
SG24-2245-00

VisualAge 2000 - Remote Edit, Compile, and Debug
Using VisualAge COBOL 2.0 on OS/2

September 1997

International Technical Support Organization

VisualAge 2000 - Remote Edit, Compile, and Debug
Using VisualAge COBOL 2.0 on OS/2

September 1997

SG24-2245-00

IBML

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix C, “Special Notices” on page 103.

First Edition (September 1997)

This edition applies to Version 2.0 of VisualAge for COBOL, Standard Edition for OS/2, 4226000, for use with the
operating systems:

• OS/2 WARP 3.0 (with FixPak 26)

• OS/2 WARP 4.0 (with FixPak 1)

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Figures . v

Preface . vii
The Team That Wrote This Redbook . vii
Comments Welcome . vii i

Chapter 1. Introduction . 1

Chapter 2. Remote E/C/D with TCP/IP and NFS on OS/2 3
2.1 Configuring Communications for TCP/IP . 4

2.1.1 Configuration of TCP/IP on the Workstation 5
2.1.2 MVSINFO.DAT File Explanation . 12

2.2 Accessing the Host from the Workstation 17
2.3 Configuring the Host for TCP/IP and File Mapping 21
2.4 Upload Workstation Files Using FTP . 25

Chapter 3. Remote Edit, Compile, and Debug with APPC on OS/2 29
3.1 Configuring Communications for APPC . 30

3.1.1 Installing Communications Manager/2 for OS/2 Warp 31
3.1.2 Configuring Communications Manager/2 for OS/2 Warp 40

3.2 Set up the PC to Connect to the Host . 51
3.2.1 Configuration of SMARTdata Utilities on the Workstation 53

3.3 Configuring the Host for APPC . 54
3.4 Accessing the Host from the Workstation 55

Chapter 4. Creating Applications Using Remote E/C/D on OS/2 59
4.1 Running a Sample Application on the Workstation 59

4.1.1 Defining the Application on the Workstation 59
4.1.2 Editing, Compiling, and Running the Application Remotely 69
4.1.3 Debugging the Application . 76

4.2 Summary of Debugger Functionality and Additional Features 82
4.3 DB2 Sample . 84

4.3.1 Create a New Database on the Host . 85
4.3.2 Create JCL Members to Compile the COBOL Program 89
4.3.3 Creating the Project and Running the DB2 Sample 90

Chapter 5. MVS Data Types Sample . 93

Appendix A. DFM/MVS DataAgent . 99

Appendix B. Contents of the Enclosed Diskette 101

Appendix C. Special Notices . 103

Appendix D. Related Publications . 105
D.1 International Technical Support Organization Publications 105
D.2 Redbooks on CD-ROMs . 105
D.3 Other Publications . 105

How to Get ITSO Redbooks . 107
How IBM Employees Can Get ITSO Redbooks 107

 Copyright IBM Corp. 1997 iii

How Customers Can Get ITSO Redbooks . 108
IBM Redbook Order Form . 109

Glossary . 111

List of Abbreviations . 131

Index . 133

ITSO Redbook Evaluation . 135

iv Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Figures

 1. Configure Network Interface Parameters Window 6
 2. Configure Routing Information Window . 7
 3. Route Entry Window − Default . 8
 4. Route Entry Window − Net . 8
 5. Configure LAN Name Resolution Services Page 9
 6. Nameserver Entry Window . 9
 7. Configure Name Resolution Services Page 10
 8. HOSTS Entry Window . 10
 9. Editor − M:\MVS File System Access Monitor Window 19
10. Drives − Icon View Window . 19
11. NFS.MAPPING File . 24
12. FTP-PM − Open Remote Host Window . 25
13. FTP-PM - wtsc47 (cobrs08) Window . 26
14. FTP-PM - Put Local Files Window . 27
15. FTP-PM Window . 27
16. Installation Window for Communications Manager 2 31
17. Target Drive Selection Window . 32
18. Communications Manager Setup Window 32
19. Copying Files Window . 33
20. Open Configuration Window . 33
21. OS/2 Communications Manager Window—Workstation 34
22. Communications Manager Configuration Definition Window 34
23. 3270 Emulation through Token-ring Window 35
24. OS/2 Communications Manager Window—Product Files 35
25. Install Window—Communications Manager/2 for OS/2 Warp 36
26. Change CONFIG.SYS Window . 36
27. Communications Manager Completion Window 37
28. Communications Manager/2 - Icon View Window 37
29. Multi-Protocol Transport Services Window 38
30. Configure Window—MPTS . 38
31. LAPS Configuration Window . 39
32. Update CONFIG.SYS Window . 39
33. Open Configuration Window for APPC . 41
34. OS/2 Communications Manager Window for APPC 41
35. Communications Manager Configuration Definition Window 42
36. Communications Manager Profile List Window for APPC 42
37. Token Ring or Other LAN Types DLC Adapter Parameters Window . . . 43
38. Local Node Characteristics Window . 44
39. Connections List Window . 44
40. Adapter List Window . 45
41. Connection to a Host Window . 46
42. Partner LUs Window . 47
43. OS/2 Communications Manager Window (3270 emulator information) . 47
44. SNA Features List Window . 48
45. Local LU Window . 48
46. Mode Definition Window . 49
47. Transaction Program Definition Window 50
48. Additional TP Parameters Window . 50
49. Communications Manager—Checking Values Window 51
50. Create New Project - Catalog View Window 60
51. Project Smarts - Console Window . 61

 Copyright IBM Corp. 1997 v

52. Project Smarts - Variable Settings Window 61
53. Project Smarts - Target Information Window 62
54. Done! Window . 62
55. MVS Project Hello - Settings Window . 63
56. MVS Project Hello - Settings Window: Location Page 64
57. Create directories Window . 65
58. MVS Project Hello - Settings Window: Inheritance Page 65
59. MVS Project Hello - Icon view Window . 68
60. MVS Project Hello - Icon View Window with Pop-up Menu 69
61. Editor - M:\HELLO\COBOL\hello.cbl Window 70
62. Change profile Window . 71
63. MVS Job Status Monitor Window . 73
64. Editor - M:\Held SYSOUT output for job Window 74
65. Waiting to connect Window . 78
66. Debugger - Session Control Window . 78
67. Source Filename Window . 78
68. Source: DTTEST − Thread:1 Window . 79
69. Source: DTTEST - Thread:1 Window − Start of DTTEST 79
70. Program Monitor Window for DTTEST . 80
71. Source: HELLO - Thread:1 Window . 81
72. Program Monitor Window for HELLO . 81
73. Application Exception Action Window . 82
74. Debugger Message Window . 82
75. Call Stack Window . 83
76. Registers Window . 83
77. Storage Window . 83
78. Breakpoints List Window . 84
79. The Part of the JCL to Be Modified . 87
80. Bind and Execute Statements of DSNTIAD 87
81. MVS Data Type - Icon view Window . 93
82. MVS Data Types - Tools setup Window . 94
83. Change Environment Variable Window . 95

vi Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Preface

This redbook details the configuration of the communication between workstation
and host systems to use the new remote edit, compile, and debug component of
VisualAge for COBOL Version 2 on OS/2. Installation details are covered as well
as application development techniques. Several practical examples are
provided on diskette for you to install on your host and use with the book. The
redbook gives you an introduction to developing host applications from a
workstation environment and explains in detail how to configure your workstation
for communicating with the host via TCP/IP. You are led through the setup of
the TCP/IP as well as of Network File System (NFS), the file system you need.

The redbook describes how to configure your workstation for communicating
with the host via APPC, the configuration of the Communications Manager/2 for
using APPC and SMARTdata Utilities, and the changes you have to make on the
workstation side as well as on the host side are explained.

This redbook also covers the configuration of a WorkFrame project and the use
of the project files by use of a sample program. In this sample, you learn step by
step how to create a project and how to edit, compile, and debug the programs.
A more complex project with DB2 access is shown also. You are also shown, by
means of a sample, how to use VSAM for the workstation for local and remote
data access, including customizing data description and conversion for
transparent remote data access.

Knowledge of application development in an MVS environment is a prerequisite
for the MVS portions of this book. Knowledge of COBOL programming and OS/2
is presumed. Some knowledge of TCP/IP and APPC would also be helpful.

The Team That Wrote This Redbook
This redbook was produced by a team of specialists from Europe working at the
International Technical Support Organization San Jose Center.

Ute Lotz , IBM Germany (Residency Team Leader)

Ernesto Carretta , 3I, Italy (IBM Business Partner)

Thanks to the following people for their invaluable contributions to this project:

Neal Eisenberg
IBM Santa Teresa Laboratory, San Jose

Mickey Forman
IBM Santa Teresa Laboratory, San Jose

Bob Haimowitz
IBM International Technical Support Organization, Poughkeepsie Center

Milton Hall
IBM Santa Teresa Laboratory, San Jose

Wilbert Kho
IBM Santa Teresa Laboratory, San Jose

 Copyright IBM Corp. 1997 vii

Barbara Price
IBM Santa Teresa Laboratory

Koko Yamaguchi
IBM Santa Teresa Laboratory

This project was designed and managed by:

Joe DeCarlo
IBM International Technical Support Organization, San Jose Center

Comments Welcome
Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO Redbook Evaluation” on page 135 to
the fax number shown on the form.

• Use the electronic evaluation form found on the Redbooks Web sites:

For Internet users http://www.redbooks.ibm.com
For IBM Intranet users http://w3.itso.ibm.com

• Send us a note at the following address:

redbook@vnet.ibm.com

viii Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Chapter 1. Introduction

VisualAge for COBOL provides a new way of developing host applications with
the common business oriented language (COBOL). The remote edit. compile,
and debug feature lets you maintain your host applications from your
workstation.

This function provides a seamless workstation development environment for the
development of host programs. Files on the host are directly accessed from the
workstation without the need to replicate the host environment on the
workstation and, therefore, without the need for a workstation naming convention
and mapping.

Remote edit/compile/debug is integrated with workstation components such as
the live parsing editor (LPEX) and WorkFrame. That ensures that the host has a
working environment similar to the one you have on your personal computer
(PC). Thus, you can work with these components, without needing to learn the
handling of a new editor or other tools.

The remote VisualAge COBOL debugger helps you to debug applications
residing on the host directly from your workstation. Remote debugging features
the use of a graphical user interface (GUI) when interacting with the host debug
tool.

The advantage of this tool is that the user interface is similar to that of the
debugger on the PC, offering the same handling, the choice to set breakpoints,
the opportunity to follow the change of specific variables, and the chance to set
up new values for these variables in the way that the program continues using
the modified variables. In this way, you can affect the further execution of the
program and you can change the variables to run special statements that would
be inaccessible otherwise.

For the communications to the host you can use the transmission control
protocol/internet protocol (TCP/IP) or the advanced program-to-program
communication (APPC) protocol.

This new functionality of VisualAge for COBOL for OS/2 (operating system/2) and
for Windows NT (Microsoft Windows NT; where NT stands for ″new technology″)
offers you two ways of developing and redeveloping host programs. For the
Windows NT environment obtain Redbook SG24-2250, VisualAge 2000 - Remote
Edit, Compile, and Debug Using VisualAge for COBOL V2.0 on Windows NT.
Either you offload your existing COBOL programs from the host to modify them
on the workstation, or you use the remote edit, compile, and debug component
to work remotely on the host. Each of these working methods has its own
advantages so you should decide which way you want to go. It is not a general
decision that has to be made. It can vary from project to project because it
depends on several aspects.

Here are some considerations you have to take into account:

• An important factor is the response time of the host. If the host does not
respond properly, it is better to use the power of the PC for editing and
debugging the programs.

• If you make only small changes on the host programs and only a short
amount of time is planned for this project, use the remote edit, compile, and

 Copyright IBM Corp. 1997 1

debug facility instead of down-loading the files to the PC first and setting up
an environment that mimics the host environment.

• Another important aspect is how many programs or files are already residing
on the host and would have to be down-loaded and how many programs or
modules have to be created on the workstation.

• You may want to use the same tools that you have on the PC, but you do not
want to develop applications on the PC. Use the remote edit, compile, and
debug functionality that VisualAge for COBOL offers you.

As you proceed through the chapters that follow, we are sure you will see the
advantages of using the remote edit/compile debug feature of VisualAge for
COBOL for host application development and maintenance from the workstation.

The remote edit, compile, and debug component is also referred to as remote
edit/compile/debug and remote e/c/d throughout this book.

2 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Chapter 2. Remote E/C/D with TCP/IP and NFS on OS/2

You have two different protocols to choose from in order to communicate from
your workstation with the host. For each protocol, you must set up a different
configuration on the host and on your workstation.

Section 2.1, “Configuring Communications for TCP/IP” on page 4 explains the
configuration on the workstation and on the host for the use of the TCP/IP. Use of
APPC is covered in Chapter 3, “Remote Edit, Compile, and Debug with APPC on
OS/2” on page 29.

Before you start with any configuration, make sure that your host and
workstation meet the software requirements for the use of the remote edit,
compile, and debug component. What follows is the prerequisite software for the
host and workstation environments for OS/2 as found in the product
announcement. For the full product announcement,see announcement 297-142
on May 6, 1997, titled, VisualAge for COBOL Version 2.0 Delivers Additional
Support for Remote Host Development, Year 2000, and Windows Development

 To use VisualAge for COBOL Version 2.0 (Standard Edition)
 on the OS/2 platform, one of the following operating systems
 must be installed:

 - IBM OS/2 Warp Version 3.0 plus FixPak 26
 - IBM OS/2 Warp Version 4.0 plus FixPak 1

 When installing VisualAge for COBOL Version 2.0 (Standard Edition)
 be sure to install (in addition to the default components):

 - Remote Edit/Compile/Debug

 To use host data access (via APPC) on OS/2, one of the following:

 - IBM Communications Manager/2 Version 1.11

 To access VSAM/SAM files on your host (MVS or OS/390) with the
 SMARTdata UTILITIES (SdU):

 - DFSMS/MVS (R) Version 1.2.0 or later is required on your host

 To use remote edit/compile/debug between your host (OS/390 or
 MVS) and OS/2 via APPC:

 - On the OS/390 host:

-- IBM COBOL for OS/390 & VM Version 2 Release 1 Full
Function Offering plus Debug Tool PTFs and the PTF for
APAR PQ03533

-- OS/390 Release 3 Language Environment feature
-- DFSMS/MVS Version 1.3.0 or later and the PTF for APAR

OW20884

 - On the MVS host:

-- IBM COBOL for MVS & VM Release 2 Full Function Offering
plus Debug Tool PTFs and the PTF for APAR PQ03512

 Copyright IBM Corp. 1997 3

-- IBM Language Environment for MVS & VM Release 5 plus PTFs
-- DFSMS/MVS Version 1.3.0 or later and the PTF for APAR

OW20884
 - On the OS/2 workstation:

-- IBM Communications Manager/2 Version 1.11 or later

 To use remote edit/compile/debug between your host (OS/390 or
 MVS) and OS/2 via TCP/IP:

 - On the OS/390 host:

-- TCP/IP Version 3 Release 2 for MVS/ESA (TM)
-- IBM COBOL for OS/390 & VM Version 2 Release 1 Full

Function Offering plus Debug Tool PTFs and the PTF for
APAR PQ03533

-- OS/390 Release 3 Language Environment feature
-- DFSMS/MVS Version 1.2.0 with the Network File Feature

(minimum), or, DFSMS/MVS Version 1.3.0 or later with the
Network File System Feature and the PTF for APAR OW25973
(recommended)

 - On the MVS host:

-- TCP/IP Version 3 Release 2 for MVS/ESA
-- IBM COBOL for MVS & VM Release 2 Full Function Offering

plus Debug Tool PTFs and the PTF for APAR PQ03512
-- IBM Language Environment for MVS & VM Release 5 plus PTFs
-- DFSMS/MVS Version 1.2.0 with the Network File Feature

(minimum), or, DFSMS/MVS Version 1.3.0 or later with the
Network File System Feature and the PTF for APAR OW25973
(recommended)

 - On the OS/2 workstation:

-- IBM TCP/IP for OS/2 Version 2.0 or later
-- IBM TCP/IP for OS/2 Version 2.0 NFS Kit with CSD UN57064

and the fix for APAR PQ00835

Once you have all the prerequisite software installed on your host and
workstation you can proceed with the communication configuration.

2.1 Configuring Communications for TCP/IP
This section explains how to configure the TCP/IP of your workstation to be able
to connect to a host server directly without the necessity of taking care of any
other intervening servers.

In the following, we help you set up your workstation for communication with the
host via TCP/IP.

TCP/IP for OS/2 provides extensive facilities for communicating over an internet.
With TCP/IP for OS/2 installed on your workstation, you can perform the
following communication tasks:

• Log on to a remote host
• Transfer files between hosts
• Print files using a central printer server

4 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

• Send and receive electronic mail
• Run commands on a remote host.

TCP/IP for OS/2 is packaged in a Base Kit and several component kits. The Base
Kit provides the protocol stack necessary to support all the functions of TCP/IP
for OS/2. It also provides a base set of applications, including Telnet, file transfer
program (FTP), and Sendmail.

For your requirements, it is sufficient to have only the TCP/IP Base Kit installed.

Network file system (NFS) is the file system designed for communications to
access the host files. It allows users to access files and run programs located
on remote systems as if they were local.

An NFS client uses the MOUNT protocol to request that a directory be mounted
on the server machine, or made available to the client. Once a directory is
mounted, the client can list, read, write, and run remote files or programs in the
directory as if they existed locally.

NFS uses remote procedure call (RPC) and the user datagram protocol (UDP) for
communication between clients and servers.

The NFS server is designed so that the client will continue to operate, even
though the server might go down and be forced to restart. The client will
continually resend a request for data until the server is able to respond. This
type of operation is called stateless, since neither the client nor the server needs
to check connection status during operation.

To use NFS, you must have the TCP/IP stack from either the TCP/IP for OS/2
Base Kit or from some other product installed on your workstation. The next
step is to configure your TCP/IP as described in the next subsection.

2.1.1 Configuration of TCP/IP on the Workstation
At first, you have to configure the TCP/IP of OS/2 Warp. It comes with OS/2
Warp Connect and need not be installed separately, when you already have
installed OS/2 with the default configuration. To check whether the TCP/IP is
installed on your PC or not, open the OS/2 System folder by double clicking on
its icon on the desktop and check whether if the TCP/IP icon is in it. If not,
install it from the OS/2 CDROM and reboot your PC.

Also, you have to install the product that is called NFS for TCP/IP on OS/2 2.0
and 2.1. Use version 2.0 with the corrective service diskette (CSD) level UN57064
or higher. To check if the right version and level is installed, type SYSLEVEL in an
OS/2 window and you get the levels of all products you have installed on your
workstation running on OS/2. When the syslevel information for NFS appears,
check the number of the current CSD level.

Now the workstation is ready to be configured for TCP/IP:

 1. Open the OS/2 System folder and open the TCP/IP folder by double clicking
on the appropriate icon. Then double-click on the TCP/IP Configuration icon
in the TCP/IP folder . The TCP/IP Configuration notebook appears (Figure 1
on page 6) in which you should do all your configurations for the TCP/IP of
OS/2.

On this first page (with the Network tab) that is called Configure Network
Interface Parameters you can modify the network configuration of your

Chapter 2. Remote E/C/D with TCP/IP and NFS on OS/2 5

primary adapter, or create network configurations for up to seven additional
adapters. Here you have to specify the internet protocol (IP) address of your
workstation and the subnet mask.

Figure 1. Configure Network Interface Parameters Window

If you do not know your IP address, ask your system administrator for it. The
IP address of each workstation should be unique in the world but it must at
least be unique in the local network of your company.

 2. Scroll to the next tab to configure the routing information. If the local area
network (LAN) to which your workstation is attached is connected to other
LANs through routers or gateways, you must configure your TCP/IP to
recognize these routers or gateways.

If you already have a connection configured, this page is set up and you do
not need to change anything. Otherwise, you need to know the IP address of
the router to specify the routing table information here, as shown in Figure 2
on page 7.

If, however, you are not really sure that the given router is yours, try to verify
its availability. For that, open an OS/2 window and type

ping routernumber

where router number is the IP address of the router specified in Figure 2 on
page 7.

This command directs a tool called packet internet groper(PING) to send
echo requests to the foreign router. When the ping is successful, you get a
report like the following:

PING 9.112.32.5: 56 data bytes
64 bytes from 9.112.32.5: icmp_seq=0. time=8. ms
64 bytes from 9.112.32.5: icmp_seq=1. time=0. ms
64 bytes from 9.112.32.5: icmp_seq=2. time=0. ms

6 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

PING displays a line of information for each echo request. These messages
come up continuously until you cancel the request by pressing Ctrl-C. Then
you get a statistic about the connection like this:

----9.112.32.5 PING Statistics----
3 packets transmitted, 3 packets received, 0% packet loss
round-trip (ms) min/avg/max = 0/2/8

and you know that the connection works.

If the connection to the router fails, you get only the first ping message. You
get no further message about any transferred packages and no statistic
afterward.

 Ping

PING is a diagnostic tool that sends an echo request to a foreign host to
determine whether the computer is accessible. The echo request sent by
the ping command does not guarantee delivery. More than one ping
command should be sent before you assume that a communication
failure has occurred.

We recommend that you try this ping just to ensure that the defined router is
the right one.

Figure 2. Configure Routing Information Window

 3. If the routing information is not shown on the Configure Routing Information
page, click on Add to insert the necessary router. The Route Entry window
comes up.

Delete the entry from the field Route type and type a D in it (for default). The
system completes it immediately to Default. Leave the Destination address
field empty and type the number of the router in the Router address field. In
our environment the router number is 9.112.32.5. Ensure that the Metric
count is 1, as shown in Figure 3 on page 8.

Chapter 2. Remote E/C/D with TCP/IP and NFS on OS/2 7

Figure 3. Route Entry Window − Default

 4. The Configure Routing Information page (Figure 2 on page 7) got two
entries. You see the route type default and the route type net. Now select the
Route Type Default and click on Add again. The Route Entry window appears
again. Enable Before for the Add entry check-box. Ensure that the Route type
is Net and give the Destination address. Our destination address is 9.112.
Then type the same router address as before into the Router address field.
The Metric count is 1 again (Figure 4).

Click on Add to complete the routing information. Your Configure Routing
Information page should have three entries, as shown in Figure 2 on page 7.

Figure 4. Route Entry Window − Net

 5. Now scroll to the Hostnames tab to see the page Configure LAN Name
Resolution Services (Figure 5 on page 9).

8 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Figure 5. Configure LAN Name Resolution Services Page

Indicate the name of the machine′s host name in the field This machine′s
hostname. This can be seen as an alias for the IP address and can be used
instead of it when connecting. In the field called Local domain name, you
should specify the domain where the host resides.

To connect to a domain, the domain has to be known by a name server. The
name servers resolve domain names to IP addresses. For that, you can
specify domain name servers in the Nameserver addresses field. To do so,
click on the Nameserver addresses field to activate the push-buttons below
and then select the Add push-button to add one name server address.

 6. The Nameserver Entry window comes up. Type the IP address you want to
add to the list into the Nameserver address field and click on Add to leave
this window (Figure 6).

Figure 6. Nameserver Entry Window

 7. Go to page two of the Hostnames tab to specify the IP addresses and their
corresponding host names (Figure 7 on page 10).

Chapter 2. Remote E/C/D with TCP/IP and NFS on OS/2 9

Figure 7. Configure Name Resolution Services Page

This resolution table indicates which host name belongs to which IP address.
When you specify it here, you can work without being connected to the name
server at any time and you can leave out the name server information on the
previous page. But we recommend using the name server for the resolution
of the IP addresses if possible.

To add a host name, select the Hostname Configuration without a
Nameserver list and click on Add . The HOSTS Entry window comes up, in
which you enter the IP address and its corresponding host name into the
appropriate fields (Figure 8).

Figure 8. HOSTS Entry Window

Giving an alias or a comment is optional. Click on Add to insert the new
host name into the configuration list on the page Configuration Name
Resolution Services. Finally, ensure that the check-box Look through HOSTS
list before going to nameserver is disabled.

10 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

 Note

If you intend to step through the following pages in the TCP/IP
Configuration window and you reach the Configure NFS Parameters page,
do not try to add the mount command you will use later. If you add it
here, it causes problems with the connection later.

 8. Close the TCP/IP Configuration window by double clicking on the icon in the
upper left corner of the window. The window Closing TCP/IP Configuration
comes up and asks you if you want to save your changes. Click on Save to
save the changes you have made.

The TCP/IP configuration is now set up.

 9. To test if the TCP/IP connection to the host is working, open an OS/2 window
and write

ping hostname

where hostname is the name that belongs to the IP address of the host you
want to connect. You specified this hostname in Figure 7 on page 10.

If the host is responding, you get messages like the following:

PING wtsc47: 56 data bytes
64 bytes from 9.12.14.204: icmp_seq=0. time=125. ms
64 bytes from 9.12.14.204: icmp_seq=1. time=109. ms
64 bytes from 9.12.14.204: icmp_seq=2. time=109. ms
64 bytes from 9.12.14.204: icmp_seq=3. time=109. ms
64 bytes from 9.12.14.204: icmp_seq=4. time=109. ms
64 bytes from 9.12.14.204: icmp_seq=5. time=109. ms

This response tells you that the connection is running properly. You can
cancel the connection now by pressing Ctrl-C. The connection stops and you
get statistics about the connection you had with the host. Important to these
statistics is the percent of the transmitted packets that got lost (zero here):

----wtsc47 PING Statistics----
6 packets transmitted, 6 packets received, 0% packet loss
round-trip (ms) min/avg/max = 109/111/125

10. Now you have to install the latest driver of NFS.

Ensure that you have Version 2.0 of NFS for TCP/IP with the CSD level
UN57064 and install the very latest fix for authorized program analysis report
(APAR) PQ00835 (available on the Internet as this book is being published.)

Go to the Web site http://service2.boulder.ibm.com/psppaper , select All
Closed APARs , and then search on PQ00835 to get this APAR. From this site
you can download the latest fixes that are not yet on a CSD.

To install APAR PQ00835, follow the instructions contained in the READ.ME
file that comes with APAR PQ00835.

If you do not have the CSD level UN57064, go to the Internet and load the
uniform resource locator (URL) http://www.networking.ibm.com , select
Software Support, Technology, Products , select TCP/IP Leadership , select
OS/2 Warp , select Fixes , and then select Fixes for TCP/IP for OS/2 and look
for the CSD UN57064.

After the installation, shut down the workstation.

11. Before continuing, start NFS by typing

NFSSTART

Chapter 2. Remote E/C/D with TCP/IP and NFS on OS/2 11

in an OS/2 window and connect to your host system from the command line
to ensure that NFS is working successfully. To mount a drive, type

mount m: hostname:″yourname,text,crlf″

where hostname is the name you entered in the TCP/IP configuration for the
IP address and yourname stands for your user ID on this host.

While making the host connection, the system prompts for both your user ID
(called user name) and your password. If the command fails, data facility
storage management/multiple virtual storage (DFSMS/MVS) on multiple
virtual storage (MVS) or operating system/390 (OS/390) might not be
installed and running on your host system or personal computer network file
system daemon (PCNFSD) might not be started. If you receive a prompt for
a group ID (GID) as well as your user ID, it is likely that PCNFSD is not
running on the host.

 Mount

When you issue the mount command, it issues a PCNFSD authentication
request to establish the connection between your client and the server.
When you issue the unmount command, the server flushes the data sets
to DASD and breaks the connection between the mount point on the
client and the server. The connection between the client and the server is
automatically ended when the value specified in the logout attribute is
reached.

If the connection to the host was successful, disconnect before continuing
with the next section. To disconnect, type the command

umount m:

in the OS/2 window.

12. If you established the connection to the host established in the previous step,
try connecting with file-extension mapping. To specify that you want
file-extension mapping, change the mount command in the following way:

m: hostname:″yourname,text,crlf,fileextmap

If this command fails, file extension mapping is not available on the host.

To complete the configuration on the workstation to communicate with the host
via TCP/IP you must set up a file that contains all the necessary information
related to the project on the host that you want to access remotely. While
starting the connection from the workstation to the host, the information is read,
the connection to the specified host with the specified user ID is established, and
the data sets given in the file are connected. After this successful connection,
you can edit, compile, and debug all the COBOL sources that reside in the
specified data sets on the host.

2.1.2 MVSINFO.DAT File Explanation
All the parameters needed to configure the connection from the workstation to a
specified host can be set up in the MVSINFO.DAT file of VisualAge for COBOL.
This file is located on the same drive on which you have installed VisualAge for
COBOL for OS/2. It is in the directory /IBMCOBOL/MACROS. To edit the file,
open an OS/2 window and type

IWZSET

12 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Edit this file and set all the options that you need to configure the connection as
described below.

The nonblank lines contained in the file are of two different types:

 1. When the first character of the line is an asterisk, the line is a comment line
and you should read it attentively when you configure it for the first time.

 2. Otherwise, the line is empty or the first word of the line is a reserved word
that specifies the characteristics of the command.

Here is the list of the reserved words and the action that must be done to
configure the environment:

system Change the name that follows this command with the
name of the host to which you want to connect. This is the
host name you specified in the TCP/IP configuration. The
host we want to access has the host name WTSC47, so we
specified system WTSC47.

worksys No action required. This word is reserved for future use.

userid Replace the name that follows with the user ID you use to
connect to the host. We are using COBRS08 and changed
the command to userid COBRS08.

pwd Replace the name that follows with the encrypted
password of the user ID you use for connection to the host.
Further details on how to encrypt the password can be
found in the listing. Instead of the encrypted password,
you can specify that you want to be prompted to give the
password manually. In this case, insert the string pwd
++++++++ 1 instead of typing the encrypted password. We
a r e u s i n g t h e p a s s w o r d + + + + + + + + , s o w e s p e c i f i e d
pwd ++++++++ in this line.

filesys Specify the system you are using to access the host files.
We changed the options to filesys nfs accessmon
testaccess.

readtimeout No action required. We changed it to 10 to get better
performance.

writetimeout No action required. We changed it to 10 to get better
performance.

nfs No action required.

sdu No action required. This word is reserved for future use.

drive This statement supported by NFS allows you to access the
data sets on the host in the same way as you would
access a drive on your workstation. Specify here the
high-level qualifier you want to use on the host and
combine it with drive letters like the drives on your
workstation to access the data sets. (Use different drive
letters than you are already using on your workstation or
to access servers in the LAN.) Each of these drive
specifications has four parameters:

• The drive letter

Chapter 2. Remote E/C/D with TCP/IP and NFS on OS/2 13

• The high-level qualifier, most often your user ID, or the
high-level qualifier where the project resides on the
host

• Whether the data is text or binary
• The mapping for file extensions.

You should have two different drive statements to allow
your workstation to access both text and binary files. An
example is

drive m: cobrs08 text mapping-parameter
drive n: cobrs08 binary local

where the mapping parameter varies between

• local, used when the host mapping is not supported,
and

• filesys userid.nfs.mapping, used when the host
supports the file name mapping.

If you create the nfs.mapping file as it is described in the
next section, the drive m: command looks like this:

drive m: cobrs08 text filesys cobrs08.nfs.mapping

That means you use the n-drive for binary access and the
m-drive for text. The file name mapping is important only
for text files. Our COBOL sources for the first sample
project are contained in a data set called
COBRS08.HELLO.COBOL, your job control languages
(JCLs) are contained in a data set called
COBRS08.HELLO.JCL. We have access to both using the
m-drive because both data sets are located under our user
ID and that is the one we want to access. Our mapping
files are contained in a data set called
COBRS08.NFS.MAPPING, and our sigyclst files will be
contained in a data set called
COBRS08.REMOTE.SIGYCLST. We allocate this data set
later. At this moment, we need only know under which
high-level qualifier we want to locate it.

All needed data sets are located under the same user ID
so we will get them all with this specification.

With these settings, we get access to a drive (n:) that is to
be used by the system to access sigyclst files, and one
drive (m:) that you use to access COBOL sources and JCL
sources.

type For local mapping, you must specify the substitution for
data sets on the host and file extensions on the
workstation. This is important only when your NFS on the
host does not support file-name mapping. You can leave it
as it is when the host NFS includes this function. The file
mapping on the host is explained in 2.3, “Configuring the
Host for TCP/IP and File Mapping” on page 21. Otherwise,
specify the mappings as shown below. For example,
members in data sets with the qualifier ′COBOL′ or
′SOURCE′ should be resolved with the extension ′.CBL′ on
the workstation. To do so, specify these substitutions in
the following way:

14 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

type COBOL CBL
type SOURCE CBL

If you want to follow our sample application, make sure
you have the following substitution commands here:

type COBOL CBL
type JCL JCL
type COPY CPY

Type all the mappings in this way:

type HostType WorkstationExtension

where HostType is the type of the data set on the host that
contains the members you want to map, and
WorkstationExtension is the extension that you get for
these files on the workstation.

That does not mean that you get a file extension for every
file in the WorkFrame on the PC. You still see the member
names without any extension on WorkFrame, but
WorkFrame knows what kind of files they are and can
exclude inappropriate functionality for files. If you have
specified a remote mapping, you do not need to specify
these mappings.

localcopy No action required. This word is reserved for future use.

mvsedit No action required.

joblog No action required.

sigyclst Specify here the name of the sigyclst data set on MVS.
Our sigyclst file will be the data set
COBRS08.REMOTE.SIGYCLST on the host, so you insert
the line

SIGYCLST COBRS08.REMOTE.SIGYCLST

sysproc No action required.

tempdrive No action required.

fsstartcmd No action required.

fsstopcmd No action required.

mountcmd No action required.

umountcmd No action required.

testfile Put a comment on this line to inactivate it.

protsave No action required.

closefile No action required. But for more information refer to the
box called Protected saving.

mvscomm No action required.

header No action required.

maxcmd No action required.

nullstdin No action required.

Chapter 2. Remote E/C/D with TCP/IP and NFS on OS/2 15

After changing all the parameters, save this file and close it. Setting up this
MVSINFO.DAT file completes configuration of the workstation to use the remote
edit, compile, and debug feature.

If NFS on the host does not support Mapping

It is very important that you know whether your NFS supports file name
mapping on the host or not.

If your NFS on the host does not support file name mapping, you must make
special modifications in the MVSINFO.DAT file on your workstation. Your
WorkFrame is able to undertake the mapping. You have to specify the
mappings in the MVSINFO.DAT file. But this kind of mapping differs from the
mapping that is supported by the host, because it offers you the submit
option for every file on the WorkFrame, no matter whether it makes sense or
not. After you start the submission for a file that is not JCL, you get the error
message ′Action not valid for this part...′. That means the WorkFrame can
check the kind of the file only after the submit was performed. If the host
NFS supports the name mapping, you do not even get the choice to select
the submission for specific files.

16 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Protected saving

If you use only the WorkFrame to edit files, you always get the editor of the
host that is called MVSEDIT on the workstation to edit your program. This
editor provides a protected saving in the way that the file is saved in a
temporary file first and then overwritten on the original file. When the
allocated space for this data set on the host is no longer sufficient for saving
the changed file, you still have the temporary file, which is deleted only after
a successful save.

You have the choice to use ′LXPM′ from an OS/2 window also, but then you
should be aware that you do not get protected saving. If the space allocated
for the data set is insufficient, the data is lost because no temporary file was
saved before.

We strongly recommend that you work with the editor provided by MVS. To
work with this MVS Editor, specify the close-file parameter in the
MVSINFO.DAT file. You must specify

closefile yes

or

closefile no

Which you use depends on whether your MVS NFS supports the immediate
closing of files or not. If it does, specify yes; it is the fastest way to save your
files on the host. Otherwise, specify no, and when you send the temporary
file it will be closed after the timeout value has expired. If the MVS NFS does
not support the immediate close of files and you specify yes, you get an error
message, because the host tries to access a file that is still open.

Also, you can modify the parameter for writetimeout to perform a faster save.
Depending on the response time of your MVS system, you can reduce the
writetimeout parameter. The better your response time, more you can reduce
this parameter. We have set it to 10. The default value for writetimeout is
30.

2.2 Accessing the Host from the Workstation
First we want to connect to the host to check if it works properly.

Once you have updated the MVSINFO.DAT file correctly, you need only type
MVSSTART in an OS/2 window. This reads the necessary information from the
MVSINFO.DAT file, starts NFS, and establishes the connection to the specified
MVS system.

To check if the installations and configurations are done correctly, you can set
up this command manually in an OS/2 window. For that, type MVSSTART in an
OS/2 window. The first note you get does not belong to your system. Ignore this
message and press Enter. The following messages disappear so quickly on your
OS/2 window that you will probably not be able to read them.

The process starts with an NFSSTART and lists all your local drives. Then
NFSCLEAN runs to disconnect from all drives that are not local. Because this is
your first logon, NFSCLEAN probably does not find any connected drive. If not,
you get ′umount ′ messages for all remote drives you are connected to.

Chapter 2. Remote E/C/D with TCP/IP and NFS on OS/2 17

Next, the NFSSTART command is executed, which returns this error message:

NFSSTART: Couldn′ t open ′ D:\MPTN\ETC\fstab′ : errno=10
Mounting FSTAB entries...
Finished mounting FSTAB entries

The path shown in the message refers to the path where the TCP/IP is installed
on your workstation. This message has no effect on your connection to the host.
It is caused by configuring your NFS according to our instructions. A mount
command is missing here, but we find it easier to modify the mount commands
in the MVSINFO.DAT file than to keep changing the TCP/IP configuration. Our
mount commands belong to the remote edit, compile, and debug function of
VisualAge for COBOL.

Next, the mount commands you specified in the MVSINFO.DAT file as drives are
performed. All given attributes are listed and the mount command as you have
to specify it in the NFS configuration in the TCP/IP configuration notebook is
arranged and executed.

An example of the mount of drive M is as follows:

Drive M: being accessed
File system = NFS
System = WTSC47
high-level Qualifier = COBRS08
Readtimeout = 10
Attrtimeout = 10
Writetimeout = 10
Usage = text (translation between EBCDIC and ASCII)
Name mapping = local using MVSINFO.DAT file

mount -lCOBRS08 -p******** M: WTSC47:COBRS08,text,crlf,
nofastfilesize,readtimeout(10),attrtimeout(10),writetimeout(10)
mount: WTSC47:COBRS08,text,crlf,nofastfilesize,readtimeout(10),
attrtimeout(10),writetimeout(10)

The number of drives you specified in the MVSINFO.DAT file is the number of
mount commands performed.

After successful mounts, the NFS will test the connection to MVS first by trying to
get time information from MVS. It then tries to open a specific data set on MVS
with the high-level qualifier ′SYS1′ that exists in any case. When this is
successful, you get the message

Connection to MVS host seems OK

and you can now access the mounted data sets in the same way as you access
drives on your workstation or on the LAN on an OS/2 window.

In the meantime, the NFS Control Program window has appeared in the
background and listed some information about the connection. This information
is of little interest for you, but be aware that you stop NFS when you close this
window by double-clicking on the icon in the upper left corner. Shrink the
window, but do not close it at this point.

18 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

NFS Control Program window

Once you cancel NFS by pressing the Ctrl and C keys together, this window
becomes a normal OS/2 window, although the title of the window is still NFS
Control Program, implying that it is still active when it is not. The window
has no effect on any further activities.

Once the connection is established, an editor comes up in the background and
reports that the access to drive M: is OK (Figure 9).

Figure 9. Editor − M:\MVS File System Access Monitor Window

The connection to drive m: is checked by NFS every 15 minutes, NFS and this
monitor reports the result.

While the mount is still active, you also can get a list of all the mounted drives
when you open the window for the drives in OS/2 as shown in Figure 10.

Figure 10. Drives − Icon View Window

Chapter 2. Remote E/C/D with TCP/IP and NFS on OS/2 19

Error messages after mounting a drive

When you get an error message like this:

mount: writetimeout(10) not in hosts database
Access of drive M: failed

after you mounted a drive, it is likely that your user ID on the host does not
have full authority for all functions supported by NFS. Depending on the error
message, put the referred command in the MVSINFO.DAT file in comments.
In our example, put an asterisk at the beginning of the line of the
writetimeout command. The error message means that the writetimeout
command is not supported in your environment so you cannot use it. For
that, the host system takes the defaults and does not accept any entry from
you.

Try to mount again without specifying the writetimeout command and you will
mount the drive successfully.

To disconnect the host, type MVSSTOP in an OS/2 window on a local drive and the
unmount progress starts and disconnects you from the host. The following output
is produced in the OS/2 window where you set up the command:

umount M:
Unmounting ′ WTSC47:COBRS08,text,crlf,fileextmap,
sidefile(COBRS08.NFS.MAPPING),nofastfilesize,readtimeout(10),
attrtimeout(10),writetimeout(10)′ . . . successful.

umount N:
Unmounting ′ WTSC47:COBRS08,binary,nofastfilesize,readtimeout(10),
attrtimeout(10),writetimeout(10)′ . . . successful.

nfsclean
Type Name FSDName FSAData
Local C: FAT
Local D: FAT
Local E: FAT
Local F: UNKNOWN
Local G: UNKNOWN

You should select ″View->Refresh now″ in order to update your
project view

Press any key when ready . . .

20 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

 NFSSTART

If you are interested in starting NFS separately, to test the connection to the
host and to see if you can access the data sets, you can start NFS manually
and activate the mount.

For that, open an OS/2 window and follow the instructions:

 1. Type NFSSTART into an OS/2 window. The NFS starts running.
 2. Type mount -luserid -ppassword drive: MVSsystem:hlq,text,crlf as one

command where
• userid is your user ID in the host system you want to access
• password is the password that belongs to this user ID
• drive is any drive letter that you do not use at this moment for any

other drive
• MVSsystem is the host system you want to connect
• hlq is a high-level qualifier on this host. If you are not sure if you

have authorization for other high-level qualifier use your own user ID
as hlq first. That cannot encounter a problem.

 3. Check that the mount command is done properly.

Now you can access the specified data set on the host remotely from your
workstation.

If MVS logs you off

An MVS system may periodically log off a user. If MVS logs you off, reissue
the umount and mount commands to log on again.

If you are working with a WorkFrame project, select Project in the menu bar
and then first Disconnect MVS drives , and then Connect MVS drives to
unmount the drives and mount them again. After that press F5 to refresh the
files in the WorkFrame.

In Section 2.3, “Configuring the Host for TCP/IP and File Mapping” we explain
how to configure the host to complete your environment.

2.3 Configuring the Host for TCP/IP and File Mapping
To support communication with your workstation, you have to make some
changes on the host. For remote edit, compile, and debug, some restructured
executor program (REXX) procedures shipped with VisualAge for COBOL have to
be uploaded to the host and one of them has to be modified.

Follow these instructions to make your host ready for remote edit, compile, and
debug:

 1. Create a data set that contains MVS REXX procedures that are used by
remote edit, compile, and debug MVS processing. For that, you have to set
up your own SIGYCLST data set. To allocate a data set with the low-level
qualifier SIGYCLST with the appropriate specifications, make sure that you
are connected to the host, and then set up the mount command as follows:

md ″remote.sigyclst,dsntype(pds),lrecl(255),blksize(6160),recfm(vb)″

Or use the emulation to allocate the new data set with these specifications:

Chapter 2. Remote E/C/D with TCP/IP and NFS on OS/2 21

Space units BLOCK

Primary quantity 72

Secondary quantity 16

Directory blocks 7

Record format VB

Record length 255

Block size 6160

Then upload all files contained in the \IBMCOBOL\CLISTS directory for OS/2
into this SIGYCLST data set. You have three different choices for uploading
the files: copy them remotely, use the emulator session for copying it, or
use FTP that belongs to TCP/IP. We describe all three kinds of transferring
files:

a. To make it easier, go to this drive in an OS/2 window while typing

cd \IBMCOBOL\CLISTS

and copy all files into the drive you have mounted with file extension
mapping. Following our example, copy them to drive m:. Type in this
window the commands:

copy igyfcmh.cmd m:\remote.sigyclst
copy igyfproh.cmd m:\remote.sigyclst

and so on until you have copied all files from the directory
\IBMCOBOL\CLISTS to the host data set.

b. You can also upload the files using the emulator session.

 c. Another way of uploading the files is to use FTP. This is much easier
than using the transfer feature offered by the emulator session, and it is
recommended when the copying the files does not work.

You find a detailed explanation of the upload via FTP in 2.4, “Upload
Workstation Files Using FTP” on page 25.

Error message while copying files

When you get the error message ′SYS0206: The file name or extension is
too long.′ while you copy files from local drives to remote drives, it
means that you did not mount the remote drive with file extension
mapping. The extension of the file is not accepted by the remote drive.
To avoid this error, use a remote drive that has been mounted with file
extension mapping.

 2. Update the supplied REXX procedure named IGYFLIBS, contained in this data
set, to indicate the fully qualified name of the load library. Edit the member
IGYFLIBS and change the dsname into the data set name of the load library
you want to use. In our case, we changed this command into

dsname = ″COBRS08.REMOTE.LOAD″ ;

 3. Next, assemble the IGYFINF program and link the object code into the load
library specified. For that, up-load the file called IGYFINF.ASM located in the
/IBMCOBOL/MACROS directory of your workstation into a data set for
assembler programs. Assemble this program using the assembler on MVS
and link the object code into the load library you have specified in the step

22 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

above. In our environment, the jobs for the compilation of assembler
programs are included in the data set SYS1.PROCLIB.

 4. If you are using host name mapping, you must specify how the MVS files are
to be interpreted based on the MVS data set name low-level qualifier. That
means you have to create a library that tells the host NFS how it should
replace the data set names with file extensions. To do so, allocate a library
that is called USERID.NFS.MAPPING where userid is your user ID on this
host.

Either you use the usual way to allocate the library (with the emulator
session), or you try it remotely as described below. Using the emulator is
probably easier, so you can allocate the library with the following
specifications:

Space units BLOCK

Primary quantity 1

Secondary quantity 1

Directory blocks 1

Record format FB

Record length 80

Block size 400

Then, edit the member as you are used to doing it on the host and insert the
code shown in Figure 11 on page 24.

To allocate the library remotely on the host, make sure that you are
connected to the host. Then, mount a new drive (one you are not yet using)
with the following command in an OS/2 window in one line:

mount drive: hostname:″userid,parameters″

where

• Drive is the drive you want to use for the mount
• Hostname is the alias for the host you want to access
• Userid is your user ID or another high-level qualifier where the library

should reside
• Parameters is a list of parameters to specify the attributes of the data set

you want to allocate.

To allocate the NFS.MAPPING library, specify the mount with the following
parameters:

mount o: wtsc47:″cobrs08,lrecl(80),blksize(400),recfm(fb),dsorg(ps)″

where o: is the drive we are using for the mount, wtsc47 is the host we are
accessing, cobrs08 is our user ID, and the other parameters are for the
allocation of the new library NFS.MAPPING. After you have set up the
command, you are prompted to type your user ID and your password. You
should then get the message that the NFS drive was attached successfully.

After you allocate the data set, you can specify the name mappings as in the
MVSINFO.DAT file for local mappings. For example, you can specify that
library names ending with the qualifier COBOL contain COBOL source code.
That would mean that every member belonging to a data set with the
low-level qualifier COBOL gets the extension .CBL, no matter what the
high-level qualifier is.

Chapter 2. Remote E/C/D with TCP/IP and NFS on OS/2 23

To edit this file, change to an OS/2 window and enter the name of the
mounted drive. In our example it is drive o:, so edit

o:

in the OS/2 window and then edit the NFS.MAPPING file while typing

e NFS.MAPPING

The editor comes up and you can edit the code shown in Figure 11.

#NFS.MAPPING
**.COBOL .CBL
**.COPY .CPY
**.COBCOPY .CPY
**.OBJ .OBJ
**.LOAD .EXE
**.CLIST .CMD
**.SIGYCLST .CMD
**.CNTL .JCL
**.JCL .JCL
**.LISTING .LST
**.OUTLIST .OUT

Figure 11. NFS.MAPPING File

To save it, select File in the menu bar and then choose Save . The file is
being saved on the host. Then press F3 to leave the file.

 5. After this l ibrary creation, unmount the drive o: again, because you do not
need it any more with these file specifications. Change the drive in your
OS/2 window to any local drive and type

umount o:

to set the drive o: free.

 NFS.MAPPING

In the NFS.MAPPING file, many low-level qualifiers can have the same
interpretation as, for example, both the low-level qualifiers COPY and
COBCOPY can contain copy books for COBOL programs. All files that share
the same low-level qualifier are interpreted the same way. This means every
file in a data set with the low-level qualifier COBOL gets the extension .CBL
on the workstation.

The effect of this name mapping is that the WorkFrame offers you only the
functions whose names fit the file. How an MVS file is interpreted determines
whether certain actions are performed for the file. For example, you can only
submit jobs from files that are interpreted to contain MVS JCL.

You have now prepared both the workstation and your host environment for
using the remote edit, compile, and debug feature and you can start working
remotely.

At this point, make sure that the system administrator of the host system has set
up the IP address of your workstation for accessing the TCP/IP on the host. The
TCP/IP on the host needs to know which user ID accesses the host on TCP/IP
from which workstation IP address. If you are using two different workstations,

24 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

the system administrator must define these two IP addresses for your user ID on
the host to give you TCP/IP access.

Section 2.4, “Upload Workstation Files Using FTP” explains the upload of files
from the workstation to the host using FTP. You do not have to read it
necessarily. It is an easy way to copy files to the host. If you copied your files
another way, go directly to Chapter 4, “Creating Applications Using Remote
E/C/D on OS/2” on page 59 to create your first application remotely. (You can
use FTP to upload the sample application files.)

2.4 Upload Workstation Files Using FTP
This section offers you a smart way of uploading files from the workstation or a
diskette to the host.

To use FTP, follow these steps:

 1. Open the OS/2 System folder located on the Desktop.

 2. Open the TCP/IP folder located in the OS/2 System folder.

 3. Double-click on the FTP-PM icon to start FTP.

The FTP-PM - Open Remote Host window appears. Specify the host you
want to connect to in the Host: field, give the user ID you have on this host in
the User: field, and the password that belongs to this user ID in the
Password: field (Figure 12) and click on OK

Figure 12. FTP-PM − Open Remote Host Window

 4. The FTP-PM - hostname (user ID) window comes up and shows you files and
directories from your workstation in the upper half of the window and the
data set list with your user ID as high-level qualifier in the lower half of the
window.

To upload the CLIST files you need in the SIGYCLST data set on the host,
you first have to specify the directories where these files are located.

To reach the directories, specify the drive in the Current Directory field
where VisualAge for COBOL is installed and press Enter. The contents of
the Files and the Drives/Directories lists change accordingly.

Chapter 2. Remote E/C/D with TCP/IP and NFS on OS/2 25

Select IBMCOBOL in the Drives/Directories list and then scroll down in the
list and select CLISTS .

The Files list shows the files you have to upload.

 5. Now turn to the lower half of the window where your host data sets are
displayed. Scroll down in this list until you reach the data set you have
allocated for the SIGYCLST members. If you followed the instructions, you
should find the data set named REMOTE.SIGYCLST. Double-click on it to
open this data set.

 6. Turn back to the upper half of the window and select all files listed in the
Files list (Figure 13) and select QuickTrans in the menu bar.

Figure 13. FTP-PM - wtsc47 (cobrs08) Window

 7. The FTP-PM - Put Local Files window appears and refers to the first file of
the file list you selected. In the To File field, specify the name of this file on
the host. Leave the name as is, but remove the extension .CMD as shown in
Figure 14 on page 27.

Click on Yes to start the transfer of this file.

26 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Figure 14. FTP-PM - Put Local Files Window

 8. The FTP-PM - Transfer Progress window comes up, reports the file transfer
and disappears after the transfer has finished.

The FTP-PM - Put Local Files window appears again with the next file.
Proceed with all other files in the same way and remove the file extension
.CMD from the To File entry field.

 9. After the last file transfer, the FTP-PM - wtsc47 (cobrs08) window gets active
again and now shows the transferred files as members in the
Directories/Files list in the lower half of the window that belongs to the host.

10. Select Connection in the menu bar and then Close all hosts in the pull-down
menu to disconnect the host. The FTP-PM window appears and asks you to
confirm this request (Figure 15). Click on Yes .

Figure 15. FTP-PM Window

Chapter 2. Remote E/C/D with TCP/IP and NFS on OS/2 27

11. Finally, close the FTP-PM - wtsc47 (cobrs08) window (which changed its
name to FTP-PM after disconnection) by double-clicking on the icon in its
upper left corner.

The file transfer is done. Now you can use the files on the host.

28 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Chapter 3. Remote Edit, Compile, and Debug with APPC on OS/2

To use the protocol APPC to communicate with the host from your workstation,
you must set up the configuration on the host and on your workstation. This
chapter explains the configurations you need on the workstation and on the host
to use APPC and SMARTdata Utilities.

For the requirements on the host side, refer to the Getting Started online manual
that is shipped with VisualAge for COBOL.

For communications between the workstation and the host system using APPC
plus the SMARTdata Utilities (SdU) component on the workstation, you need an
SdU server on the host system. Use DFSMS Release 1.3 or later.

Also you need IBM COBOL for MVS and VM, Version 1.2 or later.

We next explain some products we are using and then in Section 3.1,
“Configuring Communications for APPC” on page 30, we describe step by step
how you have to configure your communications for APPC on the workstation.

Advanced Program-to-Program Communication (APPC) has been designed to
provide enhanced system network architecture (SNA) support for distributed
processing. By distributed processing, we mean having two or more processors
communicate in the execution of a unit of processing. Such a unit is generally
referred to as a transaction, so that the term cooperative (or distributed)
transaction processing describes the environment addressed by APPC.

Specifically, APPC describes the functions that can be used by programs in
separate processors to communicate with each other in the execution of a single
distributed transaction. The goal of APPC is to facilitate the development of
distributed applications by providing a set of defined functions that serve as the
base for program-to-program communication, independent of the types of
processors in which those programs run.

A new logical unit (LU) was developed to support distributed applications. This
was LU6.2; it was an evolution from LU6.0 (CICS program-to-program) and LU6.1
(CICS and IMS program-to-program). However, as the name ″LU6.2″ was not
very meaningful, the term APPC came to be used. The two terms, APPC and
LU6.2 are synonymous.

The benefit of using APPC is that the programs can be distributed across several
processors and can work together cooperatively, using a set of standard
conversational verbs to perform work. Also, neither program has to know
anything about the environment of the other processor; it only has to be able to
hold a conversation with the other program.

IBM SMARTdata UTILITIES is designed to provide local and remote access to
data. It offers

• Record-oriented file access through standard COBOL I/O statements to:

− Local OS/2 VSAM files
− Remote MVS VSAM, SAM, PDS, and PDSE files
− Remote OS/400 Record Files
− Remote CICS-managed VSAM files on MVS using CICS/DDM

 Copyright IBM Corp. 1997 29

• A full set of data conversion APIs for converting single, double, and
mixed-byte character strings, numerics and complex structured records.

• A full set of SMARTsort APIs for sorting, copying, and merging record and
byte files located locally or remotely.

In other words, SdU provides a local record-level access method using VSAM for
the workstation. This allows you to have sequential, direct, and keyed files on
your local system. Also, it provides you with remote access to files residing on
MVS, OS/400, and CICS systems using the same VSAM interface used to access
local files. On MVS, this includes access to sequential access method (SAM)
files and partitioned data set extended (PDSE) members. Remote access is
integrated with a data conversion engine that allows you to view even
complicated record structures from remote systems in data formats supported by
your local machine.

SdU further offers a general-purpose data conversion engine for more complex
conversion tasks.

And finally, SMARTsort is an industrial-strength sort, merge, copy, and extract
package.

DFSMS/MVS provides storage management, data access, device support,
program management, and distributed data access for the MVS/ESA
platform and participates in the OS/390 Operating System and SystemView for
MVS solution set.

Significant improvements are introduced in the following areas:

• Space allocation and extension outage (X37) reduction
• DFSMShsm processing (DFSMShsm CDS access, DFSMShsm Duplex Tape)
• VSAM (VSAM key sequenced data set loading and buffering options)
• Catalog (Catalog Search Interface)
• Compression
• Tape processing
• New statistics records that will aid in reporting, analysis and planning.

Additional items will aid in productivity, distributed data processing with a
distributed file manager (DFM) Data Agent, and system-managed storage
extensions to support the parallel Sysplex.

3.1 Configuring Communications for APPC
Before you start with any configuration, make sure that your workstation fulfills
the software requirements for the use of the remote edit, compile, and debug
component. Check that the operating system is IBM OS/2 Warp Version 3.0 or
later, including FixPak 26 or IBM OS/2 Warp Version 4.0 including FixPak 1.

Further, make sure that at least the following VisualAge for COBOL components
are installed:

• Remote edit, compile, and debug
• Editor
• WorkFrame.

In the following, we explain how to set up your workstation for communication
with the host by way of APPC. Configuring APPC cooperative sessions requires

30 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

coordination between workstation and host administrators. You need some
information from your system administrator—as, for example, the network ID.

Configuring Communications Manager/2 at the workstation requires:

• Defining the workstation to the network. Define a link from the workstation to
the host, or to an intermediate APPN node.

• Defining the workstation as a client for APPC sessions. Define the
workstation as a server for remote debug APPC sessions.

In addition to configuring Communications Manager/2 for OS/2 Warp, you need
to do some SMARTdata Utilities configuration.

3.1.1 Installing Communications Manager/2 for OS/2 Warp
For the use of APPC, you need to install Communications Manager/2 for OS/2
Warp to set up independent logical units to establish a link between workstation
and mainframe. That enables you to connect to the host through APPC.

First, install Communications Manager/2 for OS/2 Warp on your workstation,
following these steps:

 1. Insert the Communications Manager CDROM in the CDROM drive. At an
OS/2 command prompt, type

D:\CM2\CMSETUP

 where D is the drive letter of the CDROM, and press Enter.

 2. Click on the OK push button on the Installation of Communications Manager
window (Figure 16).

Figure 16. Installation Window for Communications Manager 2

 3. The Installation Notes window appears. Click on Continue .

Chapter 3. Remote Edit, Compile, and Debug with APPC on OS/2 31

 4. On the Target Drive Selection window (Figure 17 on page 32) select the
drive where you want to install Communications Manager/2 for OS/2 Warp
and click on OK .

Figure 17. Target Drive Selection Window

 5. On the Communications Manager Setup window (Figure 18) select Setup... to
configure the machine.

Figure 18. Communications Manager Setup Window

 6. While the system copies files from the CDROM, it shows in the Copying Files
window that it still works (Figure 19 on page 33).

32 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Figure 19. Copying Files Window

 7. The Open Configuration window appears (Figure 20). Type a name for this
configuration in the appropriate field (a description for the configuration is
optional) and click on OK .

Figure 20. Open Configuration Window

 8. On the OS/2 Communications Manager window, click on Yes to create the
new configuration.

 9. On the next OS/2 Communications Manager window (Figure 21 on page 34),
click on Yes to use the configuration for this workstation.

Chapter 3. Remote Edit, Compile, and Debug with APPC on OS/2 33

Figure 21. OS/2 Communications Manager Window—Workstation

10. On the Communications Manager Configuration Definition window (Figure 22)
you have to define the connection types you want to use. In the field
Additional definitions select Token-ring or other LAN types as the workstation
connection type and 3270 emulation as the feature for the application. Then
click on Configure... .

Figure 22. Communications Manager Configuration Definit ion Window

11. The 3270 Emulation through Token-ring window appears (Figure 23 on
page 35). You have to specify the following parameter for the emulation
sessions:

• Network ID is the name of the network where your workstation is located.

• Local node name is the name of the workstation as it is known on the
network. You are creating a new configuration, so type the name to be
assigned to your local node (your workstation). This name becomes the
control-point name for your node.

• Local node ID is made up of the characters that form the last eight digits
used in the exchange identification (XID) for activating a link. The first

34 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

three characters default to X′05D′. Accept this default. The coordinator
of the host computer you connect to can tell you which local node ID to
use.

• The LAN destination address is the address of the adapter on your
network ′s communications controller or gateway. For a 3270 emulation
configuration, the LAN destination address is the address of the network
adapter for your SNA gateway, or your SNA controller.

• The number of terminal sessions can be between one and four.

• Finally, specify the number of printer sessions you want to configure.

Click on OK .

Figure 23. 3270 Emulation through Token-ring Window

12. After the set up of the 3270 emulation, click on Yes on the window labeled
OS/2 Communications Manager (Figure 24).

Figure 24. OS/2 Communications Manager Window—Product Files

13. On the Install window, click on OK (Figure 25 on page 36).

Chapter 3. Remote Edit, Compile, and Debug with APPC on OS/2 35

Figure 25. Install Window—Communications Manager/2 for OS/2 Warp

14. On the Change CONFIG.SYS window, accept the default and click on OK
(Figure 26).

Figure 26. Change CONFIG.SYS Window

15. Close the configuration by clicking on Close in the Communications Manager
Completion window (Figure 27 on page 37).

36 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Figure 27. Communications Manager Completion Window

16. You have now finished the installation of Communications Manager/2 for
OS/2 Warp. You can find the Communications Manager/2 icon on your
Desktop. Double-click on this icon to open the Communications Manager/2 -
Icon View window (Figure 28).

Figure 28. Communications Manager/2 - Icon View Window

17. Shut down your workstation and reboot. To finish the configuration of
Communications Manager/2, double-click on the MPTS icon on your desktop.
Click on OK on the Multi-Protocol Transport Services-Logo window, then click
on Configure on the Multi-Protocol Transport Services window (Figure 29 on
page 38).

Chapter 3. Remote Edit, Compile, and Debug with APPC on OS/2 37

Figure 29. Multi-Protocol Transport Services Window

18. LAN adapters and protocols may already be configured on your machine, but
we need to add a protocol. Select LAN adapters and protocols and click on
Configure on the Configure window (Figure 30).

Figure 30. Configure Window—MPTS

19. On the LAPS Configuration window (Figure 31 on page 39), select the
network adapter 3270 Adapter for 3174 Peer Communications and IBM IEEE
802.2 as its protocol. LAPS is the LAN adapter and protocol support of
multiprotocol transport networking (MPTN). IEEE is the Institute of Electrical
and Electronic Engineers. Click on Add in the part of the window for the
protocols, and IBM IEEE 802.2 appears in the current configuration list. You
need not change the default parameters of this protocol. Click on OK

38 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Figure 31. LAPS Configuration Window

20. Figure 30 on page 38 appears again. Click on Close and on Exit on the next
window.

21. Ensure on the Update CONFIG.SYS window (Figure 32) that update
CONFIG.SYS is selected and click on Exit .

Figure 32. Update CONFIG.SYS Window

22. The message window for Update CONFIG.SYS shows you the successful
update of the CONFIG.SYS file. Click on OK on this window.

23. To exit MPTS, click on Exit on the Exiting MPTS window.

24. Shut down your workstation.

Chapter 3. Remote Edit, Compile, and Debug with APPC on OS/2 39

With the next start of your workstation, the sessions for the 3270 Emulation will
appear.

3.1.2 Configuring Communications Manager/2 for OS/2 Warp
While APPC does not require 3270 emulator sessions at the workstation, we
assume that you want to run 3270 emulators in parallel with APPC sessions.
After you have done the following configuration, you get four 3270 emulator
sessions and two APPC sessions.

Further, we assume that you want to configure APPC for a workstation that is
connected to a Token-ring Local Area Network (LAN). That means we are
defining the target systems in the Communications Manager configuration files.
Distributed FileManager for OS/2 (DFM) uses the SNA LU6.2 protocol for
communicating with target systems. You need to have this software installed:

• IBM OS/2 WARP Version 3 plus FixPak 26 or later or IBM OS/2 Warp Version
4 plus FixPak 1

• Communications Manager/2 for OS/2 Warp Version 1.11 or later.
• Distributed FileManager for OS/2.

We define the following parameters in Communications Manager/2 for OS/2
Warp:

• Those that must match parameters of other products:

− Local node ID
− Local LU name
− Mode name
− Partner LU name
− Network ID

• Additional parameters:

− Communication & Systems Management (C&SM) LAN ID
− Local node name
− LAN destination address
− Partner node name
− Change number of sessions

Follow these steps to set up APPC in Communications Manager/2 for OS/2 Warp:

 1. On the desktop, double-click on the Communications Manager/2 icon. The
Communications Manager/2—Icon View window appears.

If your Communications Manager is started, stop it by double-clicking on the
Stop Communications Normally icon.

 2. Double-click on the Communications Manager Setup icon. Click on OK on the
Communications Manager/2 window.

 3. The Communications Manager Setup window is displayed as in Figure 18 on
page 32 in 3.1.1, “Installing Communications Manager/2 for OS/2 Warp” on
page 31. Click on Setup... .

 4. The Open Configuration window appears (Figure 33 on page 41). If you
installed Communications Manager/2 for OS/2 Warp as described in 3.1.1,
“Installing Communications Manager/2 for OS/2 Warp” on page 31, APPCNEW
is already displayed in the Configuration field. Otherwise specify this value
(and, optionally, a description) in order to create a new configuration file.
Click on OK .

40 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Figure 33. Open Configuration Window for APPC

 5. The OS/2 Communications Manager window is displayed (Figure 34). Click
on Yes .

Figure 34. OS/2 Communications Manager Window for APPC

 6. The Communications Manager Configuration Definition—APPCNEW window
appears (Figure 35 on page 42). Ensure that the Additional definitions radio
button is selected.

Select Options from the menu bar, and Use advanced configuration from the
first pull-down menu and On from the second.

Select Token-ring or other LAN types from the Workstation Connection Type
list box and APPC APIs from the Feature or Application list box. The window
shows a graphic of APPC APIs through Token-ring for communications
(Figure 35 on page 42).

Click on Configure... .

Chapter 3. Remote Edit, Compile, and Debug with APPC on OS/2 41

Figure 35. Communications Manager Configuration Definit ion Window

 7. The Communications Manager Profile List window appears (Figure 36).
Select DLC—Token-ring or other LAN types from the Profile Name list box
and click on Configure... . DLC is data link control.

Figure 36. Communications Manager Profi le List Window for APPC

42 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

 8. Type the name of the network where the Token-ring is defined in the C&SM
LAN ID field of the Token Ring or Other LAN Types DLC Adapter Parameters
window (Figure 37 on page 43). This field is used for system management
and has nothing to do with the APPC client and server set-up. Click on OK .

Figure 37. Token Ring or Other LAN Types DLC Adapter Parameters Window

 9. Select SNA local node characteristics from the Profile Name list box of the
Communications Manager Profile List window (Figure 36 on page 42) and
click on Configure... .

10. The Local Node Characteristics window is displayed (Figure 38 on page 44).

Type your value for the network ID in the Network ID field, in our example
USIBMST.

Type a name in the Local node name field. The local node name is the name
that other nodes in the network use to address this node—for example, in an
advanced peer-to-peer network (APPN). For our configuration, this name is
not relevant, but it must be unique within the network. You can specify any
meaningful name like the virtual telecommunications access method PU
name as we used it.

Type your value for the Local node ID in the Local node ID field, in our
example 05D B1835.

Click on OK .

Chapter 3. Remote Edit, Compile, and Debug with APPC on OS/2 43

Figure 38. Local Node Characteristics Window

11. Select SNA connections from the Profile Name list box of the
Communications Manager Profile List window (Figure 36 on page 42) and
click on Configure... .

12. The Connections List window is displayed (Figure 39).

Ensure that the To host radio button is selected and, if you have already
defined a 3270 emulation for the current configuration, the list box on the
Connections List window shows the following entry:

HOST0001 Token-ring or other LAN types 0

If this is the case, select this entry and click on Change... . Otherwise click on
Create... .

Figure 39. Connections List Window

44 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

13. Select Token-ring or other LAN types from the Adapter Type list box on the
Adapter List window (Figure 40 on page 45) and click on Continue... .

Figure 40. Adapter List Window

14. The Connection to a Host window appears (Figure 41 on page 46).

Depending on whether you are creating a new host link or changing an
existing host link, more or fewer fields are already filled.

Accept the default value for the Link name field (HOST0001) or replace it with a
more meaningful name for it. The link name is known only to your
Communications Manager and is used to identify what parameter definitions
belong together.

The Node ID should already be entered, in our example 05D B1835.

Enter your LAN destination address in the LAN destination address field. In
our network this is the Token-ring address of the network controller.

Type your value for the Network ID in the Partner network ID field, in our
example USIBMST.

Type STLMVS1 in the Partner node name field.

You can type any comment in the Optional comment field or leave it blank.

Ensure that the APPN support check box is not checked.

Click on Define Partner LUs... .

Chapter 3. Remote Edit, Compile, and Debug with APPC on OS/2 45

Figure 41. Connection to a Host Window

15. The Partner LUs window (Figure 42 on page 47) appears.

Type your value for the network ID in the Network ID field—in our example
USIBMSC.

Type your value for the Partner LU in the LU name and in the Alias field, in
our example SC47APPC. Write this alias in upper case letters.

You can type any comment in the Optional comment field or leave it blank.

Click on Add . The LU name is displayed in the LU name and Alias list boxes
(Figure 42 on page 47).

Click on OK .

You can define more than one Partner LU. In our configuration we added a
second Partner LU with the network ID USIBMST and the LU name
ST11APPC.

46 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Figure 42. Partner LUs Window

16. Click on OK on the Connection to a Host window.

If the OS/2 Communications Manager window appears as in Figure 43, click
on Change .

Figure 43. OS/2 Communications Manager Window (3270 emulator information)

Click on Close on the Connection List window which now shows the following
entry in the list box:

APPCNEW Token-ring or other LAN types 0

17. Select SNA features from the Profile Name list box of the Communications
Manager Profile List window (Figure 36 on page 42) and click on Configure... .

18. The SNA Features List window is displayed (Figure 44 on page 48). Select
Local LUs from the Features list box and click on Create... .

Chapter 3. Remote Edit, Compile, and Debug with APPC on OS/2 47

Figure 44. SNA Features List Window

19. The Local LU window is displayed (Figure 45).

Type your value for the Local LU in the LU name field and in the Alias
field—in our example, STB1835I.

You can type any comment in the Optional comment field or leave it blank.

Click on OK .

Figure 45. Local LU Window

20. The LU name is displayed in the Definition Comment list box of the SNA
Features List window (Figure 45).

Select Modes from the Features list box and click on Create... .

21. The Mode Definition window is displayed (Figure 46 on page 49).

48 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Type your value for the Mode name in the Mode name field. In our example,
the mode name is QPCSUPP.

Select #CONNECT from the Class of service combination box.

You can type any comment in the Optional comment field or leave it blank.

Click on OK .

Figure 46. Mode Definit ion Window

22. Select Transaction program definitions from the Features list box in the SNA
Feature List window and click on Create... .

The Transaction Program Definition window appears as shown in Figure 47
on page 50.

Type in the Transaction program (TP) name field the value COBVSDT and in the
field OS/2 program path and file name the path D:\OS2\CMD.EXE where D: is
the drive where OS/2 Warp is installed on your workstation. A comment in
the Optional comment field is optional.

In the Program parameter string field type the following: /c
E:\IBMCOBOL\BIN\CCX1APCD.CMD where E: is the drive where your VisualAge for
COBOL is installed. Ensure that both the Service TP and the Conversation
security required check-boxes are disabled.

Select the Continue push button.

Chapter 3. Remote Edit, Compile, and Debug with APPC on OS/2 49

Figure 47. Transaction Program Definit ion Window

23. The Additional TP Parameters window comes up (Figure 48).

Click on (enable) the check-box VIO-windowable as the Presentation type
and Non-queued, Attach Manager started as the Operation type. Then click
on OK .

Figure 48. Additional TP Parameters Window

24. Click on Close on the SNA Features List window.

Click on Close on the Communications Manager Profile List window.

Click on Close on the Communications Manager Configuration
Definition—APPCNEW window.

The configuration is being validated while the Communications
Manager—Checking Values window is shown (Figure 49 on page 51).

50 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Figure 49. Communications Manager—Checking Values Window

Click on Close on the Communications Manager Setup window.

3.2 Set up the PC to Connect to the Host
To set up your PC, first you have to put some definitions about your environment
in the file called MVSINFO.DAT on your PC. In OS/2 this file is located in the path
X:\IBMCOBOL\MACROS where X is the drive on which VisualAge for COBOL is
installed.

You find a very detailed description of this file in Section 2.1.2, “MVSINFO.DAT
File Explanation” on page 12. The explanations about various functions are the
same for both APPC and TCP/IP. If you read the section in TCP/IP, ignore the
actions for the TCP/IP connection. Here, we do not describe the reserved words
but only the changes you have to make in this file to prepare it for the
connection to the host via APPC.

To edit the file, open an OS/2 window and type

IWZSET

Set all the options that you need to configure the connection as it is described
below.

system No action required.

worksys No action required. This word is reserved for future use.

userid Change the name that follows to the user ID you use. We
use the ID userid COBRS08.

pwd Change the name that follows with the encrypted password
of the user ID you use for the connection to the host.
Instead of the encrypted password, you can specify that
you want to be prompted to give the password manually.
I n t h i s c a s e i n s e r t t h e s t r i n g p w d + + + + + + + + 1
instead of typing the encrypted password.

filesys Specify the system you are using to access the host files.
We left the default options filesys sdu accessmon
testaccess.

readtimeout No action required. We put in 10.

writetimeout No action required. We put in 10.

nfs No action required.

sdu You can leave it as is to use the default values. We
specified sdu pc_ccsid(850).

Chapter 3. Remote Edit, Compile, and Debug with APPC on OS/2 51

drive This statement allows you to access the data sets on the
host. Specify

 1. The drive letter
 2. The high-level qualifier of the data set you want to

access
 3. The specification of whether the data format is text or

binary
 4. Local mapping for file extensions. Host file mapping is

not supported by SMARTdata Utilities, so you have to
map the file extensions locally.

You should at least have these two different drive
statements about binary and text formatted files:

drive m: cobrs08 text local
drive n: cobrs08 binary local

type For local mapping, you must specify the substitution for
data sets on the host and file extensions on the
workstation.

Type all the mappings in this way:

type HostType WorkstationExtension

where the HostType is the type of the data set on the host
that contains the members you want to map, and
WorkstationExtension is the extension that for these files
on the workstation.

localcopy No action required. This word is reserved for future use.

mvsedit No action required.

joblog No action required.

sigyclst Specify here the name of the SIGYCLST data set on MVS.
Our SIGYCLST file is the data set
COBRS08.REMOTE.SIGYCLST on the host, so you insert
the line

SIGYCLST COBRS08.REMOTE.SIGYCLST

sysproc No action required.

tempdrive No action required.

fsstartcmd No action required.

fsstopcmd No action required.

mountcmd No action required.

umountcmd No action required.

testfile Put a comment on this line to inactivate it.

protsave Type Yes 1 to ensure getting the protected saving.

closefile No action required. It belongs to NFS. A change has no
effect.

mvscomm No action required. It also belongs to TCP/IP and NFS.

header No action required.

maxcmd No action required.

52 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

nullstdin No action required.

In addition, you should configure the SdU to get the file extension mapping for
APPC supported.

3.2.1 Configuration of SMARTdata Utilities on the Workstation
SMARTdata Utilities (SdU) is needed in your environment to support the file
extension mapping for APPC.

Distributed FileManager for OS/2 (DFM) belongs to SMARTdata Utilities and is
needed for remote record access. It enables an OS/2 Version 2.0 application
program to use byte-stream and record-oriented access to remote file data.

Set up the CONFIG.DFM file that is located in the path D:\IBMCOBOL\MACROS
where D: is the drive where you have installed VisualAge for COBOL. Change
the following variables only:

remote_lu Type in the alias for the LU name you specified in the
Communications Manager configuration in Figure 42 on
page 47.

description The description is optional.

userid Type in the user ID you are using to access the specified
system.

LOCAL_LU The local LU name is specified in the Communications
Manager configuration in Figure 45 on page 48. Give this
as the local LU.

MODE_NAME Type in the mode name you specified in Figure 46 on
page 49.

DEFAULT_DFM_TARGET
This should be the same as the DFM target for the remote
LU.

Leave the other parameter as is.

A sample of the CONFIG.DFM file is shown below:

; Definition of an MVS/ESA system as target:
DFM_TARGET (

remote_lu(SC47APPC)
description(The MVS/ESA System in POK)
conversation(HOLD)
max_send_limit(4096)
userid (COBRS08)
)

; **
; * Define the local LU alias as defined for the OS/2 ES Communicati
; **

LOCAL_LU (STB1835I)
; **
; * Define the Mode Name
; **

MODE_NAME (QPCSUPP)
; **
; * Define the Default DFM Target System
; **

Chapter 3. Remote Edit, Compile, and Debug with APPC on OS/2 53

DEFAULT_DFM_TARGET(SC47APPC)
; **
; * Define the default CCSID (Coded-Character-Set-Id, up to 5 decimal
; * for all accessed targets
; **

DEFAULT_CCSID(00850)
; **
; * Define the shared memory size to be available for DFM/2 tracing
; * Trace buffer memory to be specified in kilobytes:
; * Minimum value: 10 KB
; * Maximum value: 1000 KB
; ***
; TRACE_BUFFER(64)
; ***
; * Define space available for DFM/2 caching.
; * The size (maximum space used) is specified in kilobytes,
; * default value is 2000 KB.
; * The default directory is %ehndir%\cache.
; * Make sure the directory specified exists and does not contain a
; * you want to keep, as DFM/2 may delete all files in that directo
; ***
; DFM_CACHE (
; cache_disk_size(1000)
; cache_directory(%ehndir%\cache)
;)

With this, the configuration of SdU is done and you can start configuring your
host.

3.3 Configuring the Host for APPC
To support communication with your workstation, you have to make some
changes on the host. For remote edit, compile, and debug, some REXX
procedures shipped with VisualAge for COBOL must be uploaded to the host and
one of them has to be modified.

To make your host ready for remote edit, compile, and debug, you first have to
create a data set that contains the MVS REXX procedures to be used. For that,
you have to set up your own SIGYCLST data set. Enter the following to allocate
a data set with the low-level qualifier SIGYCLST, using the logon at the host in
an emulator session, and allocate the data set with these specifications:

Space units BLOCK

Primary quantity 72

Secondary quantity 16

Directory blocks 7

Record format VB

Record length 255

Block size 6160

Then upload all files contained in the \IBMCOBOL\CLISTS directory for OS/2 into
this SIGYCLST data set.

54 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Error message while copying files

If you get the error message “SYS0206: The file name or extension is too
long” while you copy files from local drives to remote drives, then you did not
attach the remote drive with file extension mapping. The extension of the file
is not accepted by the remote drive. To avoid this error, use a remote drive
attached with file extension mapping.

Update the supplied REXX procedure named IGYFLIBS, contained in this data
set, to indicate the fully qualified name of the load library. Edit the member
IGYFLIBS and change the dsname into the data-set name of the load library you
want to use. In our case, we changed this command into

dsname = ″COBRS08.REMOTE.LOAD″ ;

Next, assemble the IGYFINF program and link the object code into this specified
load library. For that, upload the file called IGYFINF.ASM located in the
/IBMCOBOL/MACROS directory of your workstation into a data set for assembler
programs. Assemble this program using the assembler on MVS and link the
object code into the load library you have already specified. In our environment,
the jobs for the compilation of assembler programs are included in the data set
SYS1.PROCLIB.

If you have done this, both your host environment and your workstation should
be ready for connection and for work with remote edit, compile, and debug.

The host preparations, as described at the beginning of Chapter 3, “Remote Edit,
Compile, and Debug with APPC on OS/2” on page 29 must be done by the
system administrator. If any connection does not seem to be okay for you,
contact your system administrator and ask if the host is set up in complete
conformance with the description in this section.

The next step is to test full functionality with the host connected, the drives
attached, and the first small application as a starting point.

3.4 Accessing the Host from the Workstation
Once you have updated the MVSINFO.DAT file correctly, you only need to type
MVSSTART in an OS/2 window. This reads the necessary information from the
MVSINFO.DAT file, starts SdU, and establishes the connection to the specified
MVS system.

To see if the installations and configurations are done correctly, you can set up
this command manually in an OS/2 window. Type MVSSTART in an OS/2 window.
The first note you get does not belong to your system; ignore it and press Enter.

You are prompted to type in your password.

Next, the drive commands you specified in the MVSINFO.DAT file as drives to be
attached are performed.

After successful attachment, SdU tests the connection to MVS beginning with
trying to get time information from MVS. Then SdU tries to open a specific data
set on MVS with the high-level qualifier SYS1, which exists in any case. When
this works, you get a message about the successful connection and you can then

Chapter 3. Remote Edit, Compile, and Debug with APPC on OS/2 55

access the attached data sets in the same way as you access drives on your
workstation, on the LAN, or on an OS/2 window.

The following shows you the report you get while connecting to the host:

-------- Note --------
Depending on your system you may be prompted for your TSO
userID and/or password. This prompting may occur for each
drive that is accessed. You may initially get a message
that your password is invalid. Ignore this message.

Press any key when ready . . .
DFM OS/2
Operating System/2
Starting Router
(C) Copyright IBM Corp. 1995. All rights reserved.
Version 2.0 Release 1.1 Level 00

Processing: RTYP CMGR
Processing: A2ET E:\IBMCOBOL\BIN\CONVTABL\04370500.CVT
Processing: E2AT E:\IBMCOBOL\BIN\CONVTABL\05000437.CVT
Processing: LCLN STB1835I

Processing: RMTN SC47APPC,COBRS08,The MVS/ESA System in POK
Enter password for system SC47APPC user ID COBRS08:

Processing: MODN QFSPC,QPCSUPP
Processing: RTDN SC47APPC

Default remote system name: SC47APPC
6600 - Byte-stream Function already started.

Distributed FileManager (DFM/2) Version 1.00
STRTDFMC processing complete
Distributed FileManager (DFM/2) Version 1.00
STRTDFMR processing complete

Drive M: being accessed
File system = SDU
System = SC47APPC
High Level Qualifier = COBRS08
Usage = text (translation between EBCDIC and ASCII)
Name mapping = local using MVSINFO.DAT file
•E:\IBMCOBOL\MACROS‘cmd.exe /c dfmdrive assign M: COBRS08

Distributed FileManager (DFM/2) Version 1.00
EHN0230: Drive M: was successfully assigned

to system SC47APPC,
and directory: COBRS08.

EHN0232: Command completed successfully.
•E:\IBMCOBOL\MACROS‘cmd.exe /c dfmdrive setparm M: ″text,pc_ccsid(850)

Distributed FileManager (DFM/2) Version 1.00
EHN0251: Drive S: parameter list successfully changed

to ,TEXT,PC_CCSID(850).
EHN0232: Command completed successfully.

Drive N: being accessed
File system = SDU
System = SC47APPC

56 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

High Level Qualifier = COBRS08
Usage = binary (no translation, do not use for editing)
Name mapping = local using MVSINFO.DAT file
•E:\IBMCOBOL\MACROS‘cmd.exe /c dfmdrive assign N: COBRS08

Distributed FileManager (DFM/2) Version 1.00
EHN0230: Drive N: was successfully assigned

to system SC47APPC,
and directory: COBRS08.

EHN0232: Command completed successfully.

Will test connection to MVS host: SC47APPC
UserID = COBRS08 , File system = SDU
Will attempt to get time information from MVS
TIME-11:37:20 AM. CPU-00:00:00 SERVICE-1093 SESSION-00:00:00 MAY 5

Will attempt to get information for ′ SYS1.MACLIB(OPEN)′
Data set = ′ SYS1.MACLIB′
Member = OPEN
Dsorg = PO
Recfm = FB
Lrecl = 80
Alias = NO

Connection to MVS host seems OK
Press any key when ready . . .

You should select ″View->Refresh now″ in order to update your
project view
Press any key when ready . . .

When the connection is established, an editor comes up in the background and
reports that the access to the drive attached for edit is all right.

The connection to this drive is checked every 15 minutes by SdU, and this
monitor reports it.

Time information from MVS

When your system tries to get time information from MVS and it fails, you can
get more information about why it fails when you repeat this command in an
OS/2 window:

mvsacall tso m: time

where m: is the attached drive you specified.

It is likely that SdU is not installed or configured properly on the host when
you get a communication message.

Chapter 3. Remote Edit, Compile, and Debug with APPC on OS/2 57

58 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Chapter 4. Creating Applications Using Remote E/C/D on OS/2

VisualAge for COBOL offers you a WorkFrame on the workstation for projects
that reside on the host. You can set up the projects in the same way as you
organize local projects on the PC.

To work with these host projects, you first configure the WorkFrame on the PC,
then connect to the host with either TCP/IP or APPC. You can then work with the
files in the projects as you are used to working with them in local projects.

4.1 Running a Sample Application on the Workstation
To show you how to handle projects in this way, we first provide an easy sample
program that you can upload to the host, then edit, compile, run, and debug
afterward.

4.1.1 Defining the Application on the Workstation
WorkFrame can recognize the extensions of the files residing on the host, submit
the jobs, and show the system output of the submission. In that way, it is
possible to compile and link all the projects.

For debugging a project, begin by starting a debug session on the workstation.
This remains in wait status until it is called by the debugger on the host. A
submitted job creates the connection between the debugger on the host and the
session that was started. When this connection is established, you can debug the
program directly from your workstation.

It is not necessary to log on before you create a WorkFrame project, but it is
helpful to be logged on already. The logon on the host is actually only one
command. When you have generated your WorkFrame project once, it becomes
a selection in the menu bar. As long as you do not have a WorkFrame project
for MVS, start the logon process from an OS/2 window by typing

MVSSTART

While the procedure is running, you have to press Enter several times. The
NFSCLEAN procedure starts and tries to unmount drives. This fails as long as
you have not logged on before using TCP/IP. Next, the NFSSTART runs and
processes the logon to the host. The drives you specified in the MVSINFO.DAT
file are mounted and, after successful mounts of all drives, the system tries to
get time information from the host and then file information. If all these
connections have been done successfully, you get the message that the
connection seems to be OK. Also you get the message that you should click on
Refresh to update the project view.

You do not have a project yet; that is our next step.

You can create a project for MVS in two different ways with the same result.
You can either use the Create New Project icon to do it or use the Templates
icon to do it. Both are located in the VisualAge for COBOL icon folder. We
decided to describe using the Create New Project icon because it offers you
more choices to set up your configuration for the WorkFrame. The steps are
these:

 Copyright IBM Corp. 1997 59

 1. To create an MVS project, double-click on the VisualAge for COBOL icon
located on the desktop. The upcoming window shows a Create New Project
icon. Double-click on it. The Create New Project - Catalog View window
(Figure 50 on page 60) appears.

If your MVS NFS supports file name mapping, select MVS Project with W/S
File Extensions in the Available projects list (Figure 50). As long as you are
not sure whether the MVS NFS supports the file name mapping or not, select
MVS Project without W/S File Extensions , but make sure that the host gets
this feature as soon as possible because it is important for you.

If you are using APPC for the connection, select MVS Project without W/S
File Extensions .

Figure 50. Create New Project - Catalog View Window

After selecting this project, click on Create .

 2. The Project Smarts - Console window comes up and shows you the status of
the generation of the project (Figure 51 on page 61).

60 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Figure 51. Project Smarts - Console Window

Next, the Project Smarts - Variable Settings window appears (Figure 52).

Figure 52. Project Smarts - Variable Settings Window

You can leave the settings in the window as is and click on OK .

Chapter 4. Creating Applications Using Remote E/C/D on OS/2 61

 3. The Project Smarts - Target Information window comes up (Figure 53 on
page 62).

Figure 53. Project Smarts - Target Information Window

Here you can specify the project name, the directory on the workstation for
the temporary files and the folder in which the project should reside.
Remove the entry from the Project entry field and insert the name you want
to give your project. We called it MVS Project Hello . You can leave the
directory for the temporary files as is, or you can change it to have your own
organization of files and projects. Then you can also select the folder where
the project icon should be located. The default is the desktop. After making
these configurations, click on OK .

 4. The Done! window tells you that the project has been created (Figure 54).

Figure 54. Done! Window

Click on OK to close this message window. You have now created your first
project to work remotely on the host.

 5. Close the remaining windows that you no longer need. To close the Create
New Project - Catalog View window click on Cancel and also close the
VisualAge for COBOL icon view window.

62 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

 6. To set up the settings of your project, move your mouse pointer to the
COBOL MVS Local Project icon on the desktop you just created and click
mouse button 2. A pop-up menu appears. Select Settings from the pop-up
menu. The MVS Project Hello - Settings window is displayed (Figure 55).

Figure 55. MVS Project Hel lo - Settings Window

Scroll to the next page and leave the Target page as is, because this page is
valid for local projects only when you create a local execution file.

 7. On the Location page you see the Source directories for project files list. In
this list are two paths already qualified: a local path for temporary file
savings on the workstation, and the default path where the host source code
could reside. Here is the drive that was specified in the Variable Setting field
on the Project Smarts - Variable Setting window, if you did not customize the
variable settings in this window. The default drive and path for this is
m:\iwz.cobol. Change this path into the path where the COBOL code resides
on the host.

Also, specify all data sets you want to see in the WorkFrame—for example,
the JCL files and copy books.

The files that should be included in the MVS project are at least of two
different types. You probably want to see

• Source COBOL files (to edit them) using the editor of the WorkFrame
• JCL files, which can be submitted directly from the WorkFrame to

compile, to link, and to debug the source COBOL files.

In our case, the COBOL files reside on MVS in the data set called
COBRS08.HELLO.COBOL, where the high-level qualifier is our user ID,
COBRS08. We specified this high-level qualifier before in the MVSINFO.DAT
file as our drive letter m:.

We thus declare the data sets for the COBOL source code, the JCLs, and the
copy books as shown in Figure 56 on page 64. If you follow our example,
type these four lines into the Source directories for project files list:

Chapter 4. Creating Applications Using Remote E/C/D on OS/2 63

e:\ibmcobol\tmp\hello
m:\hello.cobol
m:\hello.jcl
m:\hello.copy

With that, we also change the temporary directory to ibmcobol\tmp\cobol.
Also, change the entry in the Working directory field to this temporary
directory.

Do not define any data set you access in binary mode with the drive letter n:
For these files, you do not get a file extension in the WorkFrame project.

Figure 56. MVS Project Hel lo - Settings Window: Location Page

 Note

All members of the data sets you specify here appear in the WorkFrame
after you log on the host. You cannot enter any data set whose
high-level qualifier is not specified in the MVSINFO.DAT file you
configured before.

When you specify a drive and a path that does not exist and you press Enter,
you are prompted by the Create directories window (Figure 57 on page 65).

64 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Figure 57. Create directories Window

Do not let these directories be created by the tool and click on No or Cancel .
This window is being closed. You want to create the directories yourself, give
your own the data set specifications, and not take the defaults.

Further ensure that the Working directory field on the Location tab specifies
a local directory.

 8. Scroll to the Inheritance tab and ensure that the inheritance from MVS
Project with W/S File Extensions Master Project is (Figure 58) for a project to
connect via TCP/IP. A project with APPC connection to the host has to
inherit from MVS Project without W/S File Extensions Master Project.

Figure 58. MVS Project Hel lo - Settings Window: Inheritance Page

If this is not the case, select the project type that is given there and click on
Remove . The default settings for the project are then removed. Click on

Chapter 4. Creating Applications Using Remote E/C/D on OS/2 65

Add... and the window Select a Project to Inherit From appears. If your hard
disk drive (the boot drive for OS/2) is File Allocation Table (FAT) formatted,
select D:\DESKTOP\VISUALAG\WORKS\IWZVMVSN for a project with
file-name mapping or D:\DESKTOP\VISUALAG\WORKS\IWZVMVSL for a
project without file-name mapping where D is your OS/2 boot drive and has
the file your project inherits from. If your hard disk drive D is
high-performance file system (HPFS) formatted, select D:\Desktop\VisualAge
COBOL\Works\MVS Project with W/S File Extensions Master Project or
D:\Desktop\VisualAge COBOL\Works\MVS Project without W/S File
Extensions Master Project depending on your host. Click on Inherit .

Close the MVS Project - Settings window. Your Hello project should now be
set correctly.

You have created a WorkFrame with the settings of the project, but you still
need the host files you want to access and execute.

 9. To copy the necessary files from the diskette to the host, follow these
instructions:

• First, create the data sets on the host because they probably do not exist
in your environment. To allocate them, open an OS/2 window and switch
to drive letter m: by typing

m:

and press Enter. You can access the host drive with your user ID as the
high-level qualifier in the same way as you access the local drives of
your workstation.

• To create the three directories, type the following commands in
sequence in this OS/2 window, and press Enter:

md ″hello.cobol,dsntype(pds),lrecl(80),blksize(6160),recfm(fb)″
md ″hello.jcl,dsntype(pds),lrecl(80),blksize(6160),recfm(fb)″
md ″hello.copy,dsntype(pds),lrecl(80),blksize(6160),recfm(fb)″

You must give some data set attributes as parameters to allocate the
right kinds of data sets. Or, you can use the emulation to allocate the
new data sets with these specifications:

Space units BLOCK

Primary quantity 112

Secondary quantity 10

Directory blocks 30

Record format FB

Record length 80

Block size 6160

66 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

 Data Set Creation Attributes

To see a list of all the parameters you can use to specify data-set
attributes, type the command

showattr hostname |more

into an OS/2 window. The first part of the information you get is what
is of interest:

DFSMS/MVS 1.3.0 Network File System Server Data Set
Creation Attributes:

lrecl(8196) recfm(vb) blksize(0)
space(100,10) blks dsorg(ps)
dir(30) unit(sysallda) volume()
recordsize(512,4K) keys(64,0) nonspanned
shareoptions(1,3)
mgmtclas() dsntype(pds) norlse
dataclas() storclas()

• After creating the data sets, you can copy the files from the diskette to
the host or upload them with the emulation. To copy them from the
diskette, type the commands in the OS/2 window as follows:

copy a:\hello\cobol\dttest.cbl m:\hello.cobol\dttest
copy a:\hello\cobol\hello.cbl m:\hello.cobol\hello
copy a:\hello\jcl\dtbld.jcl m:\hello.jcl\dtbld
copy a:\hello\jcl\dtrun.jcl m:\hello.cobol\dtrun
copy a:\hello\copy\cblatc8.cpy m:\hello.copy\cblatc8

Unfortunately you cannot copy the files from the diskette to the host by
using a wild card character to copy more than one file using one
command. If you try this, you get the OS/2 error message “SYS0027:
The drive cannot find the sector (area) requested.” This message text
does not make sense, but it tells you that you cannot access a data set
in this way.

If you have TCP/IP installed, you also can copy the files into the data sets
using FTP as described in 2.4, “Upload Workstation Files Using FTP” on
page 25.

10. Open the new project by double-clicking on its icon on the desktop. The
WorkFrame opens but there are still no files in it. Select View in the menu
bar of the WorkFrame and then click on Refresh now to display the data, or
press F5. The WorkFrame project should show the five files as shown in
Figure 59 on page 68.

Chapter 4. Creating Applications Using Remote E/C/D on OS/2 67

Figure 59. MVS Project Hel lo - Icon view Window

Log on from the WorkFrame project

If you are not logged on, select Project in the menu bar, select the arrow of
MVS Access , and then click on Connect MVS drives to connect to the host.
After a successful connection, press F5 and the files belonging to the
specified data sets will appear in the WorkFrame.

If some files do not have a file extension even though the file extension mapping
is supported from your TCP/IP and NFS, you should check whether the low-level
qualifier of these members is resolved in the NFS mapping file on the host. If not,
add a line for it in your NFS.MAPPING file. To make these changes valid in your
WorkFrame, unmount the drive and mount it again using the Disconnect MVS
drives function supplied by the WorkFrame.

After each change of the drive specification in the project settings, press F5 to
refresh the WorkFrame.

Drive specifications

As mentioned before, you still have the opportunity to change the drive
settings you made in the MVSINFO.DAT file. To do so, click on Project in the
menu bar and select MVS Setup in the pull-down menu. The editor starts and
displays the MVSINFO.DAT file. Here you can change or add drives in the
same way you specified them before. After that, save and close the file.

After a change of the drive specification in the MVSINFO.DAT file, you must
log off the host and log on again to activate the changes and make available
the new data sets you set up. To log off, use the function provided by the
WorkFrame. You reach this function by selecting Project in the menu-bar,
selecting the arrow of MVS Access , and then clicking on Disconnect MVS
drives .

Now that you have created and set up your project, you can edit the files on the
workstation, compile the programs by submitting jobs, and debug the COBOL
programs on the workstation, as described in the subsequent sections.

68 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

4.1.2 Editing, Compiling, and Running the Application Remotely
You can now edit all the files you see on the WorkFrame after you log on.

To work with a file in the WorkFrame, select it and click on Selected in the menu
bar. The pull-down menu shows you a list of actions belonging to the selected
file. If you selected, for example, a source file, a JCL, or a copy file, you can edit
it. When you select a file with mouse button 2 and you select MVS Edit in the
pop-up menu, the MVS editor comes up and you can edit and save the file you
are working with.

To practice, select the file hello.cbl and click mouse button 2 or Selected in the
menu bar. Selecting mouse button 2 gives you more choices than Selected,
because you also get the standard functions for files like copying or deleting the
file (Figure 60).

Figure 60. MVS Project Hel lo - Icon View Window with Pop-up Menu

Select Edit in the pop-up menu. The resulting window reports

Accessing MVS data set ′ COBRS08.HELLO.COBOL(HELLO)′
Accessing MVS to get data set/member information

Normally, the MVS editor appears, showing the selected file.

 Important

It could happen that you get the error message:

Cannot determine data set information for M:\HELLO.COBOL\hello.cbl
Press any key when ready . . .

This tells you that you allocated a data set with the wrong data set
specifications. When you allocate, for example, a data set with variable block
size, you cannot access the files using the MVS editor.

The MVS editor is active and you can use it in the same way as you operate with
the LXPM editor or any other editor you know.

Chapter 4. Creating Applications Using Remote E/C/D on OS/2 69

You can also change the key behavior of the editor so that you can use it like the
editor of ISPF (for example). To do that, select Options in the menu bar, then
select the arrow of Key behavior in the pull-down menu, and then select ISPF.
Line numbers are added on the left side of the window in the text and you can
use them for the line commands you know from ISPF on the mainframe. Change
the key behavior of the editor as you like.

To make some changes in the code, we recommend following our example by
adding a display statement and a calculation, as we did in Figure 61.

Add some commands as described below:

 1. Go to the Working-Storage section and add the variable

01 RESULT PIC 9(2).

 2. Go to the Procedure Division and add the statements under the Display
statement

COMPUTE RESULT EQUAL 5 * 4.
DISPLAY ″5 * 4 = ″ RESULT UPON CONSOLE.

Figure 61. Editor - M:\HELLO\COBOL\hello.cbl Window

After making these changes, select File in the menu bar and Save in the
pull-down menu. On the bottom of the editor window, a message is displayed:
“Performing a protected save, please wait.” This save takes some seconds
because of the special way of saving the file.

When you get the message “Protected save completed OK,” you can close the
editor by double-clicking on the icon in the upper left corner of the window.
While closing the window, the temporary file from this data set member gets
deleted because it is no longer needed.

To work with the editor of the WorkFrame without using WorkFrame, you can
type MVSEDIT in an OS/2 window. You get the same editor.

70 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Editing MVS files restriction

You cannot edit MVS files that contain characters whose hexadecimal value
is below X′40′. These represent unprintable control characters that cannot be
converted between EBCDIC and ASCII for editing at the workstation. These
also include files that contain the DBCS shift-out (X′0E′) and shift-in (X′0F′)
characters.

When you try to edit such a file, the editor opens and displays the contents of
the file, but remember that the editor opens a temporarily created copy of the
original file. Also you get the following message at the beginning of the file:

INFO -------------------- Start of MVS data set information -------
INFO
INFO The editing session has been set to read only to prevent
INFO the data set from being modified due to the following:
INFO
INFO - The data set contains characters whose hex positions
INFO are below hex 40. These characters cannot be
INFO converted between MVS EBCDIC and workstation ASCII
INFO for editing at the workstation. Note that the file
INFO you are viewing is a copy of your original file where
INFO these characters appear as û
INFO
INFO --------------------- End of MVS data set information --------

However, you can browse this file with the editor.

The restriction is set by the MVS editor. When you open this file from an OS/2
window, using the normal OS/2 editor, you can edit and save it. But you have
to be aware that you change these hexadecimal values when you save the
file and that this editor does not provide protected saving. When the file is
getting too big to be saved in the same data set, an incomplete file is saved.

To run the application on the host, you have to submit the job in the same way
as you did it on the host. So if you select a JCL file on WorkFrame, you get the
choice to submit this job.

Now open the file dtbld.jcl to edit it. You see a JCL that is ready to compile and
link the programs together. You see some error messages in the first lines of
the JCL. Either you change the language profile or you ignore the messages. To
change the language profile, click on Options in the menu bar and on Profiles in
the pull-down menu and then select Change profile . The Change profile window
comes up (Figure 62).

Figure 62. Change profi le Window

Chapter 4. Creating Applications Using Remote E/C/D on OS/2 71

Disable the check-box Language profile and click on OK . The code changes its
color to black, the editor no longer reads your code, and the error messages
disappear.

The program DTTEST calls HELLO, so both programs have to be compiled and
linked. You have to change the job card at the beginning of the JCL that it fits to
your host environment and the user ID referenced by the variable &USRPRFX.

Also, before you run the JCL, ensure that you have allocated all the data sets we
are using in this JCL. Either you allocate them by typing the following commands
in an OS/2 window

md ″hello.listing,dsntype(pds),lrecl(133),blksize(133),recfm(fba)″
md ″hello.sysadata,dsntype(pds),lrecl(1020),blksize(1024),recfm(vb)″
md ″hello.load,dsntype(pds),lrecl(255),blksize(6160),recfm(u)″

or you change the JCL to fit your system.

If you want to allocate the data sets using an emulation session, allocate them
with these specifications:

• Allocate the HELLO.LISTING data set with these attributes at least of this
size:

Space units BLOCK

Primary quantity 2232

Secondary quantity 128

Directory blocks 7

Record format FBA

Record length 133

Block size 133

• Allocate the HELLO.SYSADATA data set with these attributes, at least of this
size:

Space units BLOCK

Primary quantity 132

Secondary quantity 10

Directory blocks 0

Record format VB

Record length 1020

Block size 1024

• Allocate the HELLO.LOAD data set with these attributes, at least of this size:

Space units BLOCK

Primary quantity 112

Secondary quantity 10

Directory blocks 30

Record format U

Record length 255

Block size 6160

72 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Also, check if your COBOL compiler is located in the data set
IGY.V2R1M0.SIGYCOMP. If not, change the data set name in the JCL.

To submit the job, select file dtbld.jcl and click on mouse button 2. Then select
Submit job on MVS in the pop-up menu. The WorkFrame is then divided into two
parts. The upper part shows you the file list as you have seen it before, and the
lower part changes to a message window that keeps you informed about the
actions of the running job. You get the following messages about this
submission:

Starting Submit Job on MVS::Submit job on MVS
mvssub.cmd M:\HELLO.JCL\dtbld.jcl
Submitting ′ COBRS08.HELLO.JCL(DTBLD)′ on WTSC47
===> JOB COBRS08B(JOB15584) SUBMITTED

Action complete, RC=0

After this submission, you want to see the status of the submitted job. The
″Action complete, RC=0″ message that appears in the monitor of your
WorkFrame tells you only that the job got submitted correctly. It does not say
anything about the result of the submission. For that, select Project in the menu
bar, then select the arrow of MVS Tools in the pull-down menu, and select MVS
job status . The MVS Job Status Monitor window comes up in the same way as
you are used to seeing it in MVS (Figure 63).

Figure 63. MVS Job Status Monitor Window

Make sure that your last job is already displayed in the list. If not, select MVS
SYSOUT in the menu bar and then Refresh . Select the job you want to see, and
then MVS SYSOUT and List contents to read the job listing (Figure 64 on
page 74).

Chapter 4. Creating Applications Using Remote E/C/D on OS/2 73

Figure 64. Editor - M:\Held SYSOUT output for job Window

 Note

The job can be too big to display in this window when the compile fails and
the dump becomes too long. Then the editor window opens with an error
message saying OUTPUT ENDED DUE TO ERROR, SYSTEM ABEND CODE
B37 Remember that this error message does not mean the abend of the job.

When the program is compiled correctly, you can submit the JCL dtrun.jcl to
start the program in the same way as you submitted the compile job. This
sample HELLO is only a batch program and you have to view the system output
to get the displayed messages.

The MVS Job Status monitor is provided for monitoring host batch jobs that you
have submitted. The monitor displays the status of jobs whose job name follows
the time sharing option (TSO) convention. Each line of the job status is prefixed
with the date and time of day. The monitor uses the TSO STATUS command
(with no parameters) to obtain the job status information.

Start the MVS Job Status Monitor by selecting Project , then MVS Tools , then
MVS Job Status from your project′s menu bar. For those jobs that are on a held
SYSOUT output queue (the job status contains the string ON OUTPUT QUEUE),
you can perform the following actions by first pointing the cursor to the line with
the job and then selecting the MVS SYSOUT menu bar choice:

• List contents

Lists the entire contents of the held SYSOUT in an Editor window and
includes any carriage control that is present in column 1. For display
purposes, any hexadecimal characters that are below X′40′ are translated to
blanks. The monitor uses the TSO OUTPUT command to obtain the SYSOUT
output contents. The SYSOUT output remains in the output queue after being
listed.

• List 100 lines

74 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

The action is similar to that of list contents, except only the first 100 lines of
the held SYSOUT are listed. If your host system has customized exits that
include the status of each step at the beginning of the SYSOUT, listing the
first 100 lines allows you to see if the job ran successfully without the
overhead imposed by listing the entire contents.

• Save as jobname

The held SYSOUT output is saved to the partitioned data set with the fully
qualified name of userid.IWZ.OUTLIST(member) where the member name is
the job name. The TSO OUTPUT command is used to save the output. The
SYSOUT output is deleted from the output queue after being saved. After the
save, the job status information is automatically refreshed. To ensure that
the userid.IWZ.OUTLIST data set has sufficient space to hold the output of
many jobs, allocate the data set before using the MVS Job Status monitor. If
the data set is allocated as a partitioned data set (PDS) (as opposed to a
partitioned data set extended (PDSE)) you will need to compress the data set
occasionally.

• Save as jobnum

The action is similar to that of the Save as jobname, except that the member
name is the job number instead of the job name. After the save, the job
status information is automatically refreshed.

• Delete

The SYSOUT is deleted from the output queue without being saved or
printed. You should list or save the SYSOUT contents before using this
action. The TSO OUTPUT command is used to delete the output. After the
delete, the job status information is automatically refreshed.

• Refresh

Causes the job status information to be refreshed with the latest job
information from the host.

To terminate the MVS Job Status monitor, close the window in which the monitor
is running. If you get an Editor message requesting you to stop an active
program, reply Yes.

Chapter 4. Creating Applications Using Remote E/C/D on OS/2 75

Compress the data set

When you get the error message

SYSTEM COMPLETION CODE=E37 REASON CODE=00000004

after a job submission, it means that the data set containing the listings is full
and must be compressed. You can compress any data sets whose members
the WorkFrame displays. To compress the data set
COBRS08.HELLO.LISTING, add it in the settings for the WorkFrame on the
location page. To do so, click on the icon in the upper left corner of the
WorkFrame and select Settings in the pull-down menu. Scroll to the Location
tab in the settings notebook and add m:\hello.listing in the list Source
directories for project files. Close the settings and the members of the
specified data set appear in the Workframe.

Now click on dttest.lst with mouse button 2, select the arrow of MVS Dataset
in the pop-up menu, and click on Compress PDS . A window then comes up
with the following messages:

Will send to execute on WTSC47: CMPR ′ COBRS08.HELLO.LISTING(DTTEST)
Will execute on TSO: IGYFCMPR ′ COBRS08.HELLO.LISTING(DTTEST)′

User data set ′ COBRS08.HELLO.LISTING′ has been backed up to backup
data set ′ COBRS08.IWZ.@@TEMP@@.BACKUP′

The backup will be deleted if the compress is successful.

User data set ′ COBRS08.HELLO.LISTING′ compressed successfully
TSO return code = 0

Press any key when ready . . .

Now your data set has free space and you can submit the JCL again.

When you have compiled your program successfully, if it does not work as
designed, you can debug the application. This is described next.

4.1.3 Debugging the Application
This section describes how you can debug a COBOL program that resides on the
host using the debug function for host programs supported by VisualAge for
COBOL.

The debug tool is one of the most used functions because of its extensive
functionality and because it is easier than the common host debug tools.

To debug a program, you must compile it with a special parameter. Only if it
was compiled with this parameter can the debugger catch the program and
display its listing. Without having this option set, the program would be
executed without being stopped by the debugger and you could not step through
it.

The job that compiles and links the programs has to have the parameter ′TEST′
in the parameter list of the compile step. An example of this compile command
with the parameter list is as follows:

COBOL2 EXEC PGM=IGYCRCTL,REGION=4096K,
PARM=′ APOST,LIB,OBJECT,RENT,TEST,ADATA′

76 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Also, the JCL that must be submitted to run the application needs a special
parameter. For TCP/IP, this is the IP address of the workstation on which you
submit the job. The REGION command has to be extended with the parameter

PARM=(′ / TEST(,,,VADTCPIP&YOUR.IP.ADDRESS:*)′)

where YOUR.IP.ADDRESS is the IP address of your PC, such as 9.112.34.49.

For APPC, the parameter needed is the APPC symbolic destination name of the
workstation on which you submit the job. The REGION command has to be
extended with the parameter

PARM=(′ / TEST(,,,VADAPPC&MACHINENAME:*)′)

where MACHINENAME is the symbolic destination name of your PC, such as
STB1835.

The JCLs belonging to the sample HELLO are already supplied with this
parameter, but you have to change the IP address to yours, and change to your
user ID.

You can find the IP address of your workstation in the TCP/IP configuration. To
reach this, open the OS/2 System folder by double-clicking on the appropriate
icon on the desktop. Then double-click on the TCP/IP icon in this folder and
finally on the TCP/IP Configuration icon that comes up in the folder. The TCP/IP
Configuration notebook appears. The first page that has the Network tab
contains the variable for the IP address recorded.

Besides the additional parameter for the IP address, one of the STEPLIB DD
statements in this JCL has to specify the data set for the debugger. You should
ask your system administrator for the name of this data set. In our configuration,
the debugger data set resides in the data set named EQAW.V1R2M0.SEQAMOD.

A sample for this part of the JCL is for TCP/IP:

// REGION=32000K,PARM=(′ / TEST(,,,VADTCPIP&9.112.34.49:*)′)
 //STEPLIB DD DSNAME=CEEV1R50.SCEERUN,DISP=SHR
 // DD DSNAME=COBRS08.CBL.LOAD,DISP=SHR
 // DD DSNAME=EQAW.V1R2M0.SEQAMOD,DISP=SHR

For APPC the REGION command differs as follows:

// REGION=32000K,PARM=(′ / TEST(,,,VADAPPC&STD1835:*)′)

After preparing the JCL for the use of the debugger tool and submitting the JCL
that builds the load module, you can run the debugger.

Follow the instructions for debugging the HELLO sample program to get some
practice with the debugger tool.

 1. Select the dtbld.jcl icon in the WorkFrame and click mouse button 2. Select
Submit Job on MVS to build the application.

 2. After a successful build, start the debugger by first selecting Project in the
menu bar, then select the arrow of Start Debug Session and select the
communication protocol you are using.

The Waiting to connect window appears in the middle of your monitor
(Figure 65 on page 78).

Chapter 4. Creating Applications Using Remote E/C/D on OS/2 77

Figure 65. Waiting to connect Window

 3. Now submit the job that runs the application. In the HELLO sample, it is the
JCL dtrun.jcl. To do so, select the JCL job and click on mouse button 2. On
the pop-up menu, select Submit Job on MVS .

The Debugger - Session Control window comes up first (Figure 66).

Figure 66. Debugger - Session Control Window

It can happen that the debugger cannot find the source of the program to be
displayed and debugged. Then a window appears and requests you to
specify the path and the file name of the listing of the program (Figure 67).

Figure 67. Source Filename Window

If this occurs, your JCL that built the application is incomplete. Compare it
with the JCL DTBLD.JCL on the diskette that belongs to this book. You find it
in the path A:\HELLO\JCL. To continue with the debugging, type in the path
COBRS08.HELLO.LISTING(DTTEST). The window that displays the source code
comes up and you can start debugging the application.

The source of the active program is displayed in another window, shown in
Figure 68 on page 79.

78 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Figure 68. Source: DTTEST − Thread:1 Window

 4. Click on the leftmost icon, called Step over , and you reach the line of the
program ID where the program starts.

Click again on this icon and you reach the first line of executable code,
shown in Figure 69.

Figure 69. Source: DTTEST - Thread:1 Window − Start of DTTEST

 5. Select the line number of the command called PERFORM B100-CALL. and
double-click on it.

The line number appears in red, and with this you have set a breakpoint.

 6. Double-click in the same way on two of the line numbers with the CALL
HELLO... and double-click to set breakpoints.

With each set of a breakpoint, the Debugger - Session Control window
changes its status from Ready to Busy for a moment.

 7. Click on the icon with the small running man and you step to the first
breakpoint, at the line PERFORM B100-CALL .

Chapter 4. Creating Applications Using Remote E/C/D on OS/2 79

 8. To debug this perform statement, click on the second icon on the icon list
whose arrow directs down. This is the Step into icon to enter the called entry
point. You can use it for debugging subprograms as well as subroutines.

You reach the code being executed from this perform statement.

 9. Your cursor highlights the line with the code MOVE 1111 TO CUST-NUM.
Double-click on CUST-NUM to bring up the Program Monitor window
(Figure 70). The value field for CUST-NUM is still empty.

Figure 70. Program Monitor Window for DTTEST

10. Click again on Step over to reach the next line of code and the value for
CUST-NUM changes to ′1111′. You see that the command is executed when
the next command gets highlighted.

11. Double-click on CUST-NAME to display its value.

12. Execute the move command by executing Step over and the value for
CUST-NAME changes to ′AAAAAAAAAA ′.

13. Go to the Program Monitor window and double-click on ′AAAAAAAAAA ′ . You
can change the value now. Change the value to ′AAAAAAAABB ′ and press
Enter to make it valid.

Do not delete or overwrite the colons, because that invalidates the value.
When you press Enter, the status of the Debugger - Session Control window
changes to Busy for a moment. In the following execution the changed value
of CUST-NAME is used.

14. Scroll down in the listing to line 155 where the command IF CUST-NUM NOT
= 1111 ... is being executed and set a breakpoint here. Then click on the
icon with the running man to reach this code.

15. Go further in the code using the Step over icon until you reach the line MOVE
3 TO CALLS-MADE and see how the values for the variables change in the
Program Monitor window .

16. Then click on the running man icon to execute the following code through the
next breakpoint. That is the first breakpoint of the CALL ″HELLO″ ...
statements.

17. To debug this called program, click on the second icon from the left on the
icon list whose arrow directs down. This is the icon Step into to enter the
called entry point. The HELLO - Thread 1 window shows you the source of
the hello.cbl program now (Figure 71 on page 81).

80 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Figure 71. Source: HELLO - Thread:1 Window

18. Click on the icon Step over to reach the first executable line of code. Scroll
down in the source code to make the line COMPUTE RESULT EQUAL 5 * 4.
visible.

19. Double-click on RESULT to bring up the Program Monitor window
(Figure 72). The value for RESULT is still missing.

Figure 72. Program Monitor Window for HELLO

20. Double-click on the Step over icon to reach the line DISPLAY ″5 * 4 = ″
RESULT UPON CONSOLE and you see that the value of RESULT has changed
to 20.

21. Click on the third icon from the left on the icon list, Step return . It executes
the rest of the program HELLO and stops at the statement that follows this
CALL statement in the calling program. This is the next line with the
command CALL ″HELLO″ ... you annotated with a breakpoint.

22. If you want, you can click on the Step into icon again to debug the hello
subprogram. Otherwise, click again on the running man icon to end this
debugger session.

The last statement in the code is STOP-RUN. Because this is not the end of
the file, the Application Exception Action window comes up and requests you
to execute the exception handler (Figure 73 on page 82).

Chapter 4. Creating Applications Using Remote E/C/D on OS/2 81

Click on Run Exception to leave this debugger session.

Figure 73. Application Exception Action Window

23. The Debugger Message window informs you about the successful termination
of the application (Figure 74). Click on OK to close the debugger.

Figure 74. Debugger Message Window

Section 4.2, “Summary of Debugger Functionality and Additional Features”
describes some additional features of the debug tool.

4.2 Summary of Debugger Functionality and Additional Features
As you have seen, you have many ways to step through the program.
Depending on what you want to see, you can debug your code statement by
statement using the Step over command, or you can define breakpoints in the
code and use the command Run or the icon with the running man to reach the
next statement on which you have selected a breakpoint before.

When you debug a program that calls subprograms, you can step into these
subprograms by using the command Step into when the debug step reaches the
statement that calls the subprogram. Otherwise, you step over the call and the
code of the called program is executed but not displayed. Also, you have no
chance to stop the debugging by setting breakpoints in this subprogram.

When you debug a subprogram, you can use the Step return command to
execute the rest of the subprogram and jump back to the calling program.

To see the current values of variables and to be able to change them while the
program executes, double-click on one of the variables that you want to see. The
Program Monitor window comes up and displays the name of the variable and its

82 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

value. Here, you can change the value by double-clicking on it; change it and
press Enter. This is important, otherwise the debugger cannot recognize your
entry. The debugging continues with the changed value for this variable when
you click on one of the icons to let the program continue. The Program Monitor
window shows you all the variables you want to see belonging to one program in
one window. Their values change in the Program Monitor when they are
changed by the program, so you always see their current values.

Further functions can help while debugging:

• The Call Stack Thread:1 window can help you find out at which depth you are
currently debugging when you have many nested programs (Figure 75).

Figure 75. Call Stack Window

• The Registers - Thread:1 window is useful to view or modify the contents of
the registers monitored for your program (Figure 76).

Figure 76. Registers Window

• Also the Storage - 08E067F0 HEX and Character window shows you values in
hexadecimal and character format to view and update the contents of
storage areas used by your program (Figure 77).

Figure 77. Storage Window

Chapter 4. Creating Applications Using Remote E/C/D on OS/2 83

• Finally, the Breakpoints List window (Figure 78 on page 84) displays all your
defined breakpoints in this program and gives you the choice to set, delete,
enable, or disable each one.

Figure 78. Breakpoints List Window

 Breakpoints

Although the file that registers the breakpoints you set and the variables you
trace is created, you always lose all these breakpoints and variables after
program debugging. This is quite different from what happens in the
workstation debugger.

As long as you are debugging the program, the session is still running on the
host and nobody else can submit this job.

Connection error

If you start the debug session in WorkFrame and you get the error message
“Unable to connect to remote debugger,” then the debugger is already
started and is waiting to connect to the host debugger. This is not really an
error message.

Click on OK to leave this window and you can submit the job that runs the
program with the debugger option.

Section 4.3, “DB2 Sample” presents a sample with DB2 access briefly described.
Everything you have to do that is not described in each step should be known
from the HELLO sample.

4.3 DB2 Sample
The first example we explained to you was a batch COBOL program. Now we
want to build another sample program that accesses a DB2 database in addition.

You can also use the remote edit, compile, and debug feature for the
maintenance of a DB2 batch program. The differences between these two
examples are the following:

• In the new example, you have to create a database and we supply a JCL
source file that can do that,

• You must add a DB2 precompile step before the compile step runs,
• You must use a different JCL to start the debugger because the system

needs to execute the program under a TSO session.

84 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

• You must create a COBRS09.SAMPLEDB.DBRMLIB dataset. This dataset is
necessary for compiling and executing our sample. To create such a
dataset:

− From a Prompt Command window, mount a local drive using the
following command:

mount u: wtsc47:″cobrs09,space(1,1),recfm(FB),lrecl(80),blksize(6160)″

− Change to drive u: and create a new directory named
SAMPLEDB.DBRMLIB with the following command:

md sampledb.dbrmlib

The only important changes you have to make in these JCL members in order to
use the Remote Editing, Compiling, Debugging feature are these:

− Use the TEST option for compiling your sources. For that, you only have
to add TEST to the parameters.

− Use the /TEST(parameters) option for executing your load module to
connect to the debugger.

For TCP/IP, this parameter is the following where you specify your IP
address:

// REGION=32000K,PARM=(′ / TEST(,,,VADTCPIP&9.112.34.49:*)′)

For APPC, the REGION command varies as follows where you specify the
machine name of your workstation:

// REGION=32000K,PARM=(′ / TEST(,,,VADAPPC&STD1835:*)′)

In order to create this sample, you first want to create the new database on the
host. This is explained next.

4.3.1 Create a New Database on the Host
You have to create a new database on the host. For that a JCL is supplied on the
diskette belonging to this book. This JCL contains structured query language
(SQL) statements to create the database and tables, and to insert some rows
into the tables.

In our example, we

 1. Create a new database name

CREATE DATABASE ITSODB99

 2. Create a tablespace for this database

CREATE TABLESPACE ITSOTS01 IN ITSODB99

 3. Create two tables that we wil l use in our application:

CREATE TABLE ITSOTB01
(INVOICE CHAR(05),
CUSTOMER CHAR(07),
DATE CHAR(06),
REVENUE DECIMAL (10,2));

CREATE TABLE ITSOTB02
(INVOICE CHAR(05),
PRODUCT CHAR(07),
AMOUNT DECIMAL (3));

Chapter 4. Creating Applications Using Remote E/C/D on OS/2 85

 4. Give all users access to these tables:

GRANT ALL ON ITSOTB01 TO PUBLIC;

GRANT ALL ON ITSOTB02 TO PUBLIC;

 5. Insert some rows in both tables:

INSERT INTO COBRS09.ITSOTB01 VALUES (′99309′,′0000102′,
′970328′,2100);

INSERT INTO COBRS09.ITSOTB01 VALUES (′99308′,′0000295′,
′970328′,1654);

INSERT INTO COBRS09.ITSOTB01 VALUES (′65202′,′0000345′,
′970329′,65400);

INSERT INTO COBRS09.ITSOTB01 VALUES (′87224′,′0000372′,
′970330′,5660);

INSERT INTO COBRS09.ITSOTB01 VALUES (′82394′,′0000146′,
′970330′,6600);

INSERT INTO COBRS09.ITSOTB01 VALUES (′89634′,′0000231′,
′970331′,66532);

INSERT INTO COBRS09.ITSOTB02 VALUES (′65202′, ′TV00A02′ , 5 0) ;

INSERT INTO COBRS09.ITSOTB02 VALUES (′65202′, ′ST00A01′ ,250) ;

INSERT INTO COBRS09.ITSOTB02 VALUES (′82394′, ′VC00A01′ ,300) ;

INSERT INTO COBRS09.ITSOTB02 VALUES (′89634′, ′VC00A01′ , 50) ;

INSERT INTO COBRS09.ITSOTB02 VALUES (′89634′, ′ST00A01′ ,270) ;

INSERT INTO COBRS09.ITSOTB02 VALUES (′89634′, ′TV00A02′ , 25) ;

INSERT INTO COBRS09.ITSOTB02 VALUES (′99309′, ′ST00A01′ , 10) ;

INSERT INTO COBRS09.ITSOTB02 VALUES (′99308′, ′ST00A01′ , 15) ;

INSERT INTO COBRS09.ITSOTB02 VALUES (′87224′, ′VC00A01′ ,150) ;

 6. Finally, set up the COMMIT statement, which is requested for validating all
the modifications that the system has received:

COMMIT.

In our example, we are using a sample database provided by DB2 for MVS. We
have used the member DSN410.SDSNSAMP(DSNTIJTM). We are using DB2
Version 4.1. If you use a different version of DB2, modify the high-level qualifier
of the member to find it on your host.

For using this JCL to create the database, you have to:

 1. Copy this JCL with the same name provided by the DB2 for MVS into a data
set with your user ID as high-level qualifier. Do not try to modify the original
member.

 2. Add your standard job card to the top of the JCL. In our example, the
standard job card is the following:

86 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

//COBRS09C JOB (999,POK),NOTIFY=COBRS09,
// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1),TIME=1440

 3. Remove all the lines up from the //DSNTIAS step to the end of the JCL. The
JCL executes the following steps:

a. It compiles and links an assembler procedure called DSNTIAD that is the
utility for executing DB2 statements.

b. It executes the DSNTIAD load module under TSO.

For Step b, modify the parameters for the bind in the JCL. The part of the
JCL that has to be modified is shown in Figure 79.

...
//DSNTIAB EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(DSN)
-ALTER BUFFERPOOL (BP0) VPSIZE(2000) HPSIZE(0) CASTOUT(YES)
-ALTER BUFFERPOOL (BP32K) VPSIZE(24) HPSIZE(0) CASTOUT(YES)

//SYSIN DD *
//*

Figure 79. The Part of the JCL to Be Modif ied

 4. Modify the DSN SYSTEM(DSN) line. You must specify the name of your DB2
system. We have changed our JCL to

...
DSN SYSTEM(DB41)

...

because the name of our DB2 system is DB41.

 5. Replace the two -ALTER BUFFERPOOL lines with the lines that you need to
execute the BIND PACKAGE, the BIND PLAN, and the RUN of the DSNTIAD
load module. In our example, we have added the lines shown in Figure 30.

...
BIND PACKAGE(DSNTIAD) MEMBER(DSNTIAD) -
LIBRARY(′ DSN410.DBRMLIB.DATA′) -
ACT(REP) ISOLATION(CS) VALIDATE(RUN) SQLERROR(CONTINUE)
BIND PLAN(DSNTIAD) PKLIST(DSNTIAD.*) -
ACT(REP) ISOLATION(CS) VALIDATE(RUN)
RUN PROGRAM(DSNTIAD) PLAN(DSNTIAD) -

LIB(′ DSN410.RUNLIB.LOAD′)
END

...

Figure 80. Bind and Execute Statements of DSNTIAD

The hyphen at the end of some lines stands for the continuation of the
command in the next line.

Chapter 4. Creating Applications Using Remote E/C/D on OS/2 87

 6. Add SQL commands right after the //SYSIN line to issue the creation of a
new database.

The final part of your JCL should be similar to the following:

...
//DSNTIAB EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DB41)
BIND PACKAGE(DSNTIAD) MEMBER(DSNTIAD) -
LIBRARY(′ DSN410.DBRMLIB.DATA′) -
ACT(REP) ISOLATION(CS) VALIDATE(RUN) SQLERROR(CONTINUE)
BIND PLAN(DSNTIAD) PKLIST(DSNTIAD.*) -
ACT(REP) ISOLATION(CS) VALIDATE(RUN)
RUN PROGRAM(DSNTIAD) PLAN(DSNTIAD) -

LIB(′ DSN410.RUNLIB.LOAD′)
END

//SYSIN DD *

DROP TABLE ITSOTB01;

DROP TABLE ITSOTB02;

DROP DATABASE ITSODB99;

COMMIT;

CREATE DATABASE ITSODB99;

CREATE TABLESPACE ITSOTS01 IN ITSODB99;

CREATE TABLE ITSOTB01
(INVOICE CHAR(05),
CUSTOMER CHAR(07),
DATE CHAR(06),
REVENUE DECIMAL (10,2));

GRANT ALL ON ITSOTB01 TO PUBLIC;

CREATE TABLE ITSOTB02
(INVOICE CHAR(05),
PRODUCT CHAR(07),
AMOUNT DECIMAL (3));

GRANT ALL ON ITSOTB02 TO PUBLIC;

INSERT INTO COBRS09.ITSOTB01 VALUES (′99309′,′0000102′,
′970328′,2100);

INSERT INTO COBRS09.ITSOTB01 VALUES (′99308′,′0000295′,
′970328′,1654);

INSERT INTO COBRS09.ITSOTB01 VALUES (′65202′,′0000345′,
′970329′,65400);

INSERT INTO COBRS09.ITSOTB01 VALUES (′87224′,′0000372′,

88 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

′970330′,5660);

INSERT INTO COBRS09.ITSOTB01 VALUES (′82394′,′0000146′,
′970330′,6600);

INSERT INTO COBRS09.ITSOTB01 VALUES (′89634′,′0000231′,
′970331′,66532);

INSERT INTO COBRS09.ITSOTB02 VALUES (′65202′, ′TV00A02′ , 5 0) ;

INSERT INTO COBRS09.ITSOTB02 VALUES (′65202′, ′ST00A01′ ,250) ;

INSERT INTO COBRS09.ITSOTB02 VALUES (′82394′, ′VC00A01′ ,300) ;

INSERT INTO COBRS09.ITSOTB02 VALUES (′89634′, ′VC00A01′ , 50) ;

INSERT INTO COBRS09.ITSOTB02 VALUES (′89634′, ′ST00A01′ ,270) ;

INSERT INTO COBRS09.ITSOTB02 VALUES (′89634′, ′TV00A02′ , 25) ;

INSERT INTO COBRS09.ITSOTB02 VALUES (′99309′, ′ST00A01′ , 10) ;

INSERT INTO COBRS09.ITSOTB02 VALUES (′99308′, ′ST00A01′ , 15) ;

INSERT INTO COBRS09.ITSOTB02 VALUES (′87224′, ′VC00A01′ ,150) ;

COMMIT;

//*

Now you can submit this job on the host. It compiles and links the assembler
program DSNTIAD. Ensure that no error occurs in this submission.

The next step is to create the JCL for the DB2 precompile.

4.3.2 Create JCL Members to Compile the COBOL Program
We have already created a JCL that compiles and links a COBOL source without
a DB2 precompile. To complete this JCL for the next application, do the
following:

 1. Provide the JCL with a DB2 precompiler step. This step will produce another
COBOL source in which all DB2 statements are resolved by COBOL source.
This is then a new input for your COBOL compiler that runs after this
precompilation.

A sample for this precompiler is the following code:

//PC EXEC PGM=DSNHPC,PARM=′ HOST(COB2)′ , REGION=4096K
//DBRMLIB DD DSN=COBRS09.SAMPLEDB.DBRMLIB(&MEM),
// DISP=SHR
//STEPLIB DD DISP=SHR,DSN=DSN410.SDSNEXIT
// DD DISP=SHR,DSN=DSN410.SDSNLOAD
//SYSCIN DD DSN=&&DSNHOUT,DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(800,(&WSPC,&WSPC))
//SYSLIB DD DSN=&USER..SRCLIB.DATA,
// DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*

Chapter 4. Creating Applications Using Remote E/C/D on OS/2 89

//SYSUT1 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=SYSDA
//SYSUT2 DD SPACE=(800,(&WSPC,&WSPC),,,ROUND),UNIT=SYSDA

 2. Add a bind step after the link step. This is necessary to access the database.
An example is shown here:

//PH02CS04 EXEC PGM=IKJEFT01,DYNAMNBR=20,COND=(4,LT)
//DBRMLIB DD DSN=COBRS09.SAMPLEDB.DBRMLIB,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//REPORT DD SYSOUT=*
//SYSTSIN DD *
DSN SYSTEM(DB41)
BIND PACKAGE(COBRS09) MEMBER(SAMPLEDB) -
LIBRARY(′ COBRS09.SAMPLEDB.DBRMLIB′) -
ACT(REP) ISOLATION(CS) VALIDATE(RUN) SQLERROR(CONTINUE)
BIND PLAN(SAMPLEDB) PKLIST(COBRS09.*) -
ACT(REP) ISOLATION(CS) VALIDATE(RUN)
END

 3. Provide the JCL with the TEST option in the parameter list to be able to
debug the sample in the same way you did with the HELLO sample. This is
necessary for using the remote debugger feature.

You cannot directly execute the load module from within the JCL because DB2
load files need to be started under TSO. So you have to add a parameter option
similar to the following to your JCL:

DSN SYSTEM(DB41)
RUN PROGRAM(SAMPLEDB) PLAN(SAMPLEDB) -

LIB(′ COBRS09.SAMPLEDB.LOAD′) -
PARMS(′ / TEST(,,,VADTCPIP&9.112.32.49:*)′)

END

for the connection with TCP/IP. The parameter list is different for the connection
with APPC:

PARMS(′ / TEST(,,,VADAPPC&STB1835:*)′)

Now you can compile and run the program using the JCL. You can see that you
have passed the /TEST(option) parameter in a different way, but this is
nevertheless the parameter you have to use for connecting to the local
debugger.

The diskette includes both JCL files. They are called DTBLDDB.JCL and
DTRUNDB.JCL and are located in the path A:\SAMPLEDB\JCL.

To run the sample with DB2 access remotely, you have to create a WorkFrame
project.

4.3.3 Creating the Project and Running the DB2 Sample
The WorkFrame project has to be created and the whole application has to be
set up. To do so, follow these steps:

 1. Create a Workframe project of the kind you need. Depending on whether
you are connected using TCP/IP or using APPC, create a MVS project with or
without W/S file extension.

 2. In the project settings, specify the remote directory in which your sources
should reside.

90 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

 3. Create the data sets on the host you need for the COBOL source and the
JCL members as well as for listings and load modules. Our data set for the
COBOL source is called COBRS09.SAMPLEDB.COBOL and the data set for
the JCL members is called COBRS09.SAMPLEDB.JCL, and so on.

 4. Upload the files from the diskette to the host, or copy them remotely. You
need all files located in the subdirectories of the directory A:\SAMPLEDB.

 5. You have already set up your workstation for the previous example to
connect to the host, and you have set up the remote directories that contain
your sources. If you are working with the same host, the same user ID and
with members contained in data sets that have the same high-level qualifier
as in the previous example, you do not need to change your MVSINFO.DAT
file. Otherwise, refer to the explanation given in Section 2.1.2,
“MVSINFO.DAT File Explanation” on page 12.

The steps necessary to work with the project are now completed. Log on
remotely on the host and make the files visible in the WorkFrame project.

You are now able to edit your sources, submit jobs for compiling and linking,
and run the debugger.

When you debug the program, you see that all the DB2 statements in the code
are in comments and instead of these, new COBOL statements get executed.
The DB2 statements were replaced with COBOL statements by the DB2
precompiler.

The two examples we have shown you allow connection through either TCP/IP or
APPC. The next example is executable only when you have set up the APPC and
when configured with SMARTdata Utilities.

Chapter 5, “MVS Data Types Sample” on page 93 describes the use of remote
VSAM files that are located on the host. This sample uses functions provided by
SMARTdata Utilities to create a VSAM file on the host and to access it from the
workstation.

Chapter 4. Creating Applications Using Remote E/C/D on OS/2 91

92 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Chapter 5. MVS Data Types Sample

This chapter shows you, by means of a sample, how to use VSAM for the
workstation for local and remote data access, including customizing data
description and conversion for transparent remote data access.

We describe an SdU sample that creates a VSAM file on the host first, and then
lets you change single rows of this file. You can add rows and delete them,
also.

This sample illustrates an application that accesses data from a VSAM file on a
remote MVS system. The application provides options for creating and reading
the file as well as updating or deleting a specific record.

The sample demonstrates the use of COBOL compile options CHAR(EBCDIC),
FLOAT(HEX) and BINARY(S390) to process remote MVS data from the
workstation without any changes to program logic. It also demonstrates remote
file access via APPC on OS/2 platforms and creating and accessing a remote
VSAM data set from a workstation without executing any VSAM utilities on the
remote system.

Because the sample is provided by VisualAge for COBOL, you do not have to
create a new project. Instead, you can find the project in the Samples folder.

To build the sample, repeat these steps:

 1. Double-click on the VisualAge for COBOL icon on the Desktop.
 2. Double-click on the Samples folder.
 3. Double-click on the MVS Data Types Sample project. The WorkFrame with

the MVS Data Types - Icon view window comes up (Figure 81).

Figure 81. MVS Data Type - Icon view Window

 Copyright IBM Corp. 1997 93

 4. In the project, click on the Build icon in the tool bar. The output from the
build operation is displayed in the project monitor area.

To create a VSAM file on your MVS system, configure the sample in the
following way:

• Either copy your CONFIG.DFM file (which you have already updated with your
specifications as described in 3.2.1, “Configuration of SMARTdata Utilities on
the Workstation” on page 53) or update the supplied CONFIG.DFM file for
your site.

Your CONFIG.DFM file is located in the path D:\IBMCOBOL\MACROS (D: is
the drive where your VisualAge for COBOL is installed). To update the
provided CONFIG.DFM file in this project, follow the steps in Section 3.2.1,
“Configuration of SMARTdata Utilities on the Workstation” on page 53.

• Update the supplied STRTSDU.CMD file by changing the drive letter that
represents your remote system from J to a letter compatible with the
workstation user′s drive letter assignments. We used M.

• Then update the STOPSDU.CMD file in the same way and change the drive
letter from J to the letter you specified in STRTSDU.CMD.

• Use the Tools Setup option to change the value for the variable named
EMPVSAM, which is used to name the VSAM file to be created. To do so,
select View in the menu bar and then Tools setup in the pull-down menu, or
just click on the icon with the small suitcase on the WorkFrame. The MVS
Data Types - Tools setup window comes up (Figure 82).

Figure 82. MVS Data Types - Tools setup Window

Double-click on the variable EMPVSAM and the Change Environment Variable
window comes up, in which you can change the drive letter and at least the
high-level qualifier for the data base to be created, as shown in Figure 83 on
page 95.

Replace the supplied value x:\tsouser.hostdata.base with a drive letter and data
set name appropriate for your site:

• Set x to the drive letter representing the remote system—in our case, M.
• Set TSOUSER to your user ID on your remote system—in our case,

COBRS08.

94 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Figure 83. Change Environment Variable Window

Click on Change to make the changes valid and then close the MVS Data Type -
Tools setup window by double-clicking on the icon in the upper left corner of the
window.

 Authorization

The TSOUSER must be one who is authorized to create VSAM data sets on
your remote system. The flat file input (hostdata.dat) supplied for creating the
VSAM file is specified with the EMPLIST environment variable.

• Start the SMARTdata Utilities using the STRTSDU.CMD file. To do so,
double-click on it or select the STRTSDU.CMD file and request the pop-up
menu using mouse button 2, then choose RUN. Reply to the prompt for
password and again to close the window.

• Run the HOSTDATA.EXE program by clicking on the Run icon in the tool bar.

The system displays the message:

Create or Maintain a VSAM employee file.

Enter a choice:
1 to Create
2 to Report
3 to Update a single record
4 to Delete a single record

Use Option 1 (create) to load the data.

Opening for CREATE

Starting VSAM file loader...
Using EMPVSAM variable for name of output file
..... EMPLIST for name of input file.
SYSIN file opened OK using EMPLIST variable
OUTPUT file opened OK using EMPVSAM variable
Loading....DOE BILL DD35 01 1234643210
Loading....DOE JANE AA55 02 1234743210
Loading....DOE JOHN BB41 03 1234843210
Loading....DOWE SUE TD35 04 1234943210
Loading....JOHNSON JANE TB44 05 1235043210
Loading....JONES BILL NA55 06 1235143210
Loading....JONES BOB FB41 07 1235243210
Loading....JONES MARY CD35 08 1235343210
Loading....SMITH BOB MB44 09 1235443210
Loading....SMITH MARY SA55 10 1235543210

Chapter 5. MVS Data Types Sample 95

Loading....SMITH SUE RB41 11 1235643210
Loading....SMITHE BILL EA55 12 1235743210

After close of OUTPUT file:
Status: 00 VSAM-RC=0000 VSAM-FUNC=0000 VSAM-FEED=0000

Reopen the OUTPUT file to verify it′ s usable

OUTPUT file is ok, file open status =00
First record=DOE

Press enter to exit

If you get an error message while creating the VSAM file, make sure that the
drive representing the remote system is the same in STRTSDU.CMD,
STOPSDU.CMD and in the tools setup where you specified the data set name. If
not, the error message you get looks like this:

1
Opening for CREATE

Starting VSAM file loader...
Using EMPVSAM variable for name of output file
..... EMPLIST for name of input file.
SYSIN file opened OK using EMPLIST variable
Error opening OUTPUT file. Status code = 91
Verify your environment variable points to a valid remote drive.

Press enter to exit

Once the VSAM file is created on your MVS system, you can run the
HOSTDATA.EXE program by double-clicking on it or by clicking on the Run icon
in the tool bar.

As it runs,

 1. Verify that the remote VSAM file data is being read, converted, and displayed
properly using Option 2 (Report). A report is being created:

Using EMPVSAM variable...for name of employee file.
Opening for REPORT

Employee-Name Dept Phone Hired
-------------------------- --- ------------ ------
DOE BILL D D35 408-555-9995 781206

01 0223 1234643210
.41399994E 01
.41456700000000000E 01
01 1087 +1234567954321

DOE JANE A A55 212-555-9950 890726
02 0323 1234743210
.51399994E 01
.51456700000000000E 01
02 1187 +1234568054321

...

96 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

SMITH SUE R B41 202-555-8989 740701
11 1223 1235643210
.14140000E 02
.14145670000000000E 02
11 2087 +1234568954321

SMITHE BILL E A55 212-555-7535 821229
12 1323 1235743210
.15140000E 02
.15145670000000000E 02
12 2187 +1234569054321

Reading done -- last read status code=10

Press enter to exit

To stop the listing of the report and be able to read it, press the Pause key,
and to release it again press Enter.

 2. Update a record using Option 3 (Update).

With the update function, you can either update a row of this VSAM file or
add a new row. When you select Option 3 for update, you are prompted to
give the employee name in three parts. First enter the last name, then the
first name, and then the middle initial, typing it all in upper case letters.

If the VSAM file does not contain this name, the system tells you

Status code=23 - Record not found
Adding...

and wants to insert a new employee to the list. It requests you to enter also
a department number, hire date, and phone number. After doing so, you get
the confusing message:

Status code=00 - update complete.

Press enter to exit

but the row is inserted and with the next report you also get this added row.

 3. Delete a record using Option 4 (Delete).

To delete a row of the VSAM file, use Option 4. The system prompts you to
insert the name in three parts in the same way as you did the update.

After a successful deletion, you get the message referring to the name to be
deleted, for example like this:

Status code=00 - Record found
Deleting...JONES BILL N
Status code=00 - Record deleted

Press enter to exit

If the record is not found, the system comes up with status code=23.

Create the VSAM file twice

You can create the VSAM file again under the same name without getting an
error message. The old file is overwritten with the original data.

To leave this application, run STOPSDU.CMD to release the attached drive.

Chapter 5. MVS Data Types Sample 97

98 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Appendix A. DFM/MVS DataAgent

The DFM/MVS DataAgent extends the function of the Distributed FileManager
(DFM) component of DFSMSdfp by providing the ability to invoke routines that
run as extensions of DFM/MVS from remote SMARTdata Utilities (SdU) clients.
By providing for the ability to add routines that can be invoked by DFM/MVS
clients, this new capability brings a new dimension to the way client applications
can access data on MVS/ESA or OS/390 beyond predefined remote transactions.

Until now, the workstation application used data management commands to
operate directly on the remote data using DFM/MVS. Now this mode of
operation has been coupled with the ability to bracket the workstation
application′s execution by providing for the execution of jobs on the remote MVS
system. There are three phases in this new scenario. The preprocessing phase
occurs just before the workstation application begins to execute. The execution
phase is the execution of the workstation application. The postprocessing phase
occurs immediately after the workstation application ends its processing. The
new execution sequence is controlled by extensions to commands currently used
by the client (SMARTdata Utilities) to communicate with the DFM/MVS server.

Additional information on the DataAgent is available in DFSMS/MVS Version 1
Release 4 Technical Guide, SG24-4892 and the DFSMS/MVS Version 1 Release 4
Distributed FileManager/MVS Guide and Reference, SC26-4915-02.

 Copyright IBM Corp. 1997 99

100 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Appendix B. Contents of the Enclosed Diskette

On the diskette you will find the following:

The directory, CONNECT, includes the following files:

MVSINFO.TCP as a sample for the MVSINFO.DAT file
for the connection with TCP/IP

MVSINFO.APC as a sample for the MVSINFO.DAT file
for the connection with APPC and SdU

CONFIG.DFM as a sample for the CONFIG.DFM file

The directory, HELLO, includes all necessary files for the HELLO
sample as it is described in the redbook

The directory, SAMPLEDB, includes all necessary files for the
SAMPLEDB samples as it is described in the redbook.

 Copyright IBM Corp. 1997 101

102 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Appendix C. Special Notices

This publication is intended to help COBOL application developers who want to
develop host-based COBOL applications using features and functions on the
workstation. The information in this publication is not intended as the
specification of any programming interfaces that are provided by VisualAge for
COBOL on OS/2 Version 2.0 (Standard Edition). See the PUBLICATIONS section
of the IBM Programming Announcement for VisualAge for COBOL for OS/2
Version 2.0 (Standard Edition) for more information about what publications are
considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM′s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM′s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer′s ability to evaluate and integrate them into the
customer ′s operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same
or similar results will be obtained elsewhere. Customers attempting to adapt
these techniques to their own environments do so at their own risk.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

Advanced Peer-to-Peer Networking DATABASE 2
DB2 DFSMS
DFSMS/MVS DFSMShsm
IBM MVS (logo)
MVS/ESA Operating System/2
OS/2 OS/390
S/390 VisualAge

 Copyright IBM Corp. 1997 103

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Incorporated.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used
by IBM Corporation under license.

Pentium, MMX, ProShare, LANDesk, and ActionMedia are trademarks or
registered trademarks of Intel Corporation in the U.S. and other
countries.

UNIX is a registered trademark in the United States and other
countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or
service marks of others.

104 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Appendix D. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

D.1 International Technical Support Organization Publications
For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 107.

• Host/Workstation Client/Server Implementation Using VisualAge COBOL on
OS/2, AIX, and MVS, SG24-4733

• IBM VisualAge for COBOL for COBOL for OS/2 OO Programming, SG24-4606

D.2 Redbooks on CD-ROMs
Redbooks are also available on CD-ROMs. Order a subscription and receive
updates 2-4 times a year at significant savings.

CD-ROM Title Subscription
Number

Collection Kit
Number

System/390 Redbooks Collection SBOF-7201 SK2T-2177
Networking and Systems Management Redbooks Collection SBOF-7370 SK2T-6022
Transaction Processing and Data Management Redbook SBOF-7240 SK2T-8038
AS/400 Redbooks Collection SBOF-7270 SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SBOF-7230 SK2T-8040
RS/6000 Redbooks Collection (PostScript) SBOF-7205 SK2T-8041
Application Development Redbooks Collection SBOF-7290 SK2T-8037
Personal Systems Redbooks Collection SBOF-7250 SK2T-8042

D.3 Other Publications
These publications are also relevant as further information sources:

• VisualAge for COBOL Language Reference, SC26-9046

• VisualAge for COBOL Programming Guide, SC26-9050

• VisualAge for COBOL User′s Guide for OS/2, SC26-9036

• SMARTdata Utilities for OS/2 - VSAM in a Distributed Environment, SC26-7063

• SMARTdata Utilities - Data Description and Conversion, SC26-7091

• SMARTdata Utilities - Data Description - A Data Language Reference,
SC26-7092

 Copyright IBM Corp. 1997 105

106 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs,
workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at http://www.redbooks.ibm.com.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• PUBORDER — to order hardcopies in United States

• GOPHER link to the Internet - type GOPHER.WTSCPOK.ITSO.IBM.COM

• Tools disks

To get LIST3820s of redbooks, type one of the following commands:

TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)

To get BookManager BOOKs of redbooks, type the following command:

TOOLCAT REDBOOKS

To get lists of redbooks, type one of the following commands:

TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE

To register for information on workshops, residencies, and redbooks, type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996

For a list of product area specialists in the ITSO: type the following command:

TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE

• Redbooks Web Site on the World Wide Web

http://w3.itso.ibm.com/redbooks

• IBM Direct Publications Catalog on the World Wide Web

http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may obtain LIST3820s of redbooks from this page.

• REDBOOKS category on INEWS

• Online — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

• Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank). A category form and detailed instructions will be sent to you.

 Redpieces

For information so current it is still in the process of being written, look at ″Redpieces″ on the Redbooks Web
Site (http://www.redbooks.ibm.com/redpieces.htm). Redpieces are redbooks in progress; not all redbooks
become redpieces, and sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

 Copyright IBM Corp. 1997 107

How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about
redbooks, workshops, and residencies in the following ways:

• Online Orders — send orders to:

• Telephone orders

• Mail Orders — send orders to:

• Fax — send orders to:

• 1-800-IBM-4FAX (United States) or (+1)001-408-256-5422 (Outside USA) — ask for:

Index # 4421 Abstracts of new redbooks
Index # 4422 IBM redbooks
Index # 4420 Redbooks for last six months

• Direct Services - send note to softwareshop@vnet.ibm.com

• On the World Wide Web

Redbooks Web Site http://www.redbooks.ibm.com
IBM Direct Publications Catalog http://www.elink.ibmlink.ibm.com/pbl/pbl

• Internet Listserver

With an Internet e-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the
service, send an e-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of
the note (leave the subject line blank).

 Redpieces

For information so current it is still in the process of being written, look at ″Redpieces″ on the Redbooks Web
Site (http://www.redbooks.ibm.com/redpieces.htm). Redpieces are redbooks in progress; not all redbooks
become redpieces, and sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

IBMMAIL Internet
In United States: usib6fpl at ibmmail usib6fpl@ibmmail.com
In Canada: caibmbkz at ibmmail lmannix@vnet.ibm.com
Outside North America: dkibmbsh at ibmmail bookshop@dk.ibm.com

United States (toll free) 1-800-879-2755
Canada (toll free) 1-800-IBM-4YOU

Outside North America (long distance charges apply)
(+45) 4810-1320 - Danish
(+45) 4810-1420 - Dutch
(+45) 4810-1540 - English
(+45) 4810-1670 - Finnish
(+45) 4810-1220 - French

(+45) 4810-1020 - German
(+45) 4810-1620 - Italian
(+45) 4810-1270 - Norwegian
(+45) 4810-1120 - Spanish
(+45) 4810-1170 - Swedish

IBM Publications
Publications Customer Support
P.O. Box 29570
Raleigh, NC 27626-0570
USA

IBM Publications
144-4th Avenue, S.W.
Calgary, Alberta T2P 3N5
Canada

IBM Direct Services
Sortemosevej 21
DK-3450 Allerød
Denmark

United States (toll free) 1-800-445-9269
Canada 1-403-267-4455
Outside North America (+45) 48 14 2207 (long distance charge)

108 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

IBM Redbook Order Form

Please send me the following:

Title Order Number Quantity

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

How to Get ITSO Redbooks 109

110 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Glossary

The terms in this glossary are defined in accordance
with their meaning in COBOL. These terms may or
may not have the same meaning in other languages.

IBM is grateful to the American National Standards
Institute (ANSI) for permission to reprint its definitions
from the following publications:

• American National Standard Programming
Language COBOL, ANSI X3.23-1985 (Copyright
1985 American National Standards Institute, Inc.),
which was prepared by Technical Committee
X3J4, which had the task of revising American
National Standard COBOL, X3.23-1974.

• American National Dictionary for Information
Processing Systems (Copyright 1982 by the
Computer and Business Equipment Manufacturers
Association).

American National Standard definitions are preceded
by an asterisk (*).

A
* abbreviated combined relation condition . The
combined condition that results from the explicit
omission of a common subject or a common subject
and common relational operator in a consecutive
sequence of relation conditions.

abend . Abnormal termination of program.

* access mode . The manner in which records are to
be operated upon within a file.

* actual decimal point . The physical representation,
using the decimal point characters period (.) or
comma (,), of the decimal point position in a data
item.

* alphabet-name . A user-defined word, in the
SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION, that assigns a name to a specific character
set and/or collating sequence.

* alphabetic character . A letter or a space character.

* alphanumeric character . Any character in the
computer’s character set.

alphanumeric-edited character . A character within an
alphanumeric character-string that contains at least
one B, 0 (zero), or / (slash).

* alphanumeric function . A function whose value is
composed of a string of one or more characters from
the computer ′s character set.

* alternate record key . A key, other than the prime
record key, whose contents identify a record within an
indexed file.

ANSI (American National Standards Institute) . An
organization consisting of producers, consumers, and
general interest groups, that establishes the
procedures by which accredited organizations create
and maintain voluntary industry standards in the
United States.

* argument . An identifier, a literal, an arithmetic
expression, or a function-identifier that specifies a
value to be used in the evaluation of a function.

* arithmetic expression . An identifier of a numeric
elementary item, a numeric literal, such identifiers
and literals separated by arithmetic operators, two
arithmetic expressions separated by an arithmetic
operator, or an arithmetic expression enclosed in
parentheses.

* arithmetic operation . The process caused by the
execution of an arithmetic statement, or the
evaluation of an arithmetic expression, that results in
a mathematically correct solution to the arguments
presented.

* arithmetic operator . A single character, or a fixed
two-character combination that belongs to the
following set:

Character Meaning
+ addition
- subtraction

 * multipl ication
 / division
 ** exponentiation

* arithmetic statement . A statement that causes an
arithmetic operation to be executed. The arithmetic
statements are the ADD, COMPUTE, DIVIDE,
MULTIPLY, and SUBTRACT statements.

array . In Language Environment, an aggregate
consisting of data objects, each of which may be
uniquely referenced by subscripting. Roughly
analogous to a COBOL table.

* ascending key . A key upon the values of which
data is ordered, starting with the lowest value of the
key up to the highest value of the key, in accordance
with the rules for comparing data items.

ASCII . American National Standard Code for
Information Interchange. The standard code, using a
coded character set consisting of 7-bit coded
characters (8 bits including parity check), used for
information interchange between data processing
systems, data communication systems, and

 Copyright IBM Corp. 1997 111

associated equipment. The ASCII set consists of
control characters and graphic characters.

Extension: IBM has defined an extension to ASCII
code (characters 128-255).

assignment-name . A name that identifies the
organization of a COBOL file and the name by which it
is known to the system.

* assumed decimal point . A decimal point position
that does not involve the existence of an actual
character in a data item. The assumed decimal point
has logical meaning with no physical representation.

* AT END condition . A condition caused:

 1. During the execution of a READ statement for a
sequentially accessed file, when no next logical
record exists in the file, or when the number of
significant digits in the relative record number is
larger than the size of the relative key data item,
or when an optional input file is not present.

 2. During the execution of a RETURN statement,
when no next logical record exists for the
associated sort or merge file.

 3. During the execution of a SEARCH statement,
when the search operation terminates without
satisfying the condition specified in any of the
associated WHEN phrases.

B
big-endian . Default format used by the mainframe
and the AIX workstation to store binary data. In this
format, the least significant digit is on the highest
address. Compare with “ l i t t le-endian.”

binary item . A numeric data item represented in
binary notation (on the base 2 numbering system).
Binary items have a decimal equivalent consisting of
the decimal digits 0 through 9, plus an operational
sign. The leftmost bit of the item is the operational
sign.

binary search . A dichotomizing search in which, at
each step of the search, the set of data elements is
divided by two; some appropriate action is taken in
the case of an odd number.

* block . A physical unit of data that is normally
composed of one or more logical records. For mass
storage files, a block may contain a portion of a
logical record. The size of a block has no direct
relationship to the size of the file within which the
block is contained or to the size of the logical
record(s) that are either contained within the block or
that overlap the block. The term is synonymous with
physical record.

breakpoint . A place in a computer program, usually
specified by an instruction, where its execution may

be interrupted by external intervention or by a
monitor program.

Btrieve . A key-indexed record management system
that allows applications to manage records by key
value, sequential access method, or random access
method. IBM COBOL supports COBOL sequential and
indexed file I-O language through Btrieve.

buffer . A portion of storage used to hold input or
output data temporarily.

built-in function . See “intrinsic function.”

byte . A string consisting of a certain number of bits,
usually eight, treated as a unit, and representing a
character.

C
callable services . In Language Environment, a set of
services that can be invoked by a COBOL program
using the conventional Language Environment-defined
call interface, and usable by all programs sharing the
Language Environment conventions.

called program . A program that is the object of a
CALL statement.

* calling program . A program that executes a CALL
to another program.

case structure . A program processing logic in which
a series of conditions is tested in order to make a
choice between a number of resulting actions.

cataloged procedure . A set of job control statements
placed in a partitioned data set called the procedure
library (SYS1.PROCLIB). You can use cataloged
procedures to save time and reduce errors coding
JCL.

century window . The 100-year interval in which
Language Environment assumes all 2-digit years lie.
The Language Environment default century window
begins 80 years before the system date.

* character . The basic indivisible unit of the
language.

character position . The amount of physical storage
required to store a single standard data format
character described as USAGE IS DISPLAY.

character set . All the valid characters for a
programming language or a computer system.

* character-string . A sequence of contiguous
characters that form a COBOL word, a literal, a
PICTURE character-string, or a comment-entry. Must
be delimited by separators.

112 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

checkpoint . A point at which information about the
status of a job and the system can be recorded so
that the job step can be later restarted.

* class . The entity that defines common behavior and
implementation for zero, one, or more objects. The
objects that share the same implementation are
considered to be objects of the same class.

* class condition . The proposition, for which a truth
value can be determined, that the content of an item
is wholly alphabetic, is wholly numeric, or consists
exclusively of those characters listed in the definition
of a class-name.

* Class Definition . The COBOL source unit that
defines a class.

* class identification entry . An entry in the CLASS-ID
paragraph of the IDENTIFICATION DIVISION which
contains clauses that specify the class-name and
assign selected attributes to the class definition.

* class-name . A user-defined word defined in the
SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION that assigns a name to the proposition for
which a truth value can be defined, that the content of
a data item consists exclusively of those characters
listed in the definition of the class-name.

class object . The run-time object representing a SOM
class.

* clause . An ordered set of consecutive COBOL
character-strings whose purpose is to specify an
attribute of an entry.

CMS (Conversational Monitor System) . A virtual
machine operating system that provides general
interactive, time-sharing, problem solving, and
program development capabilit ies, and that operates
only under the control of the VM/SP control program.

* COBOL character set . The complete COBOL
character set consists of the characters listed below:

Character Meaning
 0,1...,9 digit
 A,B,...,Z uppercase letter
 a,b,...,z lowercase letter
• space
+ plus sign
- minus sign (hyphen)

 * asterisk
 / slant (virgule, slash)
 = equal sign
 $ currency sign
 , comma (decimal point)
 ; semicolon
 . period (decimal point, full stop)
″ quotation mark

 (left parenthesis

) right parenthesis
> greater than symbol
< less than symbol

 : colon

* COBOL word . See “word.”

code page . An assignment of graphic characters and
control function meanings to all code points; for
example, assignment of characters and meanings to
256 code points for 8-bit code, assignment of
characters and meanings to 128 code points for 7-bit
code.

* collating sequence . The sequence in which the
characters that are acceptable to a computer are
ordered for purposes of sorting, merging, comparing,
and for processing indexed files sequentially.

* column . A character position within a print line.
The columns are numbered from 1, by 1, starting at
the leftmost character position of the print line and
extending to the rightmost position of the print line.

* combined condition . A condition that is the result of
connecting two or more conditions with the AND or
the OR logical operator.

* comment-entry . An entry in the IDENTIFICATION
DIVISION that may be any combination of characters
from the computer’s character set.

* comment line . A source program line represented
by an asterisk (*) in the indicator area of the line and
any characters from the computer’s character set in
area A and area B of that line. The comment line
serves only for documentation in a program. A
special form of comment line represented by a slant
(/) in the indicator area of the line and any characters
from the computer’s character set in area A and area
B of that line causes page ejection prior to printing
the comment.

* common program . A program which, despite being
directly contained within another program, may be
called from any program directly or indirectly
contained in that other program.

* compile . (1) To translate a program expressed in a
high-level language into a program expressed in an
intermediate language, assembly language, or a
computer language. (2) To prepare a machine
language program from a computer program written
in another programming language by making use of
the overall logic structure of the program, or
generating more than one computer instruction for
each symbolic statement, or both, as well as
performing the function of an assembler.

* compile time . The time at which a COBOL source
program is translated, by a COBOL compiler, to a
COBOL object program.

Glossary 113

compiler . A program that translates a program
written in a higher level language into a machine
language object program.

compiler directing statement . A statement, beginning
with a compiler directing verb, that causes the
compiler to take a specific action during compilation.

compiler directing statement . A statement that
specifies actions to be taken by the compiler during
processing of a COBOL source program. Compiler
directives are contained in the COBOL source
program. Thus, you can specify different suboptions
of the directive within the source program by using
multiple compiler directive statements in the
program.

* complex condition . A condition in which one or
more logical operators act upon one or more
conditions. (See also “negated simple condition,”
“combined condit ion,” and “negated combined
condit ion.”)

* computer-name . A system-name that identifies the
computer upon which the program is to be compiled
or run.

condition . An exception that has been enabled, or
recognized, by Language Environment and thus is
eligible to activate user and language condition
handlers. Any alteration to the normal programmed
flow of an application. Conditions can be detected by
the hardware/operating system and results in an
interrupt. They can also be detected by
language-specific generated code or language library
code.

* condition . A status of a program at run time for
which a truth value can be determined. Where the
term ‘condition’ (condition-1, condition-2,...) appears
in these language specifications in or in reference to
‘condition’ (condition-1, condition-2,...) of a general
format, it is a conditional expression consisting of
either a simple condition optionally parenthesized, or
a combined condition consisting of the syntactically
correct combination of simple conditions, logical
operators, and parentheses, for which a truth value
can be determined.

* conditional expression . A simple condition or a
complex condition specified in an EVALUATE, IF,
PERFORM, or SEARCH statement. (See also “simple
condit ion” and “complex condit ion.”)

* conditional phrase . A conditional phrase specifies
the action to be taken upon determination of the truth
value of a condition resulting from the execution of a
conditional statement.

* conditional statement . A statement specifying that
the truth value of a condition is to be determined and
that the subsequent action of the object program is
dependent on this truth value.

* conditional variable . A data item one or more
values of which has a condition-name assigned to it.

* condition-name . A user-defined word that assigns a
name to a subset of values that a conditional variable
may assume; or a user-defined word assigned to a
status of an implementor defined switch or device.
When ‘condition-name’ is used in the general formats,
it represents a unique data item reference consisting
of a syntactically correct combination of a
‘condition-name’, together with qualifiers and
subscripts, as required for uniqueness of reference.

* condition-name condition . The proposition, for
which a truth value can be determined, that the value
of a conditional variable is a member of the set of
values attributed to a condition-name associated with
the conditional variable.

* CONFIGURATION SECTION . A section of the
ENVIRONMENT DIVISION that describes overall
specifications of source and object programs and
class definitions.

CONSOLE . A COBOL environment-name associated
with the operator console.

* contiguous items . Items that are described by
consecutive entries in the Data Division, and that
bear a definite hierarchic relationship to each other.

copybook . A file or library member containing a
sequence of code that is included in the source
program at compile time using the COPY statement.
The file can be created by the user, supplied by
COBOL, or supplied by another product.

CORBA . The Common Object Request Broker
Architecture established by the Object Management
Group. IBM ′s Interface Definition Language used to
describe the interface for SOM classes is fully
compliant with CORBA standards.

* counter . A data item used for storing numbers or
number representations in a manner that permits
these numbers to be increased or decreased by the
value of another number, or to be changed or reset to
zero or to an arbitrary positive or negative value.

cross-reference listing . The portion of the compiler
listing that contains information on where files, fields,
and indicators are defined, referenced, and modified
in a program.

 currency sign . The character ‘$’ of the COBOL
character set or that character defined by the
CURRENCY compiler option. If the NOCURRENCY
compiler option is in effect, the currency sign is
defined as the character ‘$’.

currency symbol . The character defined by the
CURRENCY compiler option or by the CURRENCY

114 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

SIGN clause in the SPECIAL-NAMES paragraph. If the
NOCURRENCY compiler option is in effect for a
COBOL source program and the CURRENCY SIGN
clause is also not present in the source program, the
currency symbol is identical to the currency sign.

* current record . In file processing, the record that is
available in the record area associated with a file.

* current volume pointer . A conceptual entity that
points to the current volume of a sequential file.

D
* data clause . A clause, appearing in a data
description entry in the DATA DIVISION of a COBOL
program, that provides information describing a
particular attribute of a data item.

* data description entry . An entry in the DATA
DIVISION of a COBOL program that is composed of a
level-number followed by a data-name, if required,
and then followed by a set of data clauses, as
required.

DATA DIVISION . One of the four main components of
a COBOL program, class definition, or method
definition. The DATA DIVISION describes the data to
be processed by the object program, class, or
method: files to be used and the records contained
within them; internal working-storage records that will
be needed; data to be made available in more than
one program in the COBOL run unit. (Note, the Class
DATA DIVISION contains only the
WORKING-STORAGE SECTION.)

* data item . A unit of data (excluding literals) defined
by a COBOL program or by the rules for function
evaluation.

* data-name . A user-defined word that names a data
item described in a data description entry. When
used in the general formats, ‘data-name’ represents a
word that must not be reference-modified, subscripted
or qualified unless specifically permitted by the rules
for the format.

DBCS (Double-Byte Character Set) . See
“Double-Byte Character Set (DBCS).”

* debugging line . A debugging line is any line with a
‘D’ in the indicator area of the line.

* debugging section . A section that contains a USE
FOR DEBUGGING statement.

* declarative sentence . A compiler directing sentence
consisting of a single USE statement terminated by
the separator period.

* declaratives . A set of one or more special purpose
sections, written at the beginning of the Procedure

Division, the first of which is preceded by the key
word DECLARATIVES and the last of which is followed
by the key words END DECLARATIVES. A declarative
is composed of a section header, followed by a USE
compiler directing sentence, followed by a set of zero,
one, or more associated paragraphs.

* de-edit . The logical removal of all editing
characters from a numeric edited data item in order
to determine that item′s unedited numeric value.

* delimited scope statement . Any statement that
includes its explicit scope terminator.

* delimiter . A character or a sequence of contiguous
characters that identify the end of a string of
characters and separate that string of characters from
the following string of characters. A delimiter is not
part of the string of characters that it delimits.

* descending key . A key upon the values of which
data is ordered starting with the highest value of key
down to the lowest value of key, in accordance with
the rules for comparing data items.

digit . Any of the numerals from 0 through 9. In
COBOL, the term is not used in reference to any other
symbol.

* digit position . The amount of physical storage
required to store a single digit. This amount may
vary depending on the usage specified in the data
description entry that defines the data item.

* direct access . The facility to obtain data from
storage devices or to enter data into a storage device
in such a way that the process depends only on the
location of that data and not on a reference to data
previously accessed.

* division . A collection of zero, one or more sections
or paragraphs, called the division body, that are
formed and combined in accordance with a specific
set of rules. Each division consists of the division
header and the related division body. There are four
(4) divisions in a COBOL program: Identification,
Environment, Data, and Procedure.

* division header . A combination of words followed
by a separator period that indicates the beginning of
a division. The division headers are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

DLL . See “dynamic l ink l ibrary.”

do construction . In structured programming, a DO
statement is used to group a number of statements in
a procedure. In COBOL, an in-line PERFORM
statement functions in the same way.

Glossary 115

do-until . In structured programming, a do-until loop
will be executed at least once, and until a given
condition is true. In COBOL, a TEST AFTER phrase
used with the PERFORM statement functions in the
same way.

do-while . In structured programming, a do-while loop
will be executed if, and while, a given condition is
true. In COBOL, a TEST BEFORE phrase used with
the PERFORM statement functions in the same way.

Double-Byte Character Set (DBCS) . A set of
characters in which each character is represented by
two bytes. Languages such as Japanese, Chinese,
and Korean, which contain more symbols than can be
represented by 256 code points, require Double-Byte
Character Sets. Because each character requires two
bytes, entering, displaying, and printing DBCS
characters requires hardware and supporting software
that are DBCS-capable.

* dynamic access . An access mode in which specific
logical records can be obtained from or placed into a
mass storage file in a nonsequential manner and
obtained from a file in a sequential manner during the
scope of the same OPEN statement.

dynamic link library . A file containing executable
code and data bound to a program at load time or run
time, rather than during linking. The code and data in
a dynamic link library can be shared by several
applications simultaneously.

Dynamic Storage Area (DSA) . Dynamically acquired
storage composed of a register save area and an
area available for dynamic storage allocation (such as
program variables). DSAs are generally allocated
within STACK segments managed by Language
Environment.

E
* EBCDIC (Extended Binary-Coded Decimal
Interchange Code) . A coded character set consisting
of 8-bit coded characters.

EBCDIC character . Any one of the symbols included
in the 8-bit EBCDIC (Extended Binary-Coded-Decimal
Interchange Code) set.

edited data item . A data item that has been modified
by suppressing zeroes and/or inserting editing
characters.

* editing character . A single character or a fixed
two-character combination belonging to the following
set:

Character Meaning
• space
0 zero
+ plus

- minus
CR credit
DB debit
Z zero suppress
* check protect

$ currency sign
, comma (decimal point)
. period (decimal point)
/ slant (virgule, slash)

element (text element) . One logical unit of a string of
text, such as the description of a single data item or
verb, preceded by a unique code identifying the
element type.

* elementary item . A data item that is described as
not being further logically subdivided.

enclave . When running under the Language
Environment product, an enclave is analogous to a
run unit. An enclave can create other enclaves on
OS/390 and CMS by a LINK, on CMS by CMSCALL,
and the use of the system () function of C.

*end class header . A combination of words, followed
by a separator period, that indicates the end of a
COBOL class definition. The end class header is:

END CLASS class-name.

*end method header . A combination of words,
followed by a separator period, that indicates the end
of a COBOL method definition. The end method
header is:

END METHOD method-name.

* end of Procedure Division . The physical position of
a COBOL source program after which no further
procedures appear.

* end program header . A combination of words,
followed by a separator period, that indicates the end
of a COBOL source program. The end program
header is:

END PROGRAM program-name.

* entry . Any descriptive set of consecutive clauses
terminated by a separator period and written in the
IDENTIFICATION DIVISION, ENVIRONMENT DIVISION,
or DATA DIVISION of a COBOL program.

* environment clause . A clause that appears as part
of an ENVIRONMENT DIVISION entry.

ENVIRONMENT DIVISION. One of the four main
component parts of a COBOL program, class
definition, or method definition. The ENVIRONMENT
DIVISION describes the computers upon which the
source program is compiled and those on which the
object program is executed, and provides a linkage
between the logical concept of files and their records,
and the physical aspects of the devices on which files
are stored.

116 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

environment-name . A name, specified by IBM, that
identifies system logical units, printer and card punch
control characters, report codes, and/or program
switches. When an environment-name is associated
with a mnemonic-name in the ENVIRONMENT
DIVISION, the mnemonic-name may then be
substituted in any format in which such substitution is
valid.

environment variable . Any of a number of variables
that describe the way an operating system is going to
run and the devices it is going to recognize.

execution time . See “run t ime.”

execution-time environment . See “run-time
environment.”

* explicit scope terminator . A reserved word that
terminates the scope of a particular Procedure
Division statement.

exponent . A number, indicating the power to which
another number (the base) is to be raised. Positive
exponents denote multiplication, negative exponents
denote division, fractional exponents denote a root of
a quantity. In COBOL, an exponential expression is
indicated with the symbol ‘**’ followed by the
exponent.

* expression . An arithmetic or conditional
expression.

* extend mode . The state of a file after execution of
an OPEN statement, with the EXTEND phrase specified
for that file, and before the execution of a CLOSE
statement, without the REEL or UNIT phrase for that
file.

extensions . Certain COBOL syntax and semantics
supported by IBM compilers in addition to those
described in ANSI Standard.

* external data . The data described in a program as
external data items and external file connectors.

* external data item . A data item which is described
as part of an external record in one or more
programs of a run unit and which itself may be
referenced from any program in which it is described.

* external data record . A logical record which is
described in one or more programs of a run unit and
whose constituent data items may be referenced from
any program in which they are described.

external decimal item . A format for representing
numbers in which the digit is contained in bits 4
through 7 and the sign is contained in bits 0 through 3
of the rightmost byte. Bits 0 through 3 of all other
bytes contain 1’s (hex F). For example, the decimal
value of +123 is represented as 1111 0001 1111 0010
1111 0011. (Also know as “zoned decimal item.”)

* external file connector . A file connector which is
accessible to one or more object programs in the run
unit.

external floating-point item . A format for
representing numbers in which a real number is
represented by a pair of distinct numerals. In a
floating-point representation, the real number is the
product of the fixed-point part (the first numeral), and
a value obtained by raising the implicit floating-point
base to a power denoted by the exponent (the second
numeral).

For example, a floating-point representation of the
number 0.0001234 is: 0.1234 -3, where 0.1234 is the
mantissa and -3 is the exponent.

* external switch . A hardware or software device,
defined and named by the implementor, which is used
to indicate that one of two alternate states exists.

F
* figurative constant . A compiler-generated value
referenced through the use of certain reserved words.

* file . A collection of logical records.

* file attribute conflict condition . An unsuccessful
attempt has been made to execute an input-output
operation on a file and the file attributes, as specified
for that file in the program, do not match the fixed
attributes for that file.

* file clause . A clause that appears as part of any of
the following DATA DIVISION entries: file description
entry (FD entry) and sort-merge file description entry
(SD entry).

* file connector . A storage area which contains
information about a file and is used as the linkage
between a file-name and a physical file and between
a file-name and its associated record area.

File-Control . The name of an ENVIRONMENT
DIVISION paragraph in which the data files for a given
source program are declared.

* file control entry . A SELECT clause and all its
subordinate clauses which declare the relevant
physical attributes of a file.

* file description entry . An entry in the File Section
of the DATA DIVISION that is composed of the level
indicator FD, followed by a file-name, and then
followed by a set of file clauses as required.

* file-name . A user-defined word that names a file
connector described in a file description entry or a
sort-merge file description entry within the File
Section of the DATA DIVISION.

Glossary 117

* file organization . The permanent logical file
structure established at the time that a file is created.

*file position indicator . A conceptual entity that
contains the value of the current key within the key of
reference for an indexed file, or the record number of
the current record for a sequential fi le, or the relative
record number of the current record for a relative file,
or indicates that no next logical record exists, or that
an optional input file is not present, or that the at end
condition already exists, or that no valid next record
has been established.

* File Section . The section of the DATA DIVISION
that contains file description entries and sort-merge
file description entries together with their associated
record descriptions.

file system . The collection of files and file
management structures on a physical or logical mass
storage device, such as a diskette or minidisk.

* fixed file attributes . Information about a file which
is established when a file is created and cannot
subsequently be changed during the existence of the
file. These attributes include the organization of the
file (sequential, relative, or indexed), the prime record
key, the alternate record keys, the code set, the
minimum and maximum record size, the record type
(fixed or variable), the collating sequence of the keys
for indexed files, the blocking factor, the padding
character, and the record delimiter.

* fixed length record . A record associated with a file
whose fi le description or sort-merge description entry
requires that all records contain the same number of
character positions.

fixed-point number . A numeric data item defined
with a PICTURE clause that specifies the location of
an optional sign, the number of digits it contains, and
the location of an optional decimal point. The format
may be either binary, packed decimal, or external
decimal.

floating-point number . A numeric data item
containing a fraction and an exponent. Its value is
obtained by multiplying the fraction by the base of the
numeric data item raised to the power specified by
the exponent.

* format . A specific arrangement of a set of data.

* function . A temporary data item whose value is
determined at the time the function is referenced
during the execution of a statement.

* function-identifier . A syntactically correct
combination of character-strings and separators that
references a function. The data item represented by
a function is uniquely identified by a function-name
with its arguments, if any. A function-identifier may

include a reference-modifier. A function-identifier that
references an alphanumeric function may be specified
anywhere in the general formats that an identifier
may be specified, subject to certain restrictions. A
function-identifier that references an integer or
numeric function may be referenced anywhere in the
general formats that an arithmetic expression may be
specified.

function-name . A word that names the mechanism
whose invocation, along with required arguments,
determines the value of a function.

G
* global name . A name which is declared in only one
program but which may be referenced from that
program and from any program contained within that
program. Condition-names, data-names, file-names,
record-names, report-names, and some special
registers may be global names.

* group item . A data item that is composed of
subordinate data items.

H
header label . (1) A file label or data set label that
precedes the data records on a unit of recording
media. (2) Synonym for beginning-of-file label.

* high order end . The leftmost character of a string
of characters.

I
IBM COBOL extension . Certain COBOL syntax and
semantics supported by IBM compilers in addition to
those described in ANSI Standard.

IDENTIFICATION DIVISION . One of the four main
component parts of a COBOL program, class
definition, or method definition. The IDENTIFICATION
DIVISION identifies the program name, class name, or
method name. The IDENTIFICATION DIVISION may
include the following documentation: author name,
installation, or date.

* identifier . A syntactically correct combination of
character-strings and separators that names a data
item. When referencing a data item that is not a
function, an identifier consists of a data-name,
together with its qualifiers, subscripts, and
reference-modifier, as required for uniqueness of
reference. When referencing a data item which is a
function, a function-identifier is used.

IGZCBSN . The COBOL/370 Release 1 bootstrap
routine. It must be link-edited with any module that
contains a COBOL/370 Release 1 program.

118 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

IGZCBSO . The COBOL for MVS & VM Release 2 and
IBM COBOL for OS/390 & VM bootstrap routine. It
must be link-edited with any module that contains a
COBOL for MVS & VM Release 2 or IBM COBOL for
OS/390 & VM program.

* imperative statement . A statement that either
begins with an imperative verb and specifies an
unconditional action to be taken or is a conditional
statement that is delimited by its explicit scope
terminator (delimited scope statement). An
imperative statement may consist of a sequence of
imperative statements.

* implicit scope terminator . A separator period which
terminates the scope of any preceding unterminated
statement, or a phrase of a statement which by its
occurrence indicates the end of the scope of any
statement contained within the preceding phrase.

* index . A computer storage area or register, the
content of which represents the identification of a
particular element in a table.

* index data item . A data item in which the values
associated with an index-name can be stored in a
form specified by the implementor.

indexed data-name . An identifier that is composed of
a data-name, followed by one or more index-names
enclosed in parentheses.

* indexed file . A file with indexed organization.

* indexed organization . The permanent logical file
structure in which each record is identified by the
value of one or more keys within that record.

indexing . Synonymous with subscripting using
index-names.

* index-name . A user-defined word that names an
index associated with a specific table.

* inheritance (for classes) . A mechanism for using
the implementation of one or more classes as the
basis for another class. A sub-class inherits from one
or more super-classes. By definition the inheriting
class conforms to the inherited classes.

* initial program . A program that is placed into an
initial state every time the program is called in a run
unit.

* initial state . The state of a program when it is first
called in a run unit.

inline . In a program, instructions that are executed
sequentially, without branching to routines,
subroutines, or other programs.

* input file . A file that is opened in the INPUT mode.

* input mode . The state of a file after execution of an
OPEN statement, with the INPUT phrase specified, for
that file and before the execution of a CLOSE
statement, without the REEL or UNIT phrase for that
file.

* input-output file . A file that is opened in the I-O
mode.

* INPUT-OUTPUT SECTION. The section of the
ENVIRONMENT DIVISION that names the files and the
external media required by an object program or
method and that provides information required for
transmission and handling of data during execution of
the object program or method definition.

* Input-Output statement . A statement that causes
files to be processed by performing operations upon
individual records or upon the file as a unit. The
input-output statements are: ACCEPT (with the
identifier phrase), CLOSE, DELETE, DISPLAY, OPEN,
READ, REWRITE, SET (with the TO ON or TO OFF
phrase), START, and WRITE.

* input procedure . A set of statements, to which
control is given during the execution of a SORT
statement, for the purpose of controlling the release
of specified records to be sorted.

instance data . Data defining the state of an object.
The instance data introduced by a class is defined in
the WORKING-STORAGE SECTION of the DATA
DIVISION of the class definition. The state of an
object also includes the state of the instance
variables introduced by base classes that are
inherited by the current class. A separate copy of the
instance data is created for each object instance.

* integer . (1) A numeric literal that does not include
any digit positions to the right of the decimal point.

(2) A numeric data item defined in the DATA DIVISION
that does not include any digit positions to the right of
the decimal point.

(3) A numeric function whose definition provides that
all digits to the right of the decimal point are zero in
the returned value for any possible evaluation of the
function.

integer function . A function whose category is
numeric and whose definition does not include any
digit positions to the right of the decimal point.

interface . The information that a cl ient must know to
use a class—the names of its attributes and the
signatures of its methods. With direct-to-SOM
compilers such as COBOL, the interface to a class
may be defined by native language syntax for class
definitions. Classes implemented in other languages
might have their interfaces defined directly in SOM
Interface Definition Language (IDL). The COBOL
compiler has a compiler option, IDLGEN, to
automatically generate IDL for a COBOL class.

Glossary 119

Interface Definition Language (IDL) . The formal
language (independent of any programming language)
by which the interface for a class of objects is defined
in a IDL file, which the SOM compiler then interprets
to create an implementation template fi le and binding
files. SOM ′s Interface Definition Language is fully
compliant with standards established by the Object
Management Group ′s Common Object Request Broker
Architecture (CORBA).

interlanguage communication (ILC) . The ability of
routines written in different programming languages
to communicate. ILC support allows the application
writer to readily build applications from component
routines written in a variety of languages.

intermediate result . An intermediate field containing
the results of a succession of arithmetic operations.

* internal data . The data described in a program
excluding all external data items and external file
connectors. Items described in the LINKAGE
SECTION of a program are treated as internal data.

* internal data item . A data item which is described
in one program in a run unit. An internal data item
may have a global name.

internal decimal item . A format in which each byte in
a field except the rightmost byte represents two
numeric digits. The rightmost byte contains one digit
and the sign. For example, the decimal value +123
is represented as 0001 0010 0011 1111. (Also known
as packed decimal.)

* internal file connector . A file connector which is
accessible to only one object program in the run unit.

* intra-record data structure . The entire collection of
groups and elementary data items from a logical
record which is defined by a contiguous subset of the
data description entries which describe that record.
These data description entries include all entries
whose level-number is greater than the level-number
of the first data description entry describing the
intra-record data structure.

intrinsic function . A pre-defined function, such as a
commonly used arithmetic function, called by a
built-in function reference.

* invalid key condition . A condition, at object time,
caused when a specific value of the key associated
with an indexed or relative file is determined to be
invalid.

* I-O-CONTROL . The name of an ENVIRONMENT
DIVISION paragraph in which object program
requirements for rerun points, sharing of same areas
by several data files, and multiple file storage on a
single input-output device are specified.

* I-O-CONTROL entry . An entry in the I-O-CONTROL
paragraph of the ENVIRONMENT DIVISION which
contains clauses that provide information required for
the transmission and handling of data on named files
during the execution of a program.

* I-O-Mode . The state of a file after execution of an
OPEN statement, with the I-O phrase specified, for
that file and before the execution of a CLOSE
statement without the REEL or UNIT phase for that
file.

* I-O status . A conceptual entity which contains the
two-character value indicating the resulting status of
an input-output operation. This value is made
available to the program through the use of the FILE
STATUS clause in the file control entry for the file.

iteration structure . A program processing logic in
which a series of statements is repeated while a
condition is true or until a condition is true.

K
K . When referring to storage capacity, two to the
tenth power; 1024 in decimal notation.

* key . A data item that identifies the location of a
record, or a set of data items which serve to identify
the ordering of data.

* key of reference . The key, either prime or
alternate, currently being used to access records
within an indexed file.

* key word . A reserved word or function-name
whose presence is required when the format in which
the word appears is used in a source program.

kilobyte (KB) . One kilobyte equals 1024 bytes.

L
* language-name . A system-name that specifies a
particular programming language.

Language Environment-conforming . A characteristic
of compiler products (COBOL for OS/390 & VM,
COBOL for MVS & VM, COBOL/370, AD/Cycle C/370,
C/C++ for MVS and VM, PL/I for MVS and VM) that
produce object code conforming to the Language
Environment format.

last-used state . A program is in last-used state if its
internal values remain the same as when the program
was exited (are not reset to their initial values).

* letter . A character belonging to one of the following
two sets:

 1. Uppercase letters: A, B, C, D, E, F, G, H, I, J, K, L,
M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z

120 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

 2. Lowercase letters: a, b, c, d, e, f, g, h, i, j, k, l, m,
n, o, p, q, r, s, t, u, v, w, x, y, z

* level indicator . Two alphabetic characters that
identify a specific type of file or a position in a
hierarchy. The level indicators in the DATA DIVISION
are: CD, FD, and SD.

* level-number . A user-defined word, expressed as a
two digit number, which indicates the hierarchical
position of a data item or the special properties of a
data description entry. Level-numbers in the range
from 1 through 49 indicate the position of a data item
in the hierarchical structure of a logical record.
Level-numbers in the range 1 through 9 may be
written either as a single digit or as a zero followed
by a significant digit. Level-numbers 66, 77 and 88
identify special properties of a data description entry.

* library-name . A user-defined word that names a
COBOL library that is to be used by the compiler for a
given source program compilation.

* library text . A sequence of text words, comment
lines, the separator space, or the separator
pseudo-text delimiter in a COBOL library.

LILIAN DATE . The number of days since the
beginning of the Gregorian calendar. Day one is
Friday, October 15, 1582. The Lilian date format is
named in honor of Luigi Lilio, the creator of the
Gregorian calendar.

* LINAGE-COUNTER . A special register whose value
points to the current position within the page body.

LINKAGE SECTION . The section in the DATA
DIVISION of the called program that describes data
items available from the calling program. These data
items may be referred to by both the calling and
called program.

literal . A character-string whose value is specified
either by the ordered set of characters comprising the
string, or by the use of a figurative constant.

local . A set of attributes for a program execution
environment indicating culturally sensitive
considerations, such as: character code page,
collating sequence, date/time format, monetary value
representation, numeric value representation, or
language.

* LOCAL-STORAGE SECTION . The section of the
DATA DIVISION that defines storage that is allocated
and freed on a per-invocation basis, depending on the
value assigned in their VALUE clauses.

* logical operator . One of the reserved words AND,
OR, or NOT. In the formation of a condition, either
AND, or OR, or both can be used as logical
connectives. NOT can be used for logical negation.

* logical record . The most inclusive data item. The
level-number for a record is 01. A record may be
either an elementary item or a group of items. The
term is synonymous with record.

* low order end . The rightmost character of a string
of characters.

M
main program . In a hierarchy of programs and
subroutines, the first program to receive control when
the programs are run.

* mass storage . A storage medium in which data
may be organized and maintained in both a
sequential and nonsequential manner.

* mass storage device . A device having a large
storage capacity; for example, magnetic disk,
magnetic drum.

* mass storage file . A collection of records that is
assigned to a mass storage medium.

* megabyte (M) . One megabyte equals 1,048,576
bytes.

* merge file . A collection of records to be merged by
a MERGE statement. The merge file is created and
can be used only by the merge function.

metaclass . A SOM class whose instances are SOM
class-objects. The methods defined in metaclasses
are executed without requiring any object instances of
the class to exist, and are frequently used to create
instances of the class.

method . Procedural code that defines one of the
operations supported by an object, and that is
executed by an INVOKE statement on that object.

* Method Definition . The COBOL source unit that
defines a method.

* method identification entry . An entry in the
METHOD-ID paragraph of the IDENTIFICATION
DIVISION which contains clauses that specify the
method-name and assign selected attributes to the
method definition.

* method-name . A user-defined word that identifies a
method.

* mnemonic-name . A user-defined word that is
associated in the ENVIRONMENT DIVISION with a
specified implementor-name.

multitasking . Mode of operation that provides for the
concurrent, or interleaved, execution of two or more
tasks. When running under the Language
Environment product, multitasking is synonymous with
mult i threading.

Glossary 121

N
name . A word composed of not more than 30
characters that defines a COBOL operand.

* native character set . The implementor-defined
character set associated with the computer specified
in the OBJECT-COMPUTER paragraph.

* native collating sequence . The implementor-defined
collating sequence associated with the computer
specified in the OBJECT-COMPUTER paragraph.

* negated combined condition . The ‘NOT’ logical
operator immediately followed by a parenthesized
combined condition.

* negated simple condition . The ‘NOT’ logical
operator immediately followed by a simple condition.

nested program . A program that is directly contained
within another program.

* next executable sentence . The next sentence to
which control will be transferred after execution of the
current statement is complete.

* next executable statement . The next statement to
which control will be transferred after execution of the
current statement is complete.

* next record . The record that logically follows the
current record of a file.

* noncontiguous items . Elementary data items in the
WORKING-STORAGE and LINKAGE SECTIONs that
bear no hierarchic relationship to other data items.

* non-numeric item . A data item whose description
permits its content to be composed of any
combination of characters taken from the computer’s
character set. Certain categories of non-numeric
items may be formed from more restricted character
sets.

* non-numeric literal . A literal bounded by quotation
marks. The string of characters may include any
character in the computer’s character set.

null . Figurative constant used to assign the value of
an invalid address to pointer data items. NULLS can
be used wherever NULL can be used.

* numeric character . A character that belongs to the
following set of digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

numeric-edited item . A numeric item that is in such a
form that it may be used in printed output. It may
consist of external decimal digits from 0 through 9,
the decimal point, commas, the dollar sign, editing
sign control symbols, plus other editing symbols.

* numeric function . A function whose class and
category are numeric but which for some possible
evaluation does not satisfy the requirements of
integer functions.

* numeric item . A data item whose description
restricts its content to a value represented by
characters chosen from the digits from ‘0’ through ‘9’;
if signed, the item may also contain a ‘+’, ‘-’, or other
representation of an operational sign.

* numeric literal . A literal composed of one or more
numeric characters that may contain either a decimal
point, or an algebraic sign, or both. The decimal point
must not be the rightmost character. The algebraic
sign, if present, must be the leftmost character.

O
object . An entity that has state (its data values) and
operations (its methods). An object is a way to
encapsulate state and behavior.

object code . Output from a compiler or assembler
that is itself executable machine code or is suitable
for processing to produce executable machine code.

* OBJECT-COMPUTER . The name of an
ENVIRONMENT DIVISION paragraph in which the
computer environment, within which the object
program is executed, is described.

* object computer entry . An entry in the
OBJECT-COMPUTER paragraph of the ENVIRONMENT
DIVISION which contains clauses that describe the
computer environment in which the object program is
to be executed.

object deck . A portion of an object program suitable
as input to a linkage editor. Synonymous with object
module and text deck.

object module . Synonym for object deck or text deck.

* object of entry . A set of operands and reserved
words, within a DATA DIVISION entry of a COBOL
program, that immediately follows the subject of the
entry.

* object program . A set or group of executable
machine language instructions and other material
designed to interact with data to provide problem
solutions. In this context, an object program is
generally the machine language result of the
operation of a COBOL compiler on a source program.
Where there is no danger of ambiguity, the word
‘program’ alone may be used in place of the phrase
‘object program.’

* object time . The time at which an object program is
executed. The term is synonymous with execution
time.

122 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

* obsolete element . A COBOL language element in
Standard COBOL that is to be deleted from the next
revision of Standard COBOL.

ODBC . Open Database Connectivity that provides
you access to data from a variety of databases and
file systems.

ODO object . In the example below,

WORKING-STORAGE SECTION
01 TABLE-1.

05 X PICS9.
05 Y OCCURS 3 TIMES

DEPENDING ON X PIC X.

X is the object of the OCCURS DEPENDING ON clause
(ODO object). The value of the ODO object
determines how many of the ODO subject appear in
the table.

ODO subject . In the example above, Y is the subject
of the OCCURS DEPENDING ON clause (ODO subject).
The number of Y ODO subjects that appear in the
table depends on the value of X.

* open mode . The state of a file after execution of an
OPEN statement for that file and before the execution
of a CLOSE statement without the REEL or UNIT
phrase for that file. The particular open mode is
specified in the OPEN statement as either INPUT,
OUTPUT, I-O or EXTEND.

* operand . Whereas the general definition of operand
is “that component which is operated upon,” for the
purposes of this document, any lowercase word (or
words) that appears in a statement or entry format
may be considered to be an operand and, as such, is
an implied reference to the data indicated by the
operand.

* operational sign . An algebraic sign, associated with
a numeric data item or a numeric literal, to indicate
whether its value is positive or negative.

* optional file . A file which is declared as being not
necessarily present each time the object program is
executed. The object program causes an
interrogation for the presence or absence of the file.

* optional word . A reserved word that is included in
a specific format only to improve the readability of
the language and whose presence is optional to the
user when the format in which the word appears is
used in a source program.

OS/2 (Operating System/2*) . A multi-tasking
operating system for the IBM Personal Computer
family that allows you to run both DOS mode and
OS/2 mode programs.

* output file . A file that is opened in either the
OUTPUT mode or EXTEND mode.

* output mode . The state of a file after execution of
an OPEN statement, with the OUTPUT or EXTEND
phrase specified, for that file and before the execution
of a CLOSE statement without the REEL or UNIT
phrase for that file.

* output procedure . A set of statements to which
control is given during execution of a SORT statement
after the sort function is completed, or during
execution of a MERGE statement after the merge
function reaches a point at which it can select the
next record in merged order when requested.

overflow condition . A condition that occurs when a
portion of the result of an operation exceeds the
capacity of the intended unit of storage.

P
packed decimal item . See “internal decimal item.”

* padding character . An alphanumeric character used
to fill the unused character positions in a physical
record.

page . A vertical division of output data representing
a physical separation of such data, the separation
being based on internal logical requirements and/or
external characteristics of the output medium.

* page body . That part of the logical page in which
lines can be written and/or spaced.

* paragraph . In the Procedure Division, a
paragraph-name followed by a separator period and
by zero, one, or more sentences. In the
IDENTIFICATION and ENVIRONMENT DIVISIONs, a
paragraph header followed by zero, one, or more
entries.

* paragraph header . A reserved word, followed by
the separator period, that indicates the beginning of a
paragraph in the IDENTIFICATION and ENVIRONMENT
DIVISIONs. The permissible paragraph headers in the
IDENTIFICATION DIVISION are:

PROGRAM-ID. (Program IDENTIFICATION DIVISION)
CLASS-ID. (Class IDENTIFICATION DIVISION)
METHOD-ID. (Method IDENTIFICATION DIVISION)
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.

The permissible paragraph headers in the
ENVIRONMENT DIVISION are:

SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.
REPOSITORY. (Program or Class CONFIGURATION SECTION)
FILE-CONTROL.
I-O-CONTROL.

Glossary 123

* paragraph-name . A user-defined word that
identifies and begins a paragraph in the Procedure
Division.

parameter . Parameters are used to pass data values
between calling and called programs.

password . A unique string of characters that a
program, computer operator, or user must supply to
meet security requirements before gaining access to
data.

* phrase . A phrase is an ordered set of one or more
consecutive COBOL character-strings that form a
portion of a COBOL procedural statement or of a
COBOL clause.

* physical record . See “block.”

pointer data item . A data item in which address
values can be stored. Data items are explicitly
defined as pointers with the USAGE IS POINTER
clause. ADDRESS OF special registers are implicitly
defined as pointer data items. Pointer data items can
be compared for equality or moved to other pointer
data items.

portability . The ability to transfer an application
program from one application platform to another
with relatively few changes to the source program.

preloaded . In COBOL this refers to COBOL programs
that remain resident in storage under IMS instead of
being loaded each time they are called.

* prime record key . A key whose contents uniquely
identify a record within an indexed file.

* priority-number . A user-defined word which
classifies sections in the Procedure Division for
purposes of segmentation. Segment-numbers may
contain only the characters ′0′,′1′, ... , ′9′. A
segment-number may be expressed either as a one-
or two-digit number.

* procedure . A paragraph or group of logically
successive paragraphs, or a section or group of
logically successive sections, within the Procedure
Division.

* procedure branching statement . A statement that
causes the explicit transfer of control to a statement
other than the next executable statement in the
sequence in which the statements are written in the
source program. The procedure branching
statements are: ALTER, CALL, EXIT, EXIT PROGRAM,
GO TO, MERGE, (with the OUTPUT PROCEDURE
phrase), PERFORM and SORT (with the INPUT
PROCEDURE or OUTPUT PROCEDURE phrase).

Procedure Division . One of the four main component
parts of a COBOL program, class definition, or method
definition. The Procedure Division contains
instructions for solving a problem. The Program and
Method Procedure Divisions may contain imperative
statements, conditional statements, compiler directing
statements, paragraphs, procedures, and sections.
The Class Procedure Division contains only method
definitions.

procedure integration . One of the functions of the
COBOL optimizer is to simplify calls to performed
procedures or contained programs.

PERFORM procedure integration is the process
whereby a PERFORM statement is replaced by its
performed procedures. Contained program procedure
integration is the process where a CALL to a
contained program is replaced by the program code.

* procedure-name . A user-defined word that is used
to name a paragraph or section in the Procedure
Division. It consists of a paragraph-name (which may
be qualified) or a section-name.

procedure-pointer data item . A data item in which a
pointer to an entry point can be stored. A data item
defined with the USAGE IS PROCEDURE-POINTER
clause contains the address of a procedure entry
point.

* program identification entry . An entry in the
PROGRAM-ID paragraph of the IDENTIFICATION
DIVISION which contains clauses that specify the
program-name and assign selected program
attributes to the program.

* program-name . In the IDENTIFICATION DIVISION
and the end program header, a user-defined word
that identifies a COBOL source program.

* pseudo-text . A sequence of text words, comment
lines, or the separator space in a source program or
COBOL library bounded by, but not including,
pseudo-text delimiters.

* pseudo-text delimiter . Two contiguous equal sign
characters (==) used to del imit pseudo-text.

* punctuation character . A character that belongs to
the following set:

Character Meaning
 , comma
 ; semicolon
 : colon
 . period (full stop)
″ quotation mark

 (left parenthesis
) right parenthesis
• space

 = equal sign

124 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Q
QSAM (Queued Sequential Access Method) . An
extended version of the basic sequential access
method (BSAM). When this method is used, a queue
is formed of input data blocks that are awaiting
processing or of output data blocks that have been
processed and are awaiting transfer to auxiliary
storage or to an output device.

* qualified data-name . An identifier that is composed
of a data-name followed by one or more sets of either
of the connectives OF and IN followed by a data-name
qualifier.

* qualifier .

 1. A data-name or a name associated with a level
indicator which is used in a reference either
together with another data-name which is the
name of an item that is subordinate to the
qualifier or together with a condition-name.

 2. A section-name that is used in a reference
together with a paragraph-name specified in that
section.

 3. A l ibrary-name that is used in a reference
together with a text-name associated with that
l ibrary.

R
* random access . An access mode in which the
program-specified value of a key data item identifies
the logical record that is obtained from, deleted from,
or placed into a relative or indexed file.

* record . See “logical record.”

* record area . A storage area allocated for the
purpose of processing the record described in a
record description entry in the File Section of the
DATA DIVISION. In the File Section, the current
number of character positions in the record area is
determined by the explicit or implicit RECORD clause.

* record description . See “record description entry.”

* record description entry . The total set of data
description entries associated with a particular
record. The term is synonymous with record
description.

recording mode . The format of the logical records in
a file. Recording mode can be F (fixed-length), V
(variable-length), S (spanned), or U (undefined).

record key . A key whose contents identify a record
within an indexed file.

* record-name . A user-defined word that names a
record described in a record description entry in the
DATA DIVISION of a COBOL program.

* record number . The ordinal number of a record in
the file whose organization is sequential.

recursion . A program calling itself or being directly
or indirectly called by a one of its called programs.

recursively capable . A program is recursively
capable (can be called recursively) if the RECURSIVE
attribute is on the PROGRAM-ID statement.

reel . A discrete portion of a storage medium, the
dimensions of which are determined by each
implementor that contains part of a file, all of a file, or
any number of files. The term is synonymous with
unit and volume.

reentrant . The attribute of a program or routine that
allows more than one user to share a single copy of a
load module.

* reference format . A format that provides a
standard method for describing COBOL source
programs.

reference modification . A method of defining a new
alphanumeric data item by specifying the leftmost
character and length relative to the leftmost character
of another alphanumeric data item.

* reference-modifier . A syntactically correct
combination of character-strings and separators that
defines a unique data item. It includes a delimiting
left parenthesis separator, the leftmost character
position, a colon separator, optionally a length, and a
delimiting right parenthesis separator.

* relation . See “relational operator” or “relation
condit ion.”

* relational operator . A reserved word, a relation
character, a group of consecutive reserved words, or
a group of consecutive reserved words and relation
characters used in the construction of a relation
condition. The permissible operators and their
meanings are:

Operator Meaning
IS GREATER THAN Greater than
IS > Greater than
IS NOT GREATER THAN Not greater than
IS NOT > Not greater than

IS LESS THAN Less than
IS < Less than
IS NOT LESS THAN Not less than
IS NOT < Not less than

IS EQUAL TO Equal to
I S = Equal to
IS NOT EQUAL TO Not equal to
IS NOT = Not equal to

Glossary 125

IS GREATER THAN OR EQUAL TO
Greater than or equal to

IS > = Greater than or equal to

IS LESS THAN OR EQUAL TO
Less than or equal to

IS < = Less than or equal to

* relation character . A character that belongs to the
following set:

Character Meaning

> greater than
< less than
= equal to

* relation condition . The proposition, for which a
truth value can be determined, that the value of an
arithmetic expression, data item, non-numeric literal,
or index-name has a specific relationship to the value
of another arithmetic expression, data item,
non-numeric literal, or index name. (See also
“relat ional operator.”)

* relative file . A file with relative organization.

* relative key . A key whose contents identify a
logical record in a relative file.

* relative organization . The permanent logical file
structure in which each record is uniquely identified
by an integer value greater than zero, which specifies
the record’s logical ordinal position in the file.

* relative record number . The ordinal number of a
record in a file whose organization is relative. This
number is treated as a numeric literal which is an
integer.

* reserved word . A COBOL word specified in the list
of words that may be used in a COBOL source
program, but that must not appear in the program as
user-defined words or system-names.

* resource . A facility or service, controlled by the
operating system, that can be used by an executing
program.

* resultant identifier . A user-defined data item that is
to contain the result of an arithmetic operation.

reusable environment . A reusable environment is
when you establish an assembler program as the
main program by using either ILBOSTP0 programs,
IGZERRE programs, or the RTEREUS run-time option.

routine . A set of statements in a COBOL program
that causes the computer to perform an operation or
series of related operations. In Language
Environment, refers to either a procedure, function, or
subroutine.

* routine-name . A user-defined word that identifies a
procedure written in a language other than COBOL.

* run time . The time at which an object program is
executed. The term is synonymous with object time.

run-time environment . The environment in which a
COBOL program executes.

* run unit . A stand-alone object program, or several
object programs, that interact via COBOL CALL
statements, which function at run time as an entity.

S
SBCS (Single Byte Character Set) . See “Single Byte
Character Set (SBCS).”

scope terminator . A COBOL reserved word that
marks the end of certain Procedure Division
statements. It may be either explicit (END-ADD, for
example) or implicit (separator period).

* section . A set of zero, one or more paragraphs or
entities, called a section body, the first of which is
preceded by a section header. Each section consists
of the section header and the related section body.

* section header . A combination of words followed by
a separator period that indicates the beginning of a
section in the Environment, Data, and Procedure
Divisions. In the ENVIRONMENT and DATA
DIVISIONs, a section header is composed of reserved
words followed by a separator period. The
permissible section headers in the ENVIRONMENT
DIVISION are:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

The permissible section headers in the DATA
DIVISION are:

FILE SECTION.
WORKING-STORAGE SECTION.
LOCAL-STORAGE SECTION.
LINKAGE SECTION.

In the Procedure Division, a section header is
composed of a section-name, followed by the
reserved word SECTION, followed by a separator
period.

* section-name . A user-defined word that names a
section in the Procedure Division.

selection structure . A program processing logic in
which one or another series of statements is
executed, depending on whether a condition is true or
false.

* sentence . A sequence of one or more statements,
the last of which is terminated by a separator period.

126 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

* separately compiled program . A program which,
together with its contained programs, is compiled
separately from all other programs.

* separator . A character or two contiguous
characters used to delimit character-strings.

* separator comma . A comma (,) followed by a space
used to delimit character-strings.

* separator period . A period (.) followed by a space
used to delimit character-strings.

* separator semicolon . A semicolon (;) followed by a
space used to delimit character-strings.

sequence structure . A program processing logic in
which a series of statements is executed in sequential
order.

* sequential access . An access mode in which logical
records are obtained from or placed into a file in a
consecutive predecessor-to-successor logical record
sequence determined by the order of records in the
file.

* sequential file . A file with sequential organization.

* sequential organization . The permanent logical file
structure in which a record is identified by a
predecessor-successor relationship established when
the record is placed into the file.

serial search . A search in which the members of a
set are consecutively examined, beginning with the
first member and ending with the last.

* 77-level-description-entry . A data description entry
that describes a noncontiguous data item with the
level-number 77.

* sign condition . The proposition, for which a truth
value can be determined, that the algebraic value of a
data item or an arithmetic expression is either less
than, greater than, or equal to zero.

* simple condition . Any single condition chosen from
the set:

Relation condition
Class condition
Condition-name condition
Switch-status condition
Sign condition

Single Byte Character Set (SBCS) . A set of
characters in which each character is represented by
a single byte. See also ″EBCDIC (Extended
Binary-Coded Decimal Interchange Code).″

slack bytes . Bytes inserted between data items or
records to ensure correct alignment of some numeric
items. Slack bytes contain no meaningful data. In
some cases, they are inserted by the compiler; in

others, it is the responsibility of the programmer to
insert them. The SYNCHRONIZED clause instructs the
compiler to insert slack bytes when they are needed
for proper alignment. Slack bytes between records
are inserted by the programmer.

SOM . See “System Object Model”

* sort file . A collection of records to be sorted by a
SORT statement. The sort file is created and can be
used by the sort function only.

* sort-merge file description entry . An entry in the
File Section of the DATA DIVISION that is composed
of the level indicator SD, followed by a file-name, and
then followed by a set of file clauses as required.

* SOURCE-COMPUTER. The name of an
ENVIRONMENT DIVISION paragraph in which the
computer environment, within which the source
program is compiled, is described.

* source computer entry . An entry in the
SOURCE-COMPUTER paragraph of the ENVIRONMENT
DIVISION which contains clauses that describe the
computer environment in which the source program is
to be compiled.

* source item . An identifier designated by a SOURCE
clause that provides the value of a printable item.

source program . Although it is recognized that a
source program may be represented by other forms
and symbols, in this document it always refers to a
syntactically correct set of COBOL statements. A
COBOL source program commences with the
IDENTIFICATION DIVISION or a COPY statement. A
COBOL source program is terminated by the end
program header, if specified, or by the absence of
additional source program lines.

* special character . A character that belongs to the
following set:

Character Meaning

+ plus sign
- minus sign (hyphen)
* asterisk
/ slant (virgule, slash)
= equal sign
$ currency sign
, comma (decimal point)
; semicolon
. period (decimal point, full stop)
″ quotation mark
(left parenthesis
) right parenthesis
> greater than symbol
< less than symbol

 : colon

* special-character word . A reserved word that is an
arithmetic operator or a relation character.

Glossary 127

SPECIAL-NAMES . The name of an ENVIRONMENT
DIVISION paragraph in which environment-names are
related to user-specified mnemonic-names.

* special names entry . An entry in the
SPECIAL-NAMES paragraph of the ENVIRONMENT
DIVISION which provides means for specifying the
currency sign; choosing the decimal point; specifying
symbolic characters; relating implementor-names to
user-specified mnemonic-names; relating
alphabet-names to character sets or collating
sequences; and relating class-names to sets of
characters.

* special registers . Certain compiler generated
storage areas whose primary use is to store
information produced in conjunction with the use of a
specific COBOL feature.

* standard data format . The concept used in
describing the characteristics of data in a COBOL
DATA DIVISION under which the characteristics or
properties of the data are expressed in a form
oriented to the appearance of the data on a printed
page of infinite length and breadth, rather than a form
oriented to the manner in which the data is stored
internally in the computer, or on a particular external
medium.

* statement . A syntactically valid combination of
words, literals, and separators, beginning with a verb,
written in a COBOL source program.

STL . Standard Language file system: native
workstation and PC file system for COBOL and PL/I.
Supports sequential, relative, and indexed files,
including the full ANSI 85 COBOL standard I/O
language and all of the extensions described in
&lrcit..IBM COBOL Language Reference, unless
exceptions are explicitly noted.

structured programming . A technique for organizing
and coding a computer program in which the program
comprises a hierarchy of segments, each segment
having a single entry point and a single exit point.
Control is passed downward through the structure
without unconditional branches to higher levels of the
hierarchy.

* sub-class . A class that inherits from another class.
When two classes in an inheritance relationship are
considered together, the sub-class is the inheritor or
inheriting class; the super-class is the inheritee or
inherited class.

* subject of entry . An operand or reserved word that
appears immediately following the level indicator or
the level-number in a DATA DIVISION entry.

* subprogram . See “called program.”

* subscript . An occurrence number represented by
either an integer, a data-name optionally followed by

an integer with the operator + or -, or an index-name
optionally fol lowed by an integer with the operator +
or -, that identifies a particular element in a table. A
subscript may be the word ALL when the subscripted
identifier is used as a function argument for a function
allowing a variable number of arguments.

* subscripted data-name . An identifier that is
composed of a data-name followed by one or more
subscripts enclosed in parentheses.

* super-class . A class that is inherited by another
class. See also sub-class.

switch-status condition . The proposition, for which a
truth value can be determined, that an UPSI switch,
capable of being set to an ‘on’ or ‘off’ status, has
been set to a specific status.

* symbolic-character . A user-defined word that
specifies a user-defined figurative constant.

syntax . (1) The relationship among characters or
groups of characters, independent of their meanings
or the manner of their interpretation and use. (2) The
structure of expressions in a language. (3) The rules
governing the structure of a language. (4) The
relationship among symbols. (5) The rules for the
construction of a statement.

* system-name . A COBOL word that is used to
communicate with the operating environment.

System Object Model (SOM) . IBM′s object-oriented
programming technology for building, packaging, and
manipulating class libraries. SOM conforms to the
Object Management Group′s (OMG) Common Object
Request Broker Architecture (CORBA) standards.

T
* table . A set of logically consecutive items of data
that are defined in the DATA DIVISION by means of
the OCCURS clause.

* table element . A data item that belongs to the set
of repeated items comprising a table.

text deck . Synonym for object deck or object module.

* text-name . A user-defined word that identifies
library text.

* text word . A character or a sequence of contiguous
characters between margin A and margin R in a
COBOL library, source program, or in pseudo-text
which is:

• A separator, except for: space; a pseudo-text
delimiter; and the opening and closing delimiters
for non-numeric literals. The right parenthesis
and left parenthesis characters, regardless of

128 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

context within the library, source program, or
pseudo-text, are always considered text words.

• A literal including, in the case of non-numeric
literals, the opening quotation mark and the
closing quotation mark that bound the literal.

• Any other sequence of contiguous COBOL
characters except comment lines and the word
‘COPY’ bounded by separators that are neither a
separator nor a literal.

top-down design . The design of a computer program
using a hierarchic structure in which related functions
are performed at each level of the structure.

top-down development . See “structured
programming.”

trailer-label . (1) A file or data set label that follows
the data records on a unit of recording medium. (2)
Synonym for end-of-file label.

* truth value . The representation of the result of the
evaluation of a condition in terms of one of two
values: true or false.

U
* unary operator . A plus (+) or a minus (-) sign, that
precedes a variable or a left parenthesis in an
arithmetic expression and that has the effect of
multiplying the expression by +1 or -1, respectively.

unit . A module of direct access, the dimensions of
which are determined by IBM.

universal object reference . A data-name that can
refer to an object of any class.

* unsuccessful execution . The attempted execution of
a statement that does not result in the execution of all
the operations specified by that statement. The
unsuccessful execution of a statement does not affect
any data referenced by that statement, but may affect
status indicators.

UPSI switch . A program switch that performs the
functions of a hardware switch. Eight are provided:
UPSI-0 through UPSI-7.

* user-defined word . A COBOL word that must be
supplied by the user to satisfy the format of a clause
or statement.

V
* variable . A data item whose value may be changed
by execution of the object program. A variable used
in an arithmetic expression must be a numeric
elementary item.

* variable length record . A record associated with a
file whose file description or sort-merge description
entry permits records to contain a varying number of
character positions.

* variable occurrence data item . A variable
occurrence data item is a table element which is
repeated a variable number of times. Such an item
must contain an OCCURS DEPENDING ON clause in its
data description entry, or be subordinate to such an
item.

* variably located group. . A group item following, and
not subordinate to, a variable-length table in the
same level-01 record.

* variably located item. . A data item following, and
not subordinate to, a variable-length table in the
same level-01 record.

* verb . A word that expresses an action to be taken
by a COBOL compiler or object program.

VM/SP (Virtual Machine/System Product) . An
IBM-licensed program that manages the resources of
a single computer so that multiple computing systems
appear to exist. Each virtual machine is the
functional equivalent of a “real” machine.

volume . A module of external storage. For tape
devices it is a reel; for direct-access devices it is a
unit.

volume switch procedures . System specific
procedures executed automatically when the end of a
unit or reel has been reached before end-of-file has
been reached.

W
* word . A character-string of not more than 30
characters which forms a user-defined word, a
system-name, a reserved word, or a function-name.

* WORKING-STORAGE SECTION . The section of the
DATA DIVISION that describes working storage data
items, composed either of noncontiguous items or
working storage records or of both.

Z
zoned decimal item . See “external decimal item.”

Glossary 129

130 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

List of Abbreviations

APAR authorized program analysis
report

API application program interface

APPC advanced
program-to-program
communication

APPN advanced peer-to-peer
network

ASCII American National Standard
Code for Information
Interchange

C&SM communication and systems
management

CICS customer information control
system

CICS/DDM CICS.distributed data
management

COBOL Common Business Oriented
Language

CSD corrective service diskette

DB2 DATABASE 2

DBCS double byte character set

DFM distributed fi le manager

DFSMS data facility storage
management

DFSMShsm DFSMS hierarchical storage
manager

DFSMS/MVS DFSMS/multiple virtual
storage

DLC data link control

EBCDIC extended binary coded
decimal interchange code

FAT fi le allocation table

FTP f i le transfer program

GID group identif ication

GUI graphical user interface

HPFS high performance fi le system

I/O input/output

IBM International Business
Machines Corporation

IEEE Institute of Electrical and
Electronic Engineers

IP Internet protocol

ISPF interactive system
productivity facil i ty

ITSO International Technical
Support Organization

JCL job control language

LAN local area network

LAPS lan adapter and protocol
support

LPEX l ive parsing editor

LU logical unit

MPTN multi-protocol transport
networking

MVS multiple virtual storage

MVS/ESA MVS/enterprise systems
architecture

NFS network fi le system

NFSCTL network fi le system client
latest

NT new technology (Microsoft
Windows NT)

OS/2 operating system/2

OS/390 operating system/390

OS/400 operating system/400

PC personal computer

PCNFSD personal computer network
file system daemon

PDS partit ioned data set

PDSE partitioned data set extended

PING packet internet groper

REXX restructured extended
executor language

RPC remote procedure call

SAM sequential access method

SdU SMARTdata Util i t ies

SNA Systems Network
Architecture

SQL structured query language

TCP/IP transmission control
protocol/ internet protocol

TP transaction program

TSO t ime sharing option

UDP user datagram protocol

URL uniform resource locator

VM virtual machine

VSAM virtual storage access
method

 Copyright IBM Corp. 1997 131

XID exchange identif ier

132 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

Index

A
abbreviations 131
acronyms 131
APPC

Communications Manager/2 installation 31
configuration 30
host configuration 54
product requirement 3
SMARTdata Util i t ies 53
workstation connection to host 51

B
bibliography 105

C
Communications Manager/2

APPC installation 31
configuring for APPC 40

compil ing
host application 73

D
DB2

host database creation 85
sample application 84

debugger
application 76
breakpoints 84
call stack 83
debugger 80
step into 80
step over 79

drive mapping
specifications 13

E
Editing

through WorkFrame 69

F
f i le name mapping

definition in MVSINFO 13
host configuration 21
support for 16

G
glossary 111

H
host access

starting from workstation 17

J
JCL members

creation 89
job status

through WorkFrame 73

M
MVS data types

sample 93
MVSINFO file

overview 12

N
NFS kit

APAR installation 11
APAR requirement 4
CSD installation 11
CSD requirement 4
software requirement 4

O
OS/2

APPC configuration 29
TCP/IP configuration 4
version required 3

P
protected saving

overview 17

R
remote compil ing

through WorkFrame 73
remote debugging

through WorkFrame 76
Remote editing

through WorkFrame 69

S
SMARTdata Util i t ies

configuration with APPC 53
overview 29

submitting MVS jobs
through WorkFrame 73

 Copyright IBM Corp. 1997 133

T
TCP/IP

configuring 4
host connection test 11
IP address 5
mount command 12
NFS kit requirement 4
NFS mapping 24
PING command 6
product requirement 3
using FTP 25

U
userid

in MVSINFO.DAT 13

V
VSAM

accessing data 93
creating host file 94
relation to SMARTdata Util it ies 94
software requirements 3

W
WorkFrame

defining an application 59
MVS edit 69
MVS job status 73, 74
MVS SYSOUT 73
submit MVS job 73

134 Remote E/C/D - VisualAge COBOL 2.0 on OS/2

ITSO Redbook Evaluation

VisualAge 2000 - Remote Edit, Compile, and Debug Using VisualAge COBOL 2.0 on OS/2
SG24-2245-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.com
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@vnet.ibm.com

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction ____________

Please answer the following questions:

Was this redbook published in time for your needs? Yes____ No____

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

 Copyright IBM Corp. 1997 135

IBML 

Printed in U.S.A.

SG24-2245-00

	VisualAge 2000 - Remote Edit, Compile, and Debug
	Using VisualAge COBOL 2.0 on OS/2
	VisualAge 2000 - Remote Edit, Compile, and Debug
	Using VisualAge COBOL 2.0 on OS/2
	Contents
	Figures
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. Introduction
	Chapter 2. Remote E/C/D with TCP/IP and NFS on OS/2
	Configuring Communications for TCP/ IP
	Configuration of TCP/ IP on the Workstation
	MVSINFO. DAT File Explanation
	Accessing the Host from the Workstation
	Configuring the Host for TCP/ IP and File Mapping
	Upload Workstation Files Using FTP

	Chapter 3. Remote Edit, Compile, and Debug with APPC on OS/2
	Configuring Communications for APPC
	Installing Communications Manager/ 2 for OS/ 2 Warp
	Configuring Communications Manager/ 2 for OS/ 2 Warp
	Set up the PC to Connect to the Host
	Configuration of SMARTdata Utilities on the Workstation
	Configuring the Host for APPC
	Accessing the Host from the Workstation

	Chapter 4. Creating Applications Using Remote E/C/D on OS/2
	Running a Sample Application on the Workstation
	Defining the Application on the Workstation
	Editing, Compiling, and Running the Application Remotely
	Debugging the Application
	Summary of Debugger Functionality and Additional Features
	DB2 Sample
	Create a New Database on the Host
	Create JCL Members to Compile the COBOL Program
	Creating the Project and Running the DB2 Sample

	Chapter 5. MVS Data Types Sample
	Appendix A. DFM/ MVS DataAgent
	Appendix B. Contents of the Enclosed Diskette
	Appendix C. Special Notices
	Appendix D. Related Publications
	D. 1 International Technical Support Organization Publications
	D. 2 Redbooks on CD- ROMs
	D. 3 Other Publications

	How to Get ITSO Redbooks
	How IBM Employees Can Get ITSO Redbooks
	How Customers Can Get ITSO Redbooks
	IBM Redbook Order Form

	Glossary
	A
	C
	B
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	U
	W
	Z
	List of Abbreviations
	Index
	A H
	J
	M B
	C
	N
	D
	O
	P
	E R
	F
	S
	G
	T
	U
	V
	W
	ITSO Redbook Evaluation

