
Usability with Open

Inventor allows for

creating interactive

3D applications.

By Matt Szymanski
Chief Technology Officer
VRCO, Inc.

V
isualization systems for driv-

ing immersive interactive 3D

(i3D) displays are generally

characterized by a combination

of three hardware components.

The first is computational power,

which includes the CPU, main

memory and storage systems. The

second is graphics power, which,

at the core, is the GPU (Graphics

Processing Unit). The GPU is fre-

quently referred to as a graphics

card, graphics pipe or simply pipe,

depending upon which hardware

vendor one is conversing with.

Most modern graphics cards are

usually able to output to one or

more channels where each chan-

nel is then connected to a projec-

tor that is displaying to an i3D sys-

tem. The third component is the

communications, which is the

glue that holds the first two

components together. Commu-

nications may be external to the

system such as local networks

or internal to the system, like

system buses.
Many modern-day supercom-

puters are capable of having mul-
tiple CPUs and GPUs, as well as
an internal architecture that in-
terconnects them with high-speed
buses. These systems easily sup-
port multiprojector systems and
have been commonly used as the
image generator for i3D displays.
However, there is a growing trend
to use commodity off-the-shelf
hardware and PC workstations
to drive multiwall visualization
display systems.

The difficulty with using work-
stations is that they are generally
a single GPU system. In order to
display to a multiwall system,
a cluster of PCs need to be in-
terconnected through hardware
and have software that allows
multiple synchronized images
to be rendered. In response to
this need, the CAVELib was en-
hanced back in 1999 to support
PC-based visualization clusters,
a.k.a. viz-clusters.

OVERVIEW
The CAVELib is an API de-

signed for creating immersive,
interactive 3D applications.
The CAVELib’s power lies in its
independence of any specific
display system, despite being
named “CAVE” Lib. The soft-
ware is completely configurable
at run-time and currently sup-
ports up to thirty-two arbitrarily

Multiprojector systems, like the one shown here, are supported by PC-based visualization systems, which have been
commonly used as the image generator for interactive 3D displays.

CAVELIB SUPPORT FOR
PC VISUALIZATION CLUSTERS

placed projection screens. Because
of this flexibility, it has been shown
to work on all commercially avail-
able display systems to date, and all
tested custom displays as well. The
CAVELib itself is not a high-level
graphics toolkit, but a framework
to create OpenGL-based applica-
tions that will display properly on a
variety of systems without the need
to recompile.

There is a basic philosophy with
the CAVELib’s support for viz-clus-
ters and that philosophy is let the
machines do as much of the work
locally as possible. PC clusters, both
for data computation as well as for
visualization, are quickly replacing
the supercomputer because of the
low cost of commodity PC hardware.
The reason for supercomputers’ high
cost — even ones that use commod-
ity components for microprocessors
and memory — is due, in part, to
the cost of designing a proprietary
system architecture of buses, moth-
erboards and shared memory.

In order to lower the cost of doing
large computations and managing
visualization displays, more orga-
nizations are looking at PC clusters
as an alternative. However, when
a cluster of PCs are used to do the
same type of work that was tradi-
tionally done by a supercomputer,
there are going to be differences in
how an application needs to be writ-
ten in order for it to work. No longer
is the application written to execute
on a single system. Instead, it is writ-
ten for a collection of systems that
need to communicate with each
other about the work they are doing,
which includes synchronizing their
data and information.

Most software developers are quite
familiar with making an application
work within the local memory of a
single computer or supercomputer
system, such as an SMP system,
but fewer have the experience and
knowledge of developing applica-
tions that need to do inter-PC com-
munications. With the CAVELib, in
order to aid the application devel-
opers, it attempts to abstract away

as much of the communications’
complexity as possible in creat-
ing interactive 3D applications for
viz-clusters.

DESCRIPTION
The primary purpose of using PC

viz-clusters is to be able to drive
multi-projector display systems with
a lower cost alternative to super-
computers. The display systems may
range from CAVE-like displays with
one projector per screen, to tiled-
wall displays where a single screen is
comprised of an array of projectors
in order to create a single high-reso-
lution projected image, or be some-
thing in between.

When a CAVELib application is
run on a PC viz-cluster, an exact
copy of the executable runs on each
PC within the cluster, also called a
node. This means each node must
have access, via network or local
disk, to any and all of the data files
that the application will be loading
and using during run-time.

Each node of the viz-cluster is re-

sponsible for rendering graphics to
some portion of the display. One of
the PC nodes is always called the
master node and the rest are all called
slave nodes. With the CAVELib, the
master node is also required to be one
of the graphics nodes. For example,
in a 2x2 tiled wall display, composed
of four PCs and four projectors, there
would be one master node and three
slave nodes. Each PC would then be
responsible for rendering one-fourth
of the overall image. In addition to
rendering graphics and managing
the synchronization between the
PCs, the master node in a CAVELib
cluster application is also respon-
sible for obtaining input data, such
as trackers and input devices, and
then sharing this data with the slave
nodes each and every frame.

When using the CAVELib, each
node is configured to know only
which portion of the screen it is
responsible for rendering. The
CAVELib guarantees that, for each
frame, all internal state data that

PC clusters are being seen as cost-effective alternatives for large computations and managing visualization displays.

may affect the rendering (such as
tracking data, time, etc.) are exactly
the same for each and every node in
the cluster. By using a series of barri-
ers or locks, the CAVELib guarantees
that no PC is allowed to execute its
rendering action until it has the lat-
est state data from the master node.
The primary mechanism for making
a cluster work is in the fact that each
node is running an exact copy of the
CAVELib application and using the
same data values for each frame, this
will result in the rendered output
being deterministic on a per-frame
basis. This is the main contributor
to how the CAVELib keeps the ren-
dered images synchronized.

Additionally, the CAVELib has
to guarantee that the rendered im-
ages are made available to the video
projectors at the same time for
each node, each frame. The process
of doing this is called framelock.
Framelock means that all of the PCs
do their graphics buffer swaps at the

same time. The buffer swap is when
the image the application just cre-
ated is moved from the image buffer
into which it was rendered, to the
buffer the graphics card accesses to
output the image as a video signal.
The CAVELib, as part of its support
for clusters, provides framelock for
the application automatically at
run-time.

When discussing viz-clusters,
there is another type of synchroni-
zation that is often mentioned and
that is video genlock. Genlock is
the action of each video card send-
ing its video signal out at exactly
the same time. It is used for many
types of displays and is absolutely
required for an active stereo dis-
play. In active stereo, a graphics
card sends alternating images from
the graphics buffers. For each dis-
play frame, the graphics card alter-
nates between sending a left-eye
and a right-eye image. When using
multiple PCs with shutter glasses
for active stereo, the glasses and the
video image for each node must be
synchronized. What this means is
that each video card in the viz-clus-

ter must output the left-eye image
at the same time that the glasses are
synchronized to view the left-eye im-
age, and vice-versa for the right-eye
image. The genlock synchronization
is something that is done specifically
by graphics hardware, usually with
a special interconnect or cable that
connects the cards in each PC. So
far, the CAVELib has been shown to
work in active stereo on any viz-clus-
ter that has a genlock mechanism.

The CAVELib support for viz-clus-
ters uses three main technologies:
data synchronization, framelock and
genlock. The CAVELib’s paradigm for
cluster support lets each node of the
viz-cluster do all of its rendering and
responses to per frame data (such
as tracker and controller inputs) lo-
cally. The CAVELib’s architecture is
set up to maximize the usage of each
individual node by doing computa-
tions on the local CPUs, utilizing the
local memory as much as possible,
and minimizing the use of the net-

work. The CAVELib’s cluster support
is based on the premise that the data
and geometry transfer done inside a
PC is more efficient than transferring
data between PCs. The added benefit
of this approach is that it simplifies
the migration of legacy applications
into cluster environments as the
legacy code does not need to be re-
architected to a distributed comput-
ing paradigm.

In addition, the CAVELib cluster
design fully supports applications
that do utilize a distributed scenario
in which one node computes geom-
etry information and shares it with
the other nodes that perform the
rendering. The CAVELib API pro-
vides a function call to guarantee the
synchronization of the shared render
data between all nodes. In this way,
a master node may take advantage
of a local resource but still be able to
share that information to each node,
as opposed to having access to the
data duplicated on each node.

Typically, with a cluster CAVELib
application, each node operates
nearly autonomously in a cluster
setup. Each node receives the per-
frame data from a single master
node each frame and then does all
of its work on the local CPUs and
memory. In a CAVELib application
for an SMP system, information
about the tracker and user input is
stored in shared memory, and each
display process or thread has ac-
cess to it. In a cluster CAVELib ap-
plication, the CAVELib treats each
node akin to being a process and
automatically passes this per frame
data to each node’s local memory
without the application developer
needing to worry about it. All of
this is able to occur without each
node having to know what the
other nodes in the viz-cluster are
responsible for. The approach of
hiding this passing of per-frame
data is what makes migration of a
CAVELib application from an SMP
system to a viz-cluster very easy for
many existing customers.

Reprinted with Permission from Advance Imaging • September 2004

A CAVE-like display assigns one projector to each screen, as opposed to a tiled-wall display, in which a single screen consists
of numerous projectors to create a single high-resolution image.

COMBINING THE CAVELIB AND OPEN INVENTOR
The CAVELib and Open Inventor from Mercury Com-

puter Systems have been successfully used together for many
years. Applications that use these two packages must follow
a CAVELib programming paradigm for the creation of the
application. In order to support clusters, the CAVELib must
maintain its responsibility for all of the window, viewport
and graphics contexts creation as well as spawn the display
threads or processes when these packages are used together.

The CAVELib is the software responsible for receiving any
tracker and input data and makes it available to the applica-
tion through its API. Within an Open Inventor CAVELib ap-
plication, Open Inventor provides the scene graph and ren-
dering portions of the application. The CAVELib itself is not a
high-level toolkit for creating graphical applications. Instead,
the CAVELib’s strength is in providing a framework from
which applications are developed for supporting multiwall,
immersive, interactive 3D display systems. Open Inventor
has proven to work very well with CAVELib because its ren-
dering engine can be executed easily from within a CAVELib
display process. In fact, the Open Inventor rendering action
executes without depending upon any CAVELib functional-
ity, this allows most standard nodes and custom nodes to be
rendered within an Open Inventor CAVELib application. Ad-
ditionally, since an exact copy of an Open Inventor CAVELib
application is running on each node, an application’s custom
nodes and callback nodes will work with the CAVELib, which
may not be true for some other cluster solutions.

Developers making use of the CAVELib and Open Inven-
tor will find its structure a little bit of a departure from a
traditional desktop Open Inventor application. However,
all of Open Inventor’s geometry, materials and lights work
with CAVELib with no new effort needed by the application
developer. Because the CAVELib is designed to primarily

support immersive devices, including six DOF trackers and
input controllers as opposed to desktop interfaces, support
for some of Open Inventor’s interactive nodes will differ
slightly from how they are used in a standalone Open Inven-
tor application. Finally, Open Inventor’s desktop GUIs are
typically unsupported with the CAVELib.

SUMMARY
The CAVELib’s cluster support is a different approach

than many of the other cluster paradigms available due to
its minimal bandwidth requirements. Putting the workload
inside each PC will allow for a more efficiently scalable solu-
tion than one that has a tighter coupling to network perfor-
mance. Except for instances where active stereo is required,
the CAVELib’s cluster support has been shown to be hard-
ware-independent.

Since 2000, the CAVELib’s cluster support has been used to
drive CAVEs, Reality Centers and tiled displays for a variety
of organizations. Additionally, the CAVELib and Open Inven-
tor have been used together successfully for displaying in i3D
displays driven by both supercomputers and PC clusters. Both
toolkits have cross-platform support and have been used indi-
vidually as well as together for many years.

(Photos Courtesy of VRCO, Inc.)

