory evoked potentials. Acta Otolaryngology Suppl., 491, 116-123.

Bvttcher-Gandor, C. & Ullsperger, P. (1992). Mismatch negativity in event-related potentials to auditory stimuli as a function of varying interstimulus interval. Psychophysiology, 29, 546-550.

(to the top of the MMN page)

(to the top of the references list)

Cheour-Luhtanen, M., Alho, K., Sainio, K., Rinne, T., Reinikainen, K., Pohjavuori, M., Renlund, M., Aaltonen, O., Eerola, O., & Näätänen, R. (1996). The ontogenetically earliest discriminative response of the human brain. Psychophysiology, 33, 478-481.

Cowan, N. (1984). On short and long auditory stores. Psychological Bulletin, 96, 341-370.

Cowan, N. (1988). Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychological Bulletin, 104, 163-191.

Cowan, N., Winkler, I., Teder, W., & Näätänen, R. (1993). Memory prerequisites of mismatch negativity in the auditory event-related potential (ERP). Journal of Experimental Psychology: Learning. Memory, and Cognition, 19, 909-921.

Crowder, R. G. & Morton, J. (1969). Precategorical acoustic storage (PAS). Perception and Psychophysics, 5, 365-373.

Csipe, V., Karmos, G., & Molnar, M. (1987). Evoked potential correlates of stimulus deviance during wakefulness and sleep in cat: Animal model of mismatch negativity. Electroencephalography and Clinical Neurophysiology, 66, 571-578.

Csipe, V., Karmos, G., & Molnar, M. (1989). Subcortical evoked potential correlates of early information processing: Mismatch negativity in cats. In E. Basar & T. H. Bullock (Eds.), Dynamics of Sensory and Cognitive Processing by the Brain (pp. 279-289). Berlin: Springer-Verlag.

Csipe, V., Pantev, C., Hoke, M., Hampson, S., & Ross, B. (1992). Evoked magnetic responses to minor pitch changes: localization of the mismatch field. Electroencephalography and Clinical Neurophysiology, 84, 538-548.

(to the top of the MMN page)

(to the top of the references list)

Elberling, C., Bak, C., Kofoed, B., Lebech, J., & Saermark, K. (1982). Auditory magnetic fields. Source location and 'tonotopic organization' in the right hemisphere of the human brain. Scandinavian Audiology, 11, 61-65.

Ford, J. M. & Hillyard, S. A. (1981). Event related potentials (ERPs) to interruptions of steady rhythm. Psychophysiology, 18, 322-330.

Giard, M. H., Lavikainen, J., Reinikainen, K., Perrin, F., Bertrand, O., & Näätänen, R. (1995). Separate representation of stimulus frequency, intensity, and duration in auditory sensory memory: An event-related potential and dipole-model analysis. Journal of Cognitive Neuroscience, 7, 133-143.

Giard, M. H., Perrin, F., Pernier, J., & Bouchet, P. (1990). Brain generators implicated in the processing of auditory stimulus deviance: A topographic ERP study. Psychophysiology, 27, 627-640.

Hari, R., Hämäläinen, M., Ilmoniemi, R., Kaukoranta, E., Reinikainen, K., Salminen, J., Alho, K., Näätänen, R., & Sams, M. (1984). Responses of the primary auditory cortex to pitch changes in a sequence of tone pips: Neuromagnetic recordings in man. Neuroscience Letters, 50, 127-132.

Hari, R., Rif, J., Tiihonen, J., & Sams, M. (1992). Neuromagnetic mismatch fields to single and paired tones. Electroencephalography and Clinical Neurophysiology, 82, 152-154.

Huotilainen, M., Ilmoniemi, R. J., Lavikainen, J., Tiitinen, H., Alho, K., Sinkkonen, J., Knuutila, J., & Näätänen, R. (1993). Interaction between representations of different features of auditory sensory memory. NeuroReport, 4, 1279-1281.

(to the top of the MMN page)

(to the top of the references list)

Imada, T., Fukuda, K., Kawakatsu, M., Mashiko, T., Okada, K., Hayashi, M., Aihara, K., & Kotani, M. (1995). Mismatch fields evoked by a rhythm passage. In C. Baumgartner, L. Deecke, G. Stroink & S. J. Williamson (Eds.), Biomagnetism: Fundamental Research and Clinical Applications. (pp. 249-252). Amsterdam: Elsevier.

Javitt, D. C., Doneshka, P., Zyberman, I., Ritter, W., & Vaughan, H. G. Jr. (1993). Impairment of early cortical processing in schizophrenia: An event-related potential confirmation study. Biological Psychiatry, 33, 513-519.

Javitt, D. C., Schroeder, C. E., Steinschneider, M., Arezzo, J. C., Ritter, W., & Vaughan, H. G., Jr. (1995). Cognitive event-related potentials in human and non-human primates: Implications for the PCP/NMDA model of schizophrenia. Electroencephalography and Clinical Neurophysiology Suppl., 44, 161-175.

Javitt, D. C., Schroeder, C. E., Steinschneider, M., Arezzo, J. C., & Vaughan, H. G., Jr. (1992). Demonstration of mismatch negativity in the monkey. Electroencephalography and Clinical Neurophysiology, 83, 87-90.

Joutsiniemi, S. L., Ilvonen, T., Rinne, T., Tervaniemi, M., & Näätänen, R. (in preparation) Individual mismatch negativities to duration decrement.

(to the top of the MMN page)

(to the top of the references list)

Kallman, H. J. & Massaro, D. W. (1979). Similarity effects in backward recognition masking. Journal of Experimental Psychology: Human Perception and Performance, 5, 110-128.

Kaukoranta, E., Sams, M., Hari, R., Hämäläinen, M., & Näätänen, R. (1989). Reactions of human auditory cortex to a change in tone duration. Hearing Research, 41, 15-21.

Kane, N. M., Curry, S. H., Butler, S. R., & Cummins, B.H. (1993). Electrophysiological indicator of awakening from coma. Lancet, 341, 688.

Kane, N. M., Curry, S. H., Rowlands, C. A., Manara, A. R., Lewis, T., Moss, T., Cummins, B. H., & Butler, S. H. (1996). Event-related potentials - neurophysiological tools for predicting emergence and early outcome for traumatic coma. Intensive Care Medicine, 22, 39-46.

Karmos, G., Winkler, I., Molnar, M., & Csipe, V. (1993). Animal model of middle latency auditory evoked responses - Intracortical generators of mismatch negativity. In H.-J. Heinze, T. F. M|nte, & G. R. Mangun (Eds.), New Developments in Event-Related Potentials (pp. 95-102). Boston: Birkhauser.

Korpilahti, P. & Lang, H. (1994). Auditory ERP components and mismatch negativity in dysphasic children. Electroencephalography and Clinical Neurophysiology, 91, 256-264.

Kraus, N. & McGee, T. (1994). Mismatch negativity in the assessment of central auditory function. American Journal of Audiology, 3, 139-151.

Kraus, N., McGee, T., Carrell, T., King, C., Littman, T., & Nicol, T. (1994a). Discrimination of speech-like contrasts in the auditory thalamus and cortex. Journal of the Acoustical Society of America, 96, 2758-2768.

Kraus, N., McGee, T., Carrell, T., Sharma, A., Koch, D., King, C., Tremblay, K., & Nicol, T. (1995). Neurophysiologic bases of speech discrimination. Ear and Hearing, 16, 19-37.

Kraus, N., McGee T. J., Carrell, T. D., Zecker, S. G., Nicol, T. G., & Koch, D. B. (1996). Auditory neurophysiologic responses and discrimination deficits in children with learning problems. Science, 273, 971-973.

Kraus, N., McGee, T., Littman, T., Nicol, T., & King, C. (1994b). Non-primary auditory thalamic representation of acoustic change. Journal of Neurophysiology, 72, 1270-1277.

Kraus, N., McGee, T., Micco, A., Sharma, A., Carrell, T., & Nicol, T. (1993). Mismatch negativity in school-age children to speech stimuli that are just perceptibly different. Electroencephalography and Clinical Neurophysiology, 88, 123-130.

Kraus, N., McGee, T., Sharma, A., Carrell, T., & Nicol, T. (1992). Mismatch negativity event-related potential elicited by speech stimuli. Ear and Hearing, 13, 158-164.

Kropotov, J. D., Näätänen, R., Sevostianov, A. V., Alho, K., Reinikainen, K., & Kropotova, O. V. (1995), Mismatch negativity to auditory stimulus change recorded directly from the human temporal cortex. Psychophysiology, 32, 418-422.

Kujala, T., Alho, K., Kekoni, J., Hämäläinen, H., Reinikainen, K., Salonen, O., Standertskjvld-Nordenstam, C.-G., & Näätänen, R. (1995). Auditory and somatosensory event-related brain potentials in early blind humans. Experimental Brain Research, 104, 519-526.

Kurtzberg, D., Vaughan, H. G. Jr., Kreuzer, J. A., & Fliegler, K. Z. (1995). Developmental studies and clinical application of mismatch negativity: Problems and prospects. Ear and Hearing, 16, 104-116.

(to the top of the MMN page)

(to the top of the references list)

Lang, H., Eerola, O., Korpilahti, P., Holopainen, I., Salo, S., Uusipaikka, E., & Aaltonen, O. (1995). Clinical applications of the mismatch negativity. Ear and Hearing, 16, 117-129.

Lang, H., Nyrke, T., Ek, M., Aaltonen, O., Raimo, I., & Näätänen, R. (1990). Pitch discrimination performance and auditory event-related potentials. In C. H. M. Brunia, A. W. K. Gaillard, A. Kok, G. Mulder, & M. N. Verbaten (Eds.), Psychophysiological Brain Research, Vol. 1 (pp. 294-298). Tilburg: Tilburg University Press.

Leppdnen, P., Laukkonen, K., & Lyytinen, H. (1992). Mismatch negativity in children and adults. Abstracts of the 10th International Conference on the Event-Related Potentials of the Brain (EPIC X), Eger, Hungary, May 31 - June 5, 1992, P90.

Levdnen, S., Ahonen, A., Hari, R., McEvoy, L., & Sams, M. (1996). Deviant auditory stimuli activate human left and right auditory cortex differently. Cerebral Cortex, 6, 288-296.

Levdnen, S., Hari, R., McEvoy, L., & Sams, M. (1993). Responses of the human auditory cortex to changes in one versus two stimulus features. Experimental Brain Research, 97, 177-183.

Lounasmaa, O. V., Hari, R., Joutsiniemi, S. L., & Hämäläinen, M. (1989). Multi SQUID recordings of human cerebral magnetic fields may give information about memory processes in the human brain. Europhysics Letters, 9, 603-608.

(to the top of the MMN page)

(to the top of the references list)

Mäntysalo, S. & Näätänen, R. (1987). The duration of a neuronal trace of an auditory stimulus as indicated by event-related potentials. Biological Psychology, 24, 183-195.

(to the top of the MMN page)

(to the top of the references list)

Näätänen, R. (1975). Selective attention and evoked potentials in humans - A critical review. Biological Psychology, 2, 237-307.

Näätänen, R. (1984). In search of a short-term memory trace of a stimulus in the human brain. In L. Pulkkinen & P. Lyytinen (Eds.), Human Action And Personality. Essays in Honour of Martti Takala (pp. 29-43). Jyväskylä: University of Jyväskylä.

Näätänen, R. (1985). Selective attention and stimulus processing: reflections in event-related potentials, magnetoencephalogram and regional cerebral blood flow. In M. I. Posner & O. S. M. Marin (Eds.), Attention and performance XI (pp. 355-373). Hillsdale, N.J.: Erlbaum.

Näätänen, R. (1990). The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behavioral and Brain Sciences, 13, 201-233.

Näätänen, R. (1992). Attention and Brain Function. Hillsdale, N.J: Erlbaum.

Näätänen, R. & Alho, K. (1995). Mismatch negativity - a unique measure of sensory processing in audition. International Journal of Neuroscience, 80, 317-337.

Näätänen, R. & Gaillard, A. W. K. (1983). The orienting reflex and the N2 deflection of the ERP. In A. W. K. Gaillard & W. Ritter (Eds.), Tutorials in Event-Related Potential Research: Endogenous Components (pp. 119-141). Amsterdam: North-Holland.

Näätänen, R., Gaillard, A. W. K., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42, 313-329.

Näätänen, R., Ilmoniemi, R. J., & Alho, K. (1994). Magnetoencephalography in studies of human cognitive brain function. Trends in Neurosciences, 7, 389-395.

Näätänen, R., Jiang, D., Lavikainen, J., Reinikainen, K., & Paavilainen, P. (1993b). Event-related potentials reveal a memory trace for temporal features. NeuroReport, 5, 310-312.

Näätänen, R., Lehtokoski, A., Lennes, M., Cheour, M., Huotilainen, M., Iivonen, A., Vainio, M., Alku, P., Ilmoniemi, R. J., Luuk, A., Allik, J., Sinkkonen, J., & Alho, K. (in press). Electric and magnetic brain responses reveal language-specific phoneme representations. Nature.

Näätänen, R. & Michie, P. T. (1979). Early selective attention effects on the evoked potential. A critical review and reinterpretation. Biological Psychology, 8, 81-136.

Näätänen, R., Paavilainen, P., Alho, K., Reinikainen, K., & Sams, K. (1987) Inter-stimulus interval and the mismatch negativity. In C. Barber & T. Blum, (Eds.) Evoked Potentials III (392-397). London: Butterworths.

Näätänen, R., Paavilainen, P., Alho, K., Reinikainen, K., & Sams, M. (1989a). Do event-related potentials reveal the mechanism of the auditory sensory memory in the human brain? Neuroscience Letters, 98, 217-221.

Näätänen, R., Paavilainen, P., & Reinikainen, K. (1989b). Do event-related potentials to infrequent decrements in duration of auditory stimuli demonstrate a memory trace in man? Neuroscience Letters, 107, 347-352.

Näätänen, R. & Picton, T. W. (1987). The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiology, 24, 375-425.

Näätänen, R, Schrvger, E., Tervaniemi, M., Karakas, S., & Paavilainen, P. (1993a). Development of a memory trace for complex sound patterns in the human brain. NeuroReport, 4, 503-506.

Neisser, U. (1967). Cognitive Psychology. New York: Appleton-Century-Crofts.

Nordby, H., Hammerborg, D., Roth, W. T., & Hugdahl, K. (1991). ERPs to infrequent omissions and inclusions of stimulus elements. Psychophysiology Suppl., 28, S42.

Nordby, H., Roth, W. T., & Pfefferbaum, A. (1988). Event-related potentials to time-deviant and pitch-deviant tones. Psychophysiology, 25, 249-261.

Novak, G. P., Ritter, W., & Vaughan, H. C., Jr. (1992). The chronometry of attention-modulated processing and automatic mismatch detection. Psychophysiology, 29, 412-430.

(to the top of the MMN page)

(to the top of the references list)

Oades, R. D. (1991). Bases for irrelevant information processing in schizophrenia: Room for manoeuvre. Behavioral and Brain Sciences, 14, 38-39.

Paavilainen, P., Alho, K., Reinikainen, K., Sams, M., & Näätänen, R. (1991). Right-hemisphere dominance of different mismatch negativities. Electroencephalography and Clinical Neurophysiology, 78, 464-479.

Paavilainen, P., Karlsson, M. L., Reinikainen, K., & Näätänen, R. (1989). Mismatch negativity to change in spatial location of an auditory stimulus. Electroencephalography and Clinical Neurophysiology, 73, 129-141.

Pantev, C., Hoke, M., Lehnertz, K., L|tkenhvner, B., Anogianakis, G., & Wittkowski, W. (1988). Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. Electroencephalography and Clinical Neurophysiology, 69, 160-170.

Pardo, P. J. & Sams, M. (1993). Human auditory cortex responses to rising versus falling glides. Neuroscience Letters, 159, 43-45.

Pekkonen, E., Jousmdki, V., Partanen, J., & Karhu, J. (1993). Mismatch negativity area and age-related auditory memory. Electroencephalography and Clinical Neurophysiology, 87, 321-325.

Pekkonen, E., Jousmdki, V., Reinikainen, K., & Partanen, J. (1995). Automatic auditory discrimination is impaired in Parkinson's disease. Electroencephalography and Clinical Neurophysiology, 95, 47-52.

Ponton, C. W. & Don, M. (1995). The mismatch negativity in cochlear implant users. Ear and Hearing, 16, 130-146.

Port, R. F. (1988). Can complex temporal patterns be automatized? Behavioral and Brain Sciences, 14, 762-764.

(to the top of the MMN page)

(to the top of the references list)

Recanzone, G.E., Schreiner, C.E., & Merzenich, M.M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. The Journal of Neuroscience, 13, 47-103.

Ritter, W., Deacon, D., Gomes, H., Javitt, D. C., & Vaughan, H. G. Jr. (1995). The mismatch negativity of event-related potentials as a probe of transient auditory memory: A review. Ear and Hearing, 16, 51-66.

(to the top of the MMN page)

(to the top of the references list)

Saarinen, J., Paavilainen, P., Schrvger, E., Tervaniemi, M., & Näätänen, R. (1992). Representation of abstract attributes of auditory stimuli in the human brain. NeuroReport, 3, 1149-1151.

Sams, M., Aulanko, R., Aaltonen, O., & Näätänen, R. (1990). Event-related potentials to infrequent changes in synthesized phonetic stimuli. Journal of Cognitive Neuroscience, 2, 344-357.

Sams, M., Hari, R., Rif, J., & Knuutila, J. (1993). The human auditory sensory memory trace persists about 10 s: Neuromagnetic evidence. Journal of Cognitive Neuroscience, 5, 363-370.

Sams, M., Kaukoranta, E., Hämäläinen, M., & Näätänen, R. (1991). Cortical activity elicited by changes in auditory stimuli: Different sources for the magnetic N100m and mismatch responses. Psychophysiology, 28, 21-29.

Sams, M. & Näätänen, R. (1991). Neuromagnetic responses of the human auditory cortex to short frequency glides. Neuroscience Letters, 121, 43-46

Sams, M., Paavilainen, P., Alho, K., & Näätänen, R. (1985). Auditory frequency discrimination and event-related potentials. Electroencephalography and Clinical Neurophysiology, 62, 437-448.

Scherg, M., Vajsar, J., & Picton, T. (1989). A source analysis of the human auditory evoked potentials. Journal of Cognitive Neuroscience, 1, 336-355.

Schrodt, A., Cohen, R., Berg, P., & Hopmann, G. (1992). Automatic (MMN) vs. controlled (P300) processing deficits in the ERPs of schizophrenic patients. Abstracts of the 10th International Conference on the Event-Related Potentials of the Brain (EPIC X), Eger, Hungary, May 31 - June 5, 1992, P141.

Schrvger, E. (1994). An event-related potential study of sensory representations of unfamiliar tonal patterns. Psychophysiology, 31, 175-181.

Schrvger, E., Näätänen, R., & Paavilainen, P. (1992). Event-related potentials reveal how non-attended complex sound patterns are represented by the human brain. Neuroscience Letters, 146, 183-186.

Sharma, A., Kraus, N., McGee, T., Carrell, T., & Nicol, T. (1993). Acoustic versus phonetic representation of speech as reflected by the mismatch negativity event-related potential. Electroencephalography and Clinical Neurophysiology, 88, 64-71.

Shelley, A. M., Ward, P. B., Catts, S. V., Michie, P. T., Andrews, S., & McConaghy, N. (1991). Mismatch negativity: An index of preattentive processing deficit in schizophrenia. Biological Psychiatry, 30, 1059-1062.

(to the top of the MMN page)

(to the top of the references list)

Tervaniemi, M., Alho, K., Paavilainen, P., Sams, M., & Näätänen, R. (1993). Absolute pitch and event-related brain potentials. Music Perception, 10, 305-316.

Tervaniemi, M., Ilvonen, T., Karma, K., Alho, K. & Näätänen, R. (1997) The musical brain: brain waves reveal the neurophysiological basis of musicality in human subjects. Neuroscience Letters, 226, 1-4.

Tervaniemi, M., Saarinen, J., Paavilainen, P., Danilova, N., & Näätänen, R. (1994). Temporal integration of auditory information in sensory memory as reflected by the mismatch negativity. Biological Psychology, 38, 157-167.

Tiitinen, H., Alho, K., Huotilainen, M., Ilmoniemi, R. J., Simola, J., & Näätänen, R. (1993). Tonotopic auditory cortex and the magnetoencephalographic (MEG) equivalent of the mismatch negativity. Psychophysiology, 30, 537-540.

Tiitinen, H., May, P., Reinikainen, K., & Näätänen, R. (1994). Attentive novelty detection in humans is governed by pre-attentive sensory memory. Nature, 372, 90-92.

(to the top of the MMN page)

(to the top of the references list)

Winkler, I. & Näätänen, R. (1992). Event-related potentials in auditory backward recognition masking: A new way to study the neurophysiological basis of sensory memory in humans. Neuroscience Letters, 140, 239-242.

Winkler, I., Reinikainen, K., & Näätänen, R. (1993). Event-related brain potentials reflect traces of echoic memory in humans. Perception and Psychophysics, 53, 443-449.

Woldorff, M., Hackley, S. A., & Hillyard, S. A. (1991). The effects of channel-selective attention on the mismatch negativity wave elicited by deviant tones. Psychophysiology, 28, 30-42.

Woods, D. L., Alho, K., & Algazi, A. (1993). Intermodal selective attention: Evidence for processing in tonotopic auditory fields. Psychophysiology, 30, 287-295.

(to the top of the MMN page)
(to the top of the references list)