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1. INTRGDUCTION

Abstract

Photons and neutrinos are modeled as oscillatory states of the electromagnetic field confined
within a local domain, the motion of which is governed by Maxwell’s equations. The size
and shape of the domain are limited by the relativistic principle of causality; ie., the
tnterval between events within the domain is timelike. These localized, soliton waves ure
called “wavicles.”

The solutions of Maxwell’s equations are eigenstates of the intrinsic (spin) angular
momentum with eigenvalues kKh, K being an integer or half-integer. The causally limited
domain is a circular ellipsod of length X (the wavelength) and circumference k\. The
solutions possess helicity, which for X = 1 correspond to left or right circularly polarized
Iight, and for k = | to the neutrino and the antineutrino.

This wavicle model of the photon correlates very well with many of the experimental
properties of light. It predicts how light is transmitted through apertures: W' report u
confirmatory measurement of the photon’s diameter for microwaves. Multiphoton pheno-
mena are predicted to occur above the observed intensity thresholds. The production of
multiphoton wavicles tn stimulated emission explains the occurrence of photon bunching.
The wavicle also explatns the divectional and polarization properties of a helical microwave
antenna.

The photon wavicle is the physical basis of the Heisenberg uncertainty principle; ie., the
wavicle is the quantum of action. The product of the wavicle’s length and momentum is its
relativistically tnvariant action kb This action 15 necessarily involved in any observable
process in which the wavicle is totally absorbed or emitted.

Key words: photon, neutrino, wave-particle duality, Maxwell’s equations, multiphoton,
relativistic causality, spin angular momentum, Heisenberg uncertainty principle,
Planck’s constant

regards an elementary particle as electromagnetic energy contained within

The wave-particle duality exhibited by photons and other elementary
particles is commonly accepted as a classical paradox that 1s inherent in
quantum mechanics.!) Qn the other hand, it is believed that the
coexistenice of wave and particle properties may be reconciled through a
description in tecms of hidden variables.®) These two beliefs differ in
philosuphical outlook. The former maintans that it is futile to be
concerned with quaniities that are not observable because of the
Heisenberg uncertainty principle, whereas the latter asserts that the
elements.of nature should be capable of objactive description regardless of
experimenial measurements. The issues and history of this controversy are
discussed in a tribufe to de Broglie.?) A recent proposition is that the state
of a systein in berween measurement events may have simultaneously
well-defined values of noncommuting observables.¥

The dichotomy of the wave-particle duality arises because pasticles are
regarded as pointlike objects having both position and momentam. This
concept of particle is necessarily dichotomous, because its position and
momentum are subject to the minimum uncertainties asserted by the
Hianberg uncertainty principle. In contrast, the theory presented here

a finite domain. Hence its position is essentially uncertain within the linear
size of the domain, and its momentum 1s distributed throughout ihc
domain. This leads to the idea that the minimum quantum of action arises
in interactions of the particle (observable processes), because the particle
cannot transfer its distributed momentum in less time than is taken for it
to traverse the length of its own domain. To emphasize its non-point-like
nature we refer to this kind of particle by Eddington’s term “wavicle.”

Our wavicle concept of a particle is a pure field model. The particle’s
entire energy and action are derived from the oscillatory/rotational
moticn of its localized field. For the photon (at least) the field must be
the electromagnetic field. This qualitative concept led us to consider the
nature of the angular momentum and of the electromagnetic field and
the relationship between them.

In Newtonian mechanics anguiar momentum s represented by a second
rank, three-dimensional, skew-symmetric tensor, and because such a
tensor has just three nonzero elements, it may alternatively be regarded
as an axial (pseudo) vector. In relativistic mechanics angular momentum
is also a second rank, skew-symmetric tensor,”” but bring four-
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dimensional, it has six nonzero elements. These six components may be
regarded as two Newtonian (three-component) axial vectors: the orbital
and spin angular momenta. This separation into spin and orbital vectors is,
however, not gauge invariant,(*) and hence it is an approximation; the total
angular momentum represented by the six-component tensor field is
physically significant and mathematically correct.

The electromagnetic field has the same mathematical structure as that of
angular momentum. When Maxwell’s equations are written in tensor form
the six electric and magnetic field components appear as the nonzero
elements of a four-dimensional, second rank, skew-symmetric ten-
sor. 8410 Regarding the electromagnetic field as two three-vectors (the
electric and magnetic fields) is similar to the view of angular momentum
as being composed of orbital and spin vectors; it appeals to human
three-dimensional visualization, but the corresponding skew-symmetric
tensors are fundamental.

In so far as physically distinct properties usually have mathematically
distinct representations, we conjecture that the clectromagnetic field is
essentially angular momentum in four-dimensional space-time. This idea
is applied to modeling of the structure of elementary particles. An
elementary particle is regarded as a packet of electromagnetic action
(angular momentum) localized in space-time, the motion of which is
governed by Maxwell’s equations. The field’s motion within the packet
is necessarily nonrectilinear, and hence it generates a local metric that
manifests itself as the inertia (mass, momentum) of the particle. A similar,
pure field model of elementary particles has been developed by
Jennison. (1!

In this article this general concept of a wavicle is elaborated for particles
moving at the speed of light, being developed most fully for the photon.
The free-field Maxwell equations are especially tractable in the case of
particles moving at the speed of light, and so for our first application
of the wavicle theory we choose to model light-speed particles, and in
particular the photon. Preliminary accounts of this work have appeared

in conference proceedings. 12413

2. THEORY OF ELECTROMAGNETIC WAVICLES
2.1 Concepts of the Photon
Several dynamical models of the photon have been proposed dating back
to the work of Thomson.(*H?) More recent theories include the half-
wave model of Honig!!®)and the three-wave model of Kostro.21422
Our own work was initiated by an analysis of Einstein’s photon-
defining equation

E=hvorEr=h 0
by Wadlinger,?%) a synopsis of which is as follows:

Units Analysis. Since the units of the period 7 are s/cycle, then Planck’s
constant & must have the dimensions of J - s/cycle for the units of E to
be simply J. Thus, since k-is the action carried by a single photon [the
essence of Eq. (1)], its units are also J - s/photon, and hence we must
equate photon with cycle.

It follows that the photon acts for one cycle of the oscillation; Le., it
acts for a time period 7 = 1/, and its effective length is the
wavelength A = ¢/v. )

This conclusion is, of course, contrary to the Copenhagen philosophy
that one cannot know what one cannot measure, the basis of which is

the Heisenberg uncertainty principle
AEAT Z b, (2)

which expresses a minimum for the product of the uncertainties AE and
A (intrinsic experimental errors) in simultancous measurements of the
energy E and time . This experimental limitation (2) must not be
confused with (1), which expresses a precise relationship between the
photon’s energy E and its period of oscillation r. Contrary to
the Copenhagen philosophy we shall see that nonmeasurable properties,
such as the photon’s length, do have predictive value (Secs. 3.1 to
3.3).

The conclusion from the units analysis®® that the photon is one
wavelength long is compatible with the particlelike behavior exhibited
in the photoelectric and Compton effects.

Our original objective was to produce a model of an isolated photon, for
while single photons are not directly observable, they are believed to be of
common occurrence; €.g., the emission of a single photon when an atom
decays from an excited state to a lower state. Atomic line spectra show that
the emitted photon must have a well-defined energy and frequency, and

. that the process must take place within a time 7, that is shorter than the

average lifetime of the excited state. Hence the length and radial breadth
of the photon can be 0o larger than 7c. The lifetimes of excited states are
typically a few orders of magnitude larger than the period of oscillation of
the emitted photon; this is consistent with the deduction from the units
analysis® that the photon’s size is X.

This photon size is supported by Mandel’s result: The number of
photons within a volume ¥ is only meaningful if the linear dimension of V
is larger than the wavelength of any occupied mode of the field. This
implies that a photon cannot be localized within-a length less than its
wavelength, thus suggesting that the linear size of the photon is of the
order of its wavelength. A relativistic argument based upon packets of de
Broglie waves also leads to the conclusion “that the energy of a photon lies
largely within one wavelength ™9

Einstein,® Planck,® and Lewis®® (who coined the term “photon”)
believed that the photon is a localized packet of electromagnetic energy.
Our objective is to quantify their qualitative concept.

Our basic concept is that a photon is electromagnetic energy moving at
the speed of light within a volume that is limited in extent both along and
perpendicular to its direction of propagation. This qualitative model is in
accordance with simple observations on rays of light.

2.2 Solution of the Wave Equation

We seck solutions of Maxwell’s equations for a field moving at the
velocity of light within a domain that is localized along the axis of
propagation. Maxwell’s equations can be transformed into d’Alembert’s
wave equation!

33/ax + %/3y? + 3%prazt = 1/t X ahrat 3)

where ¢ is the velocity of light, and ¢ is any one of the Cartesian electric
and magnetic field components E,, E, E,, H, H, H,. Solution of the
wave equation (3) is attractive, because it only involves one of the six
components, but the Maxwell equations are fundamentally definitive; once
Eq. (3) has been solved for one component, the other five components are
defined by it through Maxwell’s equations.
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For 2 wave traveling in the positive z direction the solution is a function
of u =z — ct® This relationship between z and ¢ simplifies the
four-variable partial differential equation (3) by separating (2, #) from
(%, y). The separation is complete in the sense that there is no separa-

tion constant connecting the (2, ¢) equation with the (x, y) equation; i.e.,

the (z, ) equation
/a2 = L/ X alyrart (4)

is an identity for ¢ = y{x, y, z — cf). The solution {(x, y, z — cf) could
have almost any dependence upon # = z — c¢f. However, we seek
solutions that are oscillatory functions of the time ¢, and assuming the
separable product form

Ux 3,z = o) = flx, 5)S(), ()
we find that S(u) is either
S(u) = §y exp(2miu/d) (62)
or
S(u) = Sy exp(—2miusA) - (6b)

with A being the wavelength of the oscillation. This form is characteristic
of nonspreading, solitary waves,?” which leads us, together with the
following consideration, to keep only (6a) for a single value of A.

The components of the electromagnetic field, such as E, and H,, are
field amplitudes that are operationally similar to Schrodmgcr wave
functions * The first form for S [(6)] is an eigenfunction of the
operator for the z-component of linear momentum [P, = (#/1)d/92] with
cigenvalue +4/); ie, the de Broglie momentum in the positive z
direction. This accords with S(u) representing 2 wave moving in the
positive z direction. The second form for S(u) [(6b))] is an cigcnﬁmction of
P, with cxgcnvaluc —hk/\. However, the correct form for a wave moving in
the negative z direction is exp[—27i(z + c)/AJ® Hence Eq. (6b)
represents a negative energy state, which is physically untenable. Since an
isolated particle should have a well-defined momentum in the z direction,
we select a single value of A in Eq. (6a) as being appropriate to the field of
a single particle. Incidentally, a linear combination of exp[+2zfz -
)/ and exp[—2mi(z + cf)/A] could represent positron-clectron
annihilation, where two photons are emitted moving in opposite
directions 3!

The separated (x, y) equation is simply Laplace’s equation in two
dimensions.*?) The rectilinear motion along the z-axis favors the use of
cylindrical coordinates (r, ¢) related to xand yby x = rcos g and y =
r sin ¢, while maintaining Eq. (3) as a differential equation for only one of
the eleciromagnetic field components favors solving for the Cartesian
COII(I ’?;?ts E, and E,, rather than the cylindrical components E, and
E,.

The solution of Laplace’s equation in cylindrical coordinates yields the
following form for the solution x{x of d’Alembert’s equation (3):

U @ %) = (af + Bg) X (AP + BQ) X S(u), 0

where f = rt, g = r ™%, P = explike), Q = exp(—ikg), S(u) is defined by
Eq. (6a), and a, 8, 4, and B are the arbitrary constants of the general
solution. The constant & (really k?) is the separation constant that arises
when r and ¢ are separated ®? The most general solution of (3) will be a
linear combination of terms of the form of {7) for different values of k, but

as will be shown below, the field of an elementary particle is represented
by (7) for a single value of k. Fields representing more than one particle
may contain terms of the form of (7) for more than one value of , but
they are not considered any further in this article.

A sufficient condition for the physical requirement that the field be
single-valued is that k be an integer, but as will be shown below,
half-integer values of % also produce single-valued fields. In view of the
occurrence of =k in (7) we can restrict & to non-negative values without
loss of generality.

2.3 Solution of Maxwell’s Equations

The form (7) is the solution of d’Alembert’s equation (3), and each of
the six components of the electromagnetic field will have this form, with
different constants a, 8, 4, and B for each component. We designate these
different component constants by subscript numerals: C; = E,, C, = E,
G=E,C=H,C=H,C=H, whcrersanyoncofa,,B, ,
and B.

It is reasonable to assume that all six components have the same S(x)
factor, otherwise different components would be oscillating at different
frequencies. With the assumption of 2 common S{u) factor, substitution of
the form (7) for H,, H,, and E, into the Maxwell equation

‘ dH,/3y — dH/3z = QIE /ot 8
leads to _
(/) fTAeP(k — 1) — Bk — 1)] + BegldeP(k + 1)
= BeQ(k + 1)} = @mN{(asf + Bsg) X [AsP(k)
+ BsQ(R)| — edayf + Big) X [AP(R) + BOR)Y,  (9)

where P(k = 1) = exp[i(k == 1)¢] and Q(k 1) = exp[~ik % 1)g].
Now, since the powers of r, *~L, #™4L ¢ and r~* are linearly
independent, it follows that the lefi-hand sxdc of (9) must be zero, and
hence that ag = B¢ = 0 (ie, H, = 0). By the same argument the
right-hand side yields H, = eycE_. Similarly, the Maxwell equation

3E 18y — 3E 3z = —pdH J3t (10)

leads to the conclusions that E, = Q and H, = —¢¢E,. These results are
summarized by

H,=E =0 H=¢E, H= —¢cE, (1

from which it follows that two more of Maxwell’s equations
3H,/3z — 3H,/3x = 3E /ot
oE 19z — 9E,/9x = ~iodH /0t

are automatically satisfied.!

The remaining four Maxwell equations?” reduce to a single indepen-
dent equation — because of Eq. (12), and because the components satisfy
Laplace’s equation. This single independent equation may be chosen as

3E,/dx = E /by, (13)
and on substituting the form (7) this becomes
(eof ;P(k = 1) + ByO — 1] — Bygfd:P(k + )
+ B,Q(k + 1)]}
= i{a flA Pk — 1) - Bk — 1)]
+ BgA Pk + 1) — BOk + 1]} (19

(12).
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Since the powers of r, f = r* and g = r ¥, are linearly independeant, and
since P(k £ 1) is linearly independent of Q(k = 1), it follows that

@B, = —iayBy
BBy = BBy By = —iB4;. (19

These rclauonshlps between the arbitrary constants of E, and E, may be
simplified to

(XzAZ - ialAl

a=a = a B:ﬂl:—ﬁz
A =Al 1A2 B= B[ lBZ (16)

Hence, in summary, the general solution of Maxwell’s equations for a free
electromagnetic field moving at the velocity of light in the positive z
direction, for a particular value of 4, is

Ez = Hz =9
E, = (of + Bg) X (AP + BQ) X S(u) = 17
E, = i(af - fg) X (AP — BQ) X S(u) = —pocH,

where f = r%, g = r™% P = exp(ike), O = exp(—ike), Sl = 2z — cf) =
So exp(2miu/), and a, B, 4, and B are-the arbitrary constants of the
general solution. The constant k determines the angular momentum of
the field, as explained below.
2.4 The Valid Values of &

Points of the wave (17) having the same phase angle § are related by

2ould ke = 9, (18)

the upper (+) sign being for B = 0 and the lower (=) for 4 = 0. If
the amplitude is also constant, then we have the additional constraint
r = const.

For a point of the wave moving forward at velocity ¢ (i.e, u = z —
¢t = const), these equations imply that the phase point remains in the
plane ¢ = const. A snapshot of the equiphase points (i.c., ¢ = const) is a
helix about the z-axis. For z = const the trajectory of the phase point is a
circle in the plane z = const, centered on the z-axis.

Differentiation of (18) with respect to ¢ (with z const) produces the
following expression for the angular velocity of the wave w = 3¢/dt:

w = g/dt = F2me/(RA) = +2mv/k. (19)

Thus the angular velocity o is only equal to 2zv (v = ¢/ being the
oscillatory frequency) when k = 1.

When the angle ¢ transits a full circle (i.e., Ag = 27), the u coordinate
of the phase point must change by Au = ==\. Since ¢ is an angle, while u
is a linear variable, both cases (+ and —) are possible regardless of
whether A = 0 or B = 0. For a pair of equiphase points separated by this
interval, the field must be single-valued, and since

e + Ag, u + Au) = Yr, ¢, 1)

X explin{2nAu/A * kAg)], (20)
the single-valued condition requires that
(2abu/X + kAg) = n X 2n, (1)
where n is an integer.
Substitution of Ap = 27 and Au = kX yields
2k = n (22)

ie, k = n/2 where nisan mteger The parameter % can take any mteger
or ha1f~mtcgcr value k = 0,4, 1,4, 2, etc.

Alternatively, this result is derived by considering the general case 4 #
0and B # 0. In this case  (specifically E,) is proportional to [AP(kg) +
BQO(kg)] X (). Consider the transformation (¢ — ¢ + Ag, u = u +
Au). If Ag = 2a, the first factor {4 P(ky) + BQ(ke)] is invariant when k is
an integer, and it changes sign when £ is a half-integer (odd integer/2).
For other fractional values of & (such as an odd integer/4) the transformed
first factor is not a multiple of itself, and hence such values of & are
obviously invalid. For ¢ to be invariant under the transformation, the
second factor S{u) must itself be invariant when k is an integer, and it
must change sign when & is a half-integer. Both cases (k integral and
half-integral) are satisfied if Au is related to Ap = 27 by the constant
phase condition (18).

In summary: Because the field amplitude ¢ is a product of two
oscillatory factors, half-integer as well as integer values of & allow the field
to be single-valued. Only integer values would be allowed if there were
only one factor or if we thought of Ap and Au as being independently
variable, rather than being related by the constant phase condition. That
wave functions may have geometric phase factors [exp(ike)] in addition to
a time-dependent phasc [exp(tkwt)] has been mvaugated (in a different
context) by Berry M3 In Berry’s work, as in ours, k may be half-
mtcgral as well as integral; i.c., the phase factor may change sign for a
rotation through a full cycle of ¢ = 2¢.57
2.5 The Domain of the Wavicle

One of our basic precepts about a wavicle is that it is a causally related
entity; ie., the interval between cvents within the wavicle must be
timelike.™!% The infinitesimal interval ds between a pair of contiguous
events is expressed by

& = M - d2? —di? - dy!, (23)
and in cylindrical coordinates by
ds? = 2 ~ d2? —dr? — Pt (24)

In view of the rotational motion of the field, the finite interval between
a pair of noncontiguous events As> must be computed along the geodesics
of the nonrectilinear (helical) motion.® The geodesics are defined by
the equal-phase condition (18) and r = const. Thus we have dr = 0, and
from (19)

2t = (I2m) et {25)

Combining this relation with (24) we obtain the expression for a finite
interval along a geodesic:

As? = [(k\/27)2 — rYAg? — AR

This is the interval between a pair of points having the same phase angle
and the same amplitude. For this interval to be timelike As* = 0, and the
domain of the wavicle is bounded by the null geodesics As*> = 0.

Considering 2 plane z = const (Az? = 0) the radius r must satisfy the
relation

(26)

r = kA/2a. (27)
The equality in (27) defines the wavicle’s maximum transverse radius:

Tome = BA/27. (28)
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At this radius the pair of causally related events unite into a single
event, because the proper time between them is zero. That is, all phase
points on a circle of radius r,,, correspond to a single relativistic event.
From (19) and (28). the tangential velocity of the rotating field at this
radius, wr,,, is equal to the velocity of light c.

The wave motion repeats itself when At = Me (the period of the
oscillation), and from (25) this period is equivalent to Ap = 2x7k. Thus
the interval between identical, repeating points of the wave is

As? = Az? + Qar/k)? - AL, (29)

For a null geodesic As? = 0, this pair of points coalesces into 2 single
relativistic event, and hence the wave is bounded by a null geodesic surface
defined by

Qar/N)? + (Az/N)? = 1. (30)

For r = const this is the equation of a pair of points on an ellipse. If the
origin (z = 0) is chosen to be at the center of the ellipse, then the locus of
all such pairs of poiats is

Qur/kN)? + (22/0)?% = 1. (31

This is the equation of an ellipse with the length of one axis (along the
z-axis) being A and that of the other axis (along a redius rin the x — y
plane) being kA/7. :

The wavicle's field is contained within the ellipsoid obtained by
revolving the ellipse of Eq. (31) about the z-axis. The ellipsoidal surface is
the Iocus of all null geodesics (As? = 0) between pairs of equiphase, equal
amplitude points on it. The r-axis of the ellipse becomes the diameter
of the cylindrical ellipsoid at z = 0; the circumference of the ellipsoid at
z =0is kA

The ratio of the r-axis to the z-axis is k/x. For k < 3 the r-ais is the
minor axis of the ellipse, and the z-axis is its major axis. For k = 3
the ellipsoid is prolate; for & = 3 it is almost spherical; for k = 7/2 it is
oblate. :

Containment of the oscillating field within the finite region of space
within the ellipsoid is consistent with Love’s study of wave-motion with
discontinuous boundaries®® The relationship between solutions of the
wave equation (3) and non-Euclidean space-time metrics has been
considered by Flint and Fisher %

Notwithstanding Love’s work®® and our invocation of the relativistic
principle of causality to limit the domain of the wavicle’s field, we must
concede that it leaves unresolved the radial dependence of the field
componeats; i.e., the values of a and B in (7). Thomson was faced with
the same problem.!'” Furthermore, soliton waves are described by the
solutions of nonlinear wave equations®MOHE) ¢ Alembert’s linear
equation (3) (used in this work) is a first approximation to the noalinear
sine-Gordon equation?”) In this regard the present theory must be
regarded as incomplete.

2.6 Angular Momentum Eigenfunctions

In view of the cylindrical symmetry of the field’s motion, we would
expect it to be an eigenfunction of L, the component of angular
momentum about the axis of propagation. This angular momentum
operator is

L, = h/(2m)3/de. * (32)
Identification of L, (usually the operator for the z-component of orbital

angular momentum) with the spin angular momentum is justified by the '
theoretical result that for light-speed particles (photons and neutrinos)
the orbital a&gular momentum 15 indistinguishable from the spin angular
momentum.(+)

Physically appropriate solutions arise in the following way. The form
exp( +ike) is an eigenfunction of L, with eigenvalie + A, and similarly,
the eigenvalue of exp(—ike) is —kk. Since the field is to represent a
fundamental particle, the only angular momentum must be intrinsic
angular momentum,; i.e., spin, and since a particular particle is known to
always have the same spin, its field must be of the form of (17) for a single
value of k.

The general form of the L, eigenfunctions is deduced as follows.
Operation of L, on the nonzero components of (17) produces

LE, = k(af + Bg) X (AP — BO) X SW) = poeL H, (3%)
LE, = kh exp(in/2) X (af — Bg) X (AP + BQ)
X ) = ~poel H,  (33b)
It is apparent that if one of A and B is zero, then all four components
are eigenfunctions of L, with the same eigenvalue. If B = 0, the

eigenvalue is +kk, and if A = 0, it is —kk. There is, however, a more
general form for the eigenfunctions. The field F defined by

F= = [E = (ue/i)H)/2 = (B ¥ igdH)2 (34)

has fin view of (17)] the simple form
F* = S(afBO + BedPXi - i}) (352)
F~ = S(afAP + BgBOX: + i), (35b)

where sand ; are the Cartesian unit vectors and { = exp(in/2)
=-L

This vector field is an eigenfunction of L, if any one of the four constants
@, B, A, and B is zero. Thus it can be an eigenfunction of L, even if both 4
and B are not zero; in this case, the electric and magnetic field components
themselves are not eigenfunctions of L,. In the special cases where the radial
dependence of the field is either monotonically increasing (ic., 8 = 0) or
decreasing (i.e., « = 0) with increasing radius, the L, eigenvalues of F * and
F~ are given by

a=0 =0
F*' +kh  —ki (39
F~  —kh  + hkh.

-

The vector field F= is a particular combination of the six nonzero
components that comprise the Lorentz invariant elecromagnetic field
tensor.! That it is an eigenfunction of L, when E and H are not
separately eigenfunctions (i.e., 4 # 0 and B # 0) as well as when they are
eigenfunctions (i.e., A = 0 or B = 0) is a reflection of the fact that the
clectromagnetic field should be regarded as a second-rank tensor in
four-dimensional space-time, rather than as two three-dimensional
vectors.

The case of A = *B and k = 1 corresponds to plane (i.e., linearly)
polarized light. That the wavicle field (17) can be an eigenfunction of L.
in this case (if @ = 0 or B = 0) accords with the existence of
plane-polarized photons as well as circularly polarized photons (4 = 0 or
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B =1q). More generally, it allows for elliptically polarized photons (|4| #
|B|), since the photon field must always be an c1gcnf1mct10n of L. A
reason for choosing B = 0 is given in Sec. 2.8.
2.7 The Cylindrical Field and Spin-cigenfunctions

The radial and tangential componeats, £, H,, E, and Hg, are defined in
terms of the Cartesian components E, H,, E, and H, by '

E =E cose+ Eysinq: H,=HxCOS«p+HySinq>
E‘P= —E,sinqa+Eyc05<p H?:

37
—H sing + HyCOSQ.

Substitution of the forms of the Cartesian components from (17) yields
(after some simplification):

E, = Sw){af[AP(k + 1) + BOGk + 1)]
+ BelAP(k — 1) + BQ(k — 1)} = pocH, (382)

E, = exp(—in/2)S(w){—f[AP(k + 1) + BOk + 1)]
+ Bg{AP(k — 1) = BQ(k — 1)]} = —pocH,  (38b)

where P(k = 1) = exp[i(k = l)g], Q(k % 1) = exp[—i(k % l)g]; the
other components are defined immediately after Eq. (17).

A special case worthy of note is that if a = 0 (radial dependence of the
field = r %) and £ = 1 (the photon), then all four cylindrical components
are independent of the angle . This special case raises this question: How
can the angular momentum operator L, = (% /i)3/3¢ operating on the
cylindrical components reproduce the eigenvalues computed from the
Cartesian components? The answer is that while the components
themselves may(inthisspcdalmsc)bcindcpcndcntofq;,thccurviﬁncar
unit vectors ¢, and &, are not fixed in space, and hence they are functions
of ¢. By, cxprcssmg thcm in terms of space-fixed Cartesian unit vectors
(z and ]) it is easily shown that

9,/99 = &y and g/t = 2. (39)

Hence, writing E = E,¢, + Eq,c adH=He, + Hq,eq,,itiscasily
proved that E and H are cxgcnfuncuons of L, (whcn A=00rB=0)
with the same eigenvalues derived in Scc. 2.6 from the Cartesian
components of E and H.

Thus, while the individual cylindrical components E,, Eg, H,, and H,
are not eigenfunctions of L, (as is obvious in the special case, because they
are independent of ¢), their vectorial combinations E and H are
eigenfunctions of L, when 4 = 0 or B = 0. More generally, when 4 # 0
and B # 0, neither the components (Cartesian or cylindrical) nor the
vectorial combinations E and H are eigenfunctions of L; only the
combined field F= defined by (34) is an eigenfunction of L, — provid-
ing that at least one of the four constants a, B, A4, and B is zero.

2.8 Wavicle Energy and Action
The energy U of the field is given by®

U= (1/8q) [ [ [ (IE? + polH%)dzrdrds, (40)

where [E? = |E)? + |E,|? and [H? = |H| + |H,|? since E, = H, =
0. The energy is altemauvcly obtained by integrating the magmtude of
Poynting’s vectort*) over r, o, and ¢ for one period of the oscillation.?)
The integration of (40) is over the volume enclosed within the ellipsoid
that is the wavicle’s light-speed-limited domain, the integration limits
being z: 0 — A, r: 1y — kA/27, 910 — 27

The components of the integrand are [from (17)]:
|EJ? = Sia®® + %™ + 2af)
X [42 + B? + 24B cos(2ke)] = ()UH, 12 (412)
B = SYa + fr R gy
X [4% + B? + 24B cos(2ke)] = (me)HH,12.  (41b)
Integration of cos(2kg) produces sin(2kg)/2 which vanishes at both
integration limits ¢ = 0 and ¢ = 2#. Thus, in effect, the cos(2kg) can be

discarded in (41), and on addition of the x and y componeats the 2af
terms cancel. Thus the integrand in (40) becomes (using ey = 1/¢%)

[QlE + molH?) = 4Sga’r™ + g 2y4? + B (42)

Integration over z produces a factor of A, and over ¢ a factor of 2.
Thus (40) simplifies to

U = Aefd? + BYSE [ (¥ + B2~ Yyrdr. (43)

The term 8% ~2* produces a divergent integral at the formal lower limit
= (for all half-intcgcr values of & > 172. One way of avoiding this
dxvcrgcncc isto set B = 0; i.e., presume that the radial dependence of the
field is r* so that it is zero at r = 0. Analtcmanvcwaywouldbcto
presume that the physical lower limit on r is a very small distance such as
the Planck length = (AG/c})2 = 4.05 X 10™% m. This latter choice
arises. from the idea that the Planck length is the smallest physical
length. (4644
The choice B = 0 is attractive, because it resolves the problem of
continuity of the field through the origin r = 0, and it also fulfills the
angular momentum requirement that at least one of the four arbitrary
constants be zero. Hence we proceed with the assumption that 8 = 0, in
which case (40) becomes [with r,,. = k\/27 from (28)]

U= 342 + BYSIa/[(2k + 2)2n)2t*Y. (44)
Thus this finite expression for the energy is obtained by cutting off the

 radial field at r = r,; this introduces a discontinuity that merits further

study as discussed at the end of Sec. 2.5.

The action of the wavicle is obtained by integrating this expression for
its energy over the time of one period of its oscillation. This simply
introduces a factor of (A/¢):

action = A**4c(4? + BYSla¥/[c(2k + 2272 (45)

Two of the arbitrary constants Sy, 4, B, and a are redundant, and we
choose to set

a=1 ad 42+ BY) =1L (46)

Since the action is a Lorentz-invariant quantity, the wavicle's action
must be 2 universal constant for 2 given value of k. Our basic premise. by
analogy with the Bohr quantization postulate (in the old quantum theory),
is that the wavicle's action is an integral mu!nplc n of PlancK’s constant 4.
Hence [using {45) ] the normalization constant So has the value

= 2nhdk + 1202 /(2. (47)
From (46) and (47) the energy expression (44) simplifies to:
U= nho\ = b, (48)

Thus the Bohr postulate leads to this generalization of the Eunstein
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photon-defining equation (I) - the photon energy can be an integral
multiple n of hv. This is discussed further is Sec. 2.12.

2.9 Physical Interpretation

The wavicles hdving & = 1/2 are the neutrinos, since these are
zero-rest-mass particles with a spin of % while those having & = |
are photons. 3! The spectrum of neutrinos having different wavelengths
(energies) is analogous to the spectrum of photons; there is, from a
relativistic viewpoint, only one {electron) neutrino and one photon. The
perceived wavelength, frequency, and energy are simply functions of the
observer’s frame of reference. The two helicity states of the neutrino
correspond to the two experimentally distinguished particles called the
neutrino and the antineutrino. The photon helicity states correspond to
light of different states of circular polarization.

That the neutrino is indeed a zero-rest-mass particle is supported by the
Shelton supernova of 24 February 1987; neutrinos were observed to arrive
at three earth observatories essentially coincident with the arrival of
photons, and hence the neutrinos must have traveled af the speed
of light.8H51) The neutrinos were actually detected a few hours before the
photons due to experimental exigencies. Even if they had arrived after
the photons, an experimental error of a few hours within the 150
light-year distance of the supernova means that the speed of the neutrinos
was within about one part in 10® of the velocity of light. From the
measured neutrino energy it was inferred that the neutrino rest mass is at
most a few electron volts (-3 :

The solutions for & = 1 correspond to particles with a spinof 1 X £,
and hence these must be the photons. 3" These are discussed in greater
detail in Sec. 2.10.

Wavicles having £ > | may be regarded as neutrino-photon composites
(for half-integral k) or as photon-photon composites (multiphotons) for
integral values of k% These composites are probably unstable and
therefore experimentally difficult to observe. However, multiphotons are
now commonly produced in focused laser beams (Secs. 2.12 to 3.1).

2.10 Photons

With k = 1 the radial factor of the field componeats (17) is either r*!
and/or r™1, and since the formal range of ris 0 < r < 0o, r*! diverges as
r — oo, and r~! diverges at r = 0. When Thomsoo™? was faced with
these divergences he suggested variable coefficients for r*! and 71,
However, this is unacceptable, because the functions would no longer be
solutions of the two-dimensional Laplace equation.C? As indicated in Sec.
28, we choose B = O so that the radial dependence of the field
components is r*1.

The nonzero Cartesian components of the electromagnetic freld are,

from (17)
E. =X+ Y)Sr E = exp(—n/2(X — Y)Sr
H = (X + VS H, = explen/2(X ~ Y)Srey,
where X = 4 exp(ie), Y = Bexp(—i9), S = §; exp[27iz — ct)/A], and
A is the wavelength of the light. The dimensionless normalized constants
A and B satisfy A2 + B? = 1 from (46).

The relative magnitudes of 4 and B determine the helicity state of the
wavicle. The two special cases, B = 0 and 4 = 0, have positive and
negative helicity and correspond to left and right circulacly polarized
photons, respectively.®3) When both 4 and B are unequal and nonzero,
the photon is elliptically polarized.

(49)

When 4 = Bor4 = —B the complex field does not have the simple
one-component form of a plane-polarized plane wave®); a plane wave is
(17) for k = 0. Nevertheless, these states, containing equally weighted
right and left circularly polarized functions, must be what are usually
called “plane-polarized” photons. The discussion at the end of Sec. 2.6
shows that the whole electromagnetic field is an cigenfunctionef L, in this
case even though its individual electric and magnetic componeats are not
themselves eigenfunctions. However, since the discussion in Sec. 2.5
depended upon 4 or B being zero, we cannot infer that a plane-polarized
photon is confined to the ellipsoidal domain (31). The difficulty of
defining the spin of a plane-polarized photon has been discussed by Jauch
and Rohrlich.?

2.11 Photon Generation

Thomson!? and Honig’s!"® photon models were mechanistic, being
based upon generation of a pulse of radiation by an oscillating electric
dipole.® This is probably quite a good model of a radiating atom, except
that we believe that the photon’s creation involves a rotating electron
rather than an oscillating dipole. The atom is, in effect, a pomt source of
the radiation, because it is typically 1000 times smaller than the
wavelength of the emitted photon. The wave front of the emitted light will
travel away from the point source at the velocity of light, so that after
radiation for one Fhoton period, it will be precisely one wavelength away
from the source.('®3%) Hence generation of a photon in one period of
its oscillation predicts that its length will be precisely equal to its
wavelength.

The change in the clectron’s orbital angular momentum is radiated as
the photon’s spin angular momentum. The photon’s field has an angular
velocity of @ = 2z¢/, and since angular momentum is moment of inertia
times angular velocity, and since photoas of all frequencies have the same
angular momentum of # , it follows that the moment of inertia of 2 photon
must be ?roportional to its wavelength. Since moment of inertia has the
form mr®, and since the mass of a photon = A/c), it follows that the
effective radius of a photon must be proportional to A. This supports our
inference in Sec. 2.5 that the photon’s diameter is A/z.

2.12 Energy Eigenstates: Multiphotons

Confinement of the field within the ellipsoid (31) together with
continuity of the field at the surface of the ellipsoid would imply that the
field must be zero outside the surface of the ellipsoid. In order to impose
this condition the solution (17) of Maxwell’s equations should be modified
to conform with this boundary condition. This can be accomplished by
transforming from the coordinates r and z to confocal elliptical
coordinates.’® While the mathematics is somewhat tedious, because it
involves a pair of simultaneous cigenvalue problems,®® s essential
results are the allowed eigenvalues for the frequency ¢/A and angular
momentum of the confined field. We have thus far not completed this
mathematical imposition of the ellipsoidal boundary conditions. However,
the eigenvalues of the energy are obtained in a simpler way, as follows.

The energy cigenvalues arise from the time-independent Klein-Gordon
equation.®*”) This covariant eigenvalue equation is derived from d’Alem-
bert’s classical, covariant wave equation by differentiating the wave
function with respect to time to eliminate the time, followed by use of the
de Broglie relation, the energy-inertia equivalence relation

E = mc? {50
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and the expression for the relativistic mass

m = my/[l — (v/c)}])''? .(51)
to eliminate the velocity v and the relativistic mass m. It has the form
(B 1m)V% = [E*/(moc®) — mee’y. (52

Since the rest mass mq of the photon is zero, Eq. (52) simplifies, using
(50) and (51), to

—(R2m)VY = [EYmt)y = Ey. (53)
This covariant eigenvalue equation is for a free photon; ie., there is no
potential energy in the Hamiltonian.

The energy eigenstates of the photon field are obtained by solving Eq.
(53) for a particle confined within the ellipsoidal box that is the photon’s

domain. The energy eigenvalues of a particle in a linear or spherical box
al‘C(SB)

E, = (gnk/L)/m, (54)

where n is the quantum number taking any positive integral value, L is the
linear size of the box, m is the particle’s mass, and g is a geometrical factor
determined by the shape of the box.

Elimination of the relativistic mass m between (50) and (54) for a box of
length L = A (the wavelength) produces, on taking the positive square
root,

E, = gnhe/\ = gnhs. )

From the Einstein relation for photons (1) we deduce that the
geometrical factor g is unity, and (55) thus states that the photon energy

may be any integral multiple of the quantum A»
E, = nhy (56)

as deduced in (48) from the Bohr quantization condition.

This is a generalization of the Einstein photon relation (1). The energy
E, = kv is the ground state (a single photon), and for n > 1 the excited
states of the electromagnetic field correspond to what are experimentally
known as multiphotons. A multiphoton has the same frequency as the
ground state, but it has n times as much energy. Note that the multiphoton
quantum aumber # is mdcpcndcnt of the angular momentum quantum
number k.

For n > 1 there w111 be degeneracy; ie., more than one muluphoton
state with the same energy. These degenerate states differ in the
disposition of the nodal surfaces of their fields. For example, for n = 2
one state will have 2 nodal plane ¢ = const, and another will have the
plane z = (. The former would be expected to decay into two n = |
photons moving inphase along adjacent, parallel axes, whereas the latter
would be expected to decay into two n = | photons moving along the
same axis, one after the other separated in phase by a wavelength A.

We believe that multiphotons are commonly produced by the process of
stimulated emission. An ellipsoidal photon of energy nhw interacts with an
atom in an excited state with energy kv above a lower stationary state. The
photon emerges from the interaction with (= + 1)h» of energy (in the
same cllipsoidal volume) leaving the atom in the lower state. Multiphotons
will also be produwd whenever a large number of single photons are
packed together; ¢.g., in a light beam focused to produce a high intensity.
Experimentally, this is achieved in focused laser beams (see Sec. 3.1).

Like most excited states, multiphotons will spontaneously decay to the
ground state, in this case producing n spatially separated but coherent
single photons. Such a flock of photons is observed experimentally in the
phenomenon of “photon bunching. 5% The distinct phenomenon of
“photon antibunching” is simply a way of saying that the energy of a light
beam is localized (in the ellipsoidal volumes of our model) rather than
being evenly distributed throughout the volume of the beam.

3. EXPERIMENTAL CONFIRMATION
3.1 Multiphoton Phenomena
Multiphoton absorpuon by atoms is considered to take place within
“one optical period”; i.¢., within r = 1/.89 This is the transit time of the
photon wavicle. Mainfray and Manus'®" express the need for having 2
large number of photons concentrated within 1071 s (i.e., one optical
period). This need is satisfied by our multiphoton model, in which the 7
photons are congruent in space and time within the same ellipsoidal
volume as that of the single photon.

Multiphoton absorption of visible li 6ght is observed to take place ar
intensities above about 1 MW/cm? 62453 Since our photon wavicle has a
cross-sectional area of A%/4x and an intrinsic power of ke/t = k2, its
intrinsic intensity Jp (power/area) is givea by

Ip = 4xhd/\, ‘ 57)

which is 1 MW/cm? for A = 523 nm. At higher intensities than this
(disregarding a geometrical packing factor of order unity), single photon-
wavicles necessarily overlap to form muitiphotons.

This accord of the wavicle’s intrinsic intensity with the experimental
threshold for multiphoton absorption is also confirmed for infrared
photons (A = 10.5 p:m) from a carbon dioxide laser. The intrinsic intensity
in this case is 6 W/cm thccxpcnmcntalmt:nsxtyrcqmrcdforabsorpuon
of several photons being zbout 30 W/cm? (experiments being conducted
by Gokhan Baykut, Chemistry Dept., University of Florida, Gainesville).
This experimental-theoretical agreement over nearly six orders of
magnitude in intensity indicates that the fourth-power-depeadence upon
the wavelength predicted by (57) is correct.

A recent experiment by Verma and Chanda®? has confirmed the
multiphoton threshold predicted by (57) within about 25 percent. The
desired experimental excitation of barium atoms requires the absorption of
a multiphoton having just two quanta (ie., 2hs) from a laser beam
of wavelength 650 nm. The experimental intensity has to be varied to
produce a maximum in the desired signal; they estimate the optimim
intensity in their 10 ns pulses to be 0.5 MW/cm?. The threshold intensity
for multiphoton production predicted by (57) is 0.42 MW/cm,. This
agreement between a sensitive (to intensity) experimental result and the
theoretical prediction of (57) is quite remarkable, bearing in mind the
nonuniformity of typical focused laser beams and the many orders of
magnitude variation in intensity used in multiphoton absorption experi-
ments.®)

For randomly distributed photons, the probability of finding a
multiphoton with energy nhv is proportional to the ratio of the beam
intensity I to the photon intrinsic intensity Ip raised to the n™ power.
When Iy < Ip this factor (I/[p) is much smaller than unity, and when
Ig > Ipit is much larger than unity. This explains’both the threshold at
about [z = Ip and the observed n power dependence of the ionization
rate upon the intensity of the focused beam.(6!
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This finite photon overlapping explanation of the n® power law
of multiphoton absorption is simple compared with the complexity of
atorder perturbation theory; the latter is regarded, even by its
proponents, as conceptually unsatisfactory{®D A recent attempt to develop
an alternative, adiabatic theory(®? also scems to have foundered in
mathematical complexity. Our model of multiphoton processes differs
from the “effective-photon™ model®) and from the “quantum potential”
thcory.(‘m

3.2 Microwave Generation and Transmission

The axial mode of a helical microwave antenna has a wavelength equal
to the circumference of the cylindrical helix, with mazimum radiation
along the axis of the helix in a well-defined, circularly polarized beam.®®
The axis of propagation and circumference of this antenna correspond
precisely with the axis and circumference of the finite photon model. The
radiation produced by this antenna consists of wavicles all propagating
along the axis of the antenna and having the same helicity as that of the
antenna. In view of the low intrinsic intensity of the microwave wavicle,
-the fadiation will consist of multiphoton wavicles containing many quanta
(nhw, n > 1).

3.3 Measurement of the Photon’s Diameter

The transmission of microwaves through a circular aperture is predicted
to be strongly attenuated at diameters smaller than A1) This is the
cross-sectional diameter of our finite photon model. The prediction is
. based upon the classical electromagnetic theory of a continuous wave. The
attenuation is consistent with the simple mechanical notion that the
photon-wavicle cannot pass through an aperture that is smaller than its
own diameter of /7. :

The photon-wavicle is not, of course, a rigid body, and its induced
currents in the screen may cause some radiation to appear on the far side
of the screen; in fact, the classically derived curve of AndrejewskilO4{™)
predicts a small finite transmission cocfficient at aperture diameters
smaller than A/z. The available experimental evidence is confined to
localized field intensity measurements, and while it is broadly in agree-
ment with classical electromagnetic theory and with our photon model, it
is inconclusive as evidence for or against the finite-photon model. This led
us to undertake experiments designed to resolve the issue.

We have investigated the phenomenon of microwave transmission
through apertures in 2 series of experiments designed to measure the trans-
mitted (undiffracted) power as a function of aperture size; we used both
crcular apertures (size = diameter) and rectangular apertures (size =
width). A linear plot of transmitted intensity vs aperture area has an
intercept on the aperture axis close to the photon-wavicle’s intrinsic
diameter of A/; the transmitted power is proportional to the difference
between the aperture and wavicle areas.

Complete details of these experiments will be reported cisewherel™ there
were naturally several experimental factors that had to be taken into 2ccount
in order to obtain an accurate measurement. Our final result is summarized
in Fig. 1. The measured cut-off diameter is equal to the value A/x predicted
by our ellipsoidal model (31) within the experimental error of 0.5 percent.

In view of the experimental inaccuracies we cannot claim to have proven
that the wavicle model is quantitatively better than the classical, continuous
field theory"™ since both theories accord with the available experimental
evidence. However, the wavicle model does provide an intuitively simple
explanation for the experimental result, whereas in the classical, comtinuous
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23.57 +
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Figure 1. Experiment by Fritz Engler, 29 March 1986: X-band
microwaves (wavelength = 28.5 mm), rectangular slit (constant length) in
thin (0.5 mm) aluminum plates. The measured power was corrected by -
subtraction of the first harmonic content of the beam computed by the
formula H = 2.5 X (SW — 4.54)/(8.1 — 4.54) based upon the signal ata
slit width of 8.1 mm. The least-squares straight line (solid line in the
graph) through the five experimental points (shown by +, SW = 10.3 -
16.8) yields an intercept on the slit-width axis of 9.07 + 0.04 mm (0.5
percent error). The theoretically expected result is 28.5/7 = 9.07 mm.

wave theory the result only emerges as an a%troximatc inference from a
great deal of analysis, algebra, and caloulation (!

34 Diffraction and Interference at Low Light Intensities

Some experiments on the diffraction of light at low intensities have
reopened the question of whether interference is 2 single-photon or a
photon-photon phenomenon. 4™ The latter explanation accords with our
model of the photon as an indivisible, physical entity. In our photon model,
interference is thought to occur between the coherent photons of a photon
bunch. -

Light sources often cshibit the property of photon bunching®?
Stimulated emission adds one quantum of energy (h¥) to the incident
photon; ¢.g., an incident single (14») photon stimulates the atom to give itan
additional kv of energy, emerging as a double photon having 2kv of energy.
This subsequently decays into two spatially proximate, coherent
photons. Repetition of this process thus produces bunches of coher-
ent photons. For this physical concept of photon bunching the alternate term
“flock” is very appropriate, for the photons of the bunch are traveling
together just Like 1 flock of migrating geese. Stimulated emission producing
photon bunches is believed to be of common occurrence; it is, of course,
dominant in lasers but is also believed to be important in thermal Light
SOUTCES.

In our photon model interference effects are typically produced by photon
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bunches. In a diffractometer the members of a bunch will be deflected at
different angles depending upon the impact parameter of each photon with
the edge of the slit; photons that miss the slit walls are transmitted
undeflected. This model of diffraction explains why fringe visibility (relative
intensity) is a maximum for slits of about A/3 wide (the intrinsic width of a
photon wavicle being A/). Interference is produced when a pair of coherent
photons have different path lengths to the plane of observation, thereby
interfering constructively or destructively.) .

As the incident light intensity decreases, the number of photons in
buusches may be expected to decrease. However, it should not be assumed
that a reduction in intensity necessarily reduces the extent of photon
bunching; the actual physical mechanism used to absorb or deflect some of
the photons may, or may not, reduce the proportion of photons i
bunches.

In a beam of statistically independent photons, diffraction still takes place;
it results from a single photon’s interaction with the walls of the diffracting
aperture, However, the interference fringes should disappear in a low
intensity beam of statistically independent photons. This effect has been
observed in a series of experiments by Panarelld™ and in an earlier
experiment by Dontsov and Baz(™ However, similar experiments by
Reynolds, Spartatian, and Scarl™ and Jeffers"® do not show the effect; the
visibility of the side lobes of the diffraction pattem is independent
of the beam intensity. In a 1978 review of five nonphotographic detec-
tion cxpcrimcms,(m the only one showing a decrease in fringe intensity
with decreasing incident beam intensity was the Doutsov and Baz

experiment. :

It is now known that the original (1909) low-intensity interference
experiments of Taylor™ did not display single-photon inter-
ference, because photographic detectors (as used by Taylor and in three
subsequent experiments reviewed by Pipkin}™ are now known to be
essentially photon-coincidence detectors; ic., 2 silver halide grain must
absorb at least four coincident (Le., within about one optical period) photons
to become developable. ™ 4

Despite the low incident intensity used by Taylor, his interference
patterns must have been produced by photon bunches of at Jeast four
photons. These early experiments, the results of which were presumed to
display single photon interference, apparently led Dirac into making his
well-known pronouncement® that interference is exclusively a single-
photon phenomenon. In the light of modern photographic knowledge, the
correct inference from Taylor’s (and the other photographic) experiments is
that photon bunching is commonplace, even in low-intensity beams
originating from noncoherent sources such as gas discharge lamps.

Hence, the key to resolving the experimental issu¢ is to produce a light
source of statistically independent photons; ie., one with hardly any
bunched photons. One way of detecting statistical independence would be to
use photographic and nonphotographic detectors alternately in the same
experiment. If the diffraction pattern is not observed with the photographic
detector but is observed with the photomultiplier or other nonphotographic
detector, then the inference would be that the observed pattern was
produced by a beam with fewer than four photons in any bunches in it. On
the other hand, if the diffraction pattern is also not observed with the
nonphotographic detector, then the inference would be that the interference
is a photon-photon phenomenon.

A recent photon-counting experiment®) was designed to determine
whether diffractive interference is a single-photon or a photon-photon

phenomenon. The experimental results support the single-photen hypothe-
sis. The conventional rationalization of single-photon interference is the -
dichotomy of the wave-particle duality; the single photon’s wave traverses
both paths of the interferometer simultancously, interfering with itself and
then manifesting its particlelike character at the detector. Explanations for
single-photon interference based upon passage of each photon along only
one of the two paths are under consideration by Buonomano®? and
Surdin®)

Experiments with two independent light sources have shown that a
photon from one source can interfere with a photon from the other
source. 48 Thus photon-photon interference does occur contrary to
Dirac’s pronouncement.®) The Grangier experiment indicates that a single
photon can also interfere with itself. However, the interpretation of this
experiment is currently the subject of controversy, 823} and hence the
question of whether a photon can interfere with itself as well as with other
photons remains unresolved.

4. INTERPRETATION
4.1 The Mechanics of Photon Wavicles
An intimate relationship between the wavicle’s linear motion and its
rotational motion is revealed by its elementary mechanical properties. For
frequency » and wavelength A (A» = ¢) it has a relativistic mass m:
m = hric® = b\ (58)
Since it is moving at the speed of light ¢, its lincar momentum p, is
p, = mc = hv/c = h/X (the de Broglie relation). - (59)

Supposing that the mass m is effectively at a distance r_ [given by
(28)] from the axis of rotation/propagation, the wavicle’s moment of
inertia [ is

I=m, = m{i\20). (60)

The tangential velocity at this maximum radius is the velocity of light ¢,

and hence the angular velocity o of the rotating field is

0 = ¢y = 2nc/kA = 2av/k. (61)
Thus the magnitude L, of the angular momentum about the z-axis is
L, = Iv = m{kA/27) = kh/2z = kh. (62)

The rectilinear Kinetic energy is me [the Newtonian expression Ymo?
becomes me? for a relativistic particle; of. (53)}, and this is seen to be equal
to its rotational Kinetic energy J? (likewise Ju? rather than the Newtonian
expression %Ju?)

E=IL? = (kh/20X2mc/) = he/A = hv = pec = mc.  (63)

The action S of the wavicle is the angular momentum per complete
cycle Ag = 2a/k or the product of its energy E and its period of
oscillation T = 1/»:

S=kh X2ath=h=Er=EIv
=mr=mA=pA=h (64)

The rectilinear kinetic energy and the rotational kinetic energy are not
separate components of the wavicle’s total energy {as would be the case
for, say, a rifle bullet) but rather different manifestations of the same
inertial energy.
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This intimate relationship between linear and rotational motion may
eventually lead to an explanation for the universal equivalence of inertial
and gravitational masses, for rectilinear motion is related to inertial mass,
and accelerated, rotational motion is equivalent to 2 gravitational
field 47

42 The Minimum Quantum of Action

The wavicle’s energy is hv = pc and its transit time is 1/7; alternatively,
its momentum is p = hv/c = h/\ and its length is A. Hence its action, =
energy X time = momentum X length = A, is Planck’s constant. Thus
the wavicle model of the photon is consistent with the idea that upon
absorption, emission, or scattering, the action involved in the process is k;
the action involved has this minimum value because of the photon’s finite
transit time (or finite length).-

The finite wavicle model of the photon provides an explanation for the
wave-particle duality of light. The wavicle is neither an indefinitely
extended wave nor a pointlike particle; it is a wave with a well-defined
finite extent. Its oscillating/rotating electromagnetic field is consistent
with its wavelike properties, and its finite extent explains its particlelike
properties (especially line spectra and the yhotoclcctric effect). The
photon-wavicle is, as Einstein anticipated®) a localized, indivisible
physical eatity that moves without dividing and is only produced or
absorbed as 2 complete unit. It is the atom of light. The wavicle mode!
unifies the wave and particle properties of light in a single physical entity.
Thus the dichotomy of light exhibiting both wavelike and particlelike
properties (the wave-particle duality paradox) is resolved in the unity of
the finite wavicle. -

The wavicle model of the photon also provides a resolution of the
philosophical dispute between proponents of the Copenhagen interpreta-
tion of quantum mechanics (Bohr, Heisenberg, Dirac, ctc) and the
persistent determinists (Einstein, de Broglie, Schradinger, etc)® The
former believed that the uncertainty principle was intrinsic to nature,
while the latter believed that nature was deterministic despite the
experimental limitation of the uncertainty principle. _—

Internally, the photon-wavicle is a classical electromagnetic ficld whose
domain is defined by the relativistic requirement for causality. However,
the finite size of the photon limits the accuracy of measurements for it is
an indivisible entity; for 2 momentum p = k/A its position can only be
measured to within the length of its ellipsoidal domain = A. Hence in
interactions (measurements) the product of momentum and positional
uncertainty is at least the minimum action A in accordance with the
Heisenberg uncertainty principle. The wavicle’s internal coordinates may
be regarded as hidden variables®

The wavicle model suggests an intimate relationship between quantum
mechanics and the theory of relativity, since the length of the wavicle is
the distance that it travels (moving at the velocity of light) in one period of
its oscillation, and this finite length leads to the uncertainty principle, as
explained above. This suggests that the finite value of Planck’s constant /

is related to the finite value of the velocity of light®% Bohm has alluded -

to the idea that the limitation imposed upon causality by the finite velocity
of light is related to the uncertainty principle.® If this conjecture is
correct, it should lead to 2 quantitative relationship between h and c.
Einstein regarded the relation E = A (1) as an enigma. This enigma is
partially resolved by the wavicle model of the photon for there is a simple
explanation for the fact that all photons carry the same action 4 and that all
physical processes (in which photons are absorbed or emitted) mvolve

integral multiples of this quantum of action; the action of a photon-
wavicle is a Lorentz-invariant property. Energy and frequency transform
in the same way under a Lorentz transformation,®") and hence the ratio of
energy to frequency (i.e., action) is invariant under 2 Lorentz transforma-
tion. In this sense all photons, from gamma rays to radio waves, are
essentially the same particle, just as all electrons are regarded as identical
even though they may have different energies (and hence different de
Broglie wavelengths) in different experiments.

A corollary of the Lorentz invariance of action is that Planck’s constant
h must have a finite value, because if k were zero then the amplitude of the
photon-wavicle’s electromagnetic field would have to be zero in order to
make its action zero, since its action is the product of its momentum and
its length, and its length is finite. Its finite length is deduced from
Maxwell's equations and the relativistic requirement for causality,
regardless of the field’s amplitude. Hence, if the quantum of action 4 were
zero, light would not exist. The photon would be a null particle; ie., its
field amplitude would be zero. While this explains why the de facto
existence of light implies that Planck’s constant is not zero, it does not
acoount for the specific, observed value of k. '

43 Comparison with Quantum Field Theory

The essence of the quantum field theory of radiation is the association
of 2 quantum mechanical harmonic oscillator with each mode (e,
frequency) of the electromagnetic field ®°*%% In this quantum theory, the
photon is nothing more (and nothing less) than a quantum of energy Av for
the mode having frequency ». This second-quantization theory is framed
within the interaction picture, all processes being described in terms of
absorption/emission of real/virtual photons. It avoids entirely any con-
cept of the photon as a physical entity.*® This avoidance of the issue,
which stems from the Copenhagen philosophy of quantum mechanics,
raises conceptual difficulties in the minds of many physicists. To quote a
recent review by Strnad “the concept of the photon may be one of the
main didactic issues of modern physics™®

Our Maxwellian model of the photon has some parallels in quantum
mechanics. The model is the solution of 2 wave equation (3). The solutions
are field amplitudes which in interactions must be added and squared to
produce observable intensities, and hence the nonclassical interference
phenomena that are characteristic of quantum mechanics®H) arise also
in the wavicle model. That it is valid to operate on electromagnetic field
components with wave mechanical operators has been shown by Green
and Wolf. (%

A weakness of the conventional theory is the ubiquitous formulation in
terms of plane waves. %) A plane wave for a single mode [k = 0 in (17)]
has the same z and ¢ dependence as the wavicles field (17), but it has no
dependence upon r and ¢, and hence it has the same amplitude throughout
any plane perpendicular to the axis of propagation. For this reason, it is
obvious that a plane wave cannot represent a narrow beam of light, much
less a single photon. In the plane wave theory, the polarization property
has to be added as an ad hoc supplement to the plane wave functions.'”!
whereas this property is intrinsic and essential in our wavicle wave
functions.

A distinct advantage of our theory is that it is couched entirely in terms
of the electromagnetic field components, whereas in the conventional
Lagrangian theory the use of the scalar and vector potentials leads to 2
physically insignificant ambiguity of gauge. To quote Jauch and Rohrhich:
“the eclectromagnetic field components describe directly measuratle
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quantities . .. while the vector potential must be considered as a mathe-
matical and aurxiliary field which can be determined . . . only to the extent
expressed by the gauge transformation.™®

Another disadvantage of quantum electrodynamics is that boson
(photon) quantization is implicitly assumed. In our semiclassical wavicle
theory quantization of the angular momentum 3 la Bohr leads to the
prediction of fermion (neutrino) states of the electromagnetic field as well
as boson (photon) states as explained in Sec. 2.4. )

5. CONCLUSIONS

The photon model presented here is based upon dlassical electromagne-
tism (Maxwell’s equations)®” and the relativistic principle of causality.
The theory predicts that the action carried by the photon-wavidle is a
finite, universal constant for all photons, and relating this to experiment
we recognize this constant as Planck’s constant A. Causality confines the
photon’s oscillating field within a circular ellipsoid of length A and
diameter A/«. The field is an eigenfunction of the wave mechanical
operators for angular and linear momentum, the eigenvalues being those
that are experimentally observed. It also has helicity states that correspond
to right and left circularly polarized light, combinations of which
correspond to an elliptically or linearly polarized field that is nevertheless
an cigenfunction of L, (Sec. 2.6). The predicted energy eigenvalues of the
confined field are E = nkp, this being an extension of the Einstein relation
E = hv; we identify the energy states for n > 1 as what are experimentally
called “multiphotons.”

The wavicde model of the photon conforms with many of the
experimental properties of monochromatic light, the most direct support-
ing evidence being the almost total attenuation of transmission through
slits whose width is less than the wavicle’s diameter of A/x.

This photon diameter also accords with a microscope’s maximum
resolving power using monochromatic light: “The resolving power ...
giving the best resolution obtainable . . .is in general a little less than a
third of the wavelength of the light used.”®®® This result from classical
diffraction theory concurs with our concept that the resolving power is
equal to the photon’s diameter since 1/7 = 0.3183 is “a little less than”
1/3 =0.3333. -

Our mode! predicts the threshold intensity for multiphoton phenomena
to be the wavicle’s intrinsic intensity of 4mhP/A%; the prediction is
confirmed (within experimental error) for both visible (A = 650 nm, I =
0.42 MW/c?) and infrared (\ = 10.5 pm, Ip = 6 W/cm?) multiphoton
thresholds.

The theory also predicts the existence of a light-speed (zero-rest-mass)
fermion (spin = intrinsic angular momentum = +4/2), which we

identify as the electron-neutrino, the two helicity states (spin = +4/2
and — /2) corresponding to the neutrino and the aatineutrino. Further
correlation with experiment is needed in this case, although the latest
experimental evidence (the Shelton supernova of February 1987) indicates
that the rest mass of the neutrino is indeed zero.8H5) The “muyls-
photon” states (E = nkv) of the neutrino may be the muon-neutrino, the
tau-neutrino, etc. The neutrino emerges from the theory as the fermion
particle that travels at the speed of light, being the natural counterpart of
the boson-photon. Since both the photon and the neutrino emerge from
the same equations of motion (Maxwell’s equations), the theory implicitly
provides a basis for the unification of the electromagnetic and weak
interactions.

The photon-wavicle provides a physical basis for the Heisenberg
uncertainty principle. The product of the wavicle’s momentum and length
is its Lorentz-invariant action A, and hence in measurement processes in
which a photon is absorbed or emitted, the minimum product of
momentum and length measurements is the photon’s action 4. The
interpretation that the photon-wavicle is the physical quantum of action
supports the philosophical view that the uncertainty principle is not
intrinsic to nature (the Copenhagen philosophy), but rather it is simply a
limitation upon experimental measurements. It is possible to know what
cannot be measured directly," and furthermore such knowledge does have
predictive value as exemplified in Sec. 3.

This theory of electromagnetic wavicles is capable of several extensions:
characterization of multiphoton states, mathematical description of the
processes of spontancous and stimulated emission, muitiphoton formation
in a focused laser beam, and spontancous decay of 2 multiphoton. In
addition, we speculate that stationary wavicles (say with spherical
symmetry) may prove to be pure field models of such particles as the
clectron, the muon, and the tauon. Mackinoon®H%) has promoted the
idea that a particle’s mass m arises from an internal vibration of frequency
me/k;ie, E = m = hy. A puré field model of elementary particles is
being developed by Jennison.(1)
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Endnote

! The electric permittivity ¢ and the magnetic permeability g of free

space are related by euoc® = 1.
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