
InterViews: A C++ GraphicalInterfaceToolkit

Mark A. Linton, PaulR. Calder, andJohnM. Vlissides
StanfordUniversity

Abstract

We haveimplementedan object-orienteduserinterface
package,called InterViews, that supportsthe composi-
tion of a graphicaluser interfacefrom a set of inter-
active objects. The baseclassfor interactiveobjects,
calledan interactor, andbaseclassfor compositeob-
jects, called a scene, definea protocol for combining
interactivebehaviors.Subclassesof scenedefinecom-
mon typesof composition:a box tiles its components,
a tray allows componentsto overlapor constraineach
other’splacement,a deck stacksits componentsso that
only oneis visible, a frame addsa border, anda view-
port showspart of a component. Predefinedcompo-
nentsincludemenus,scrollers,buttons,andtexteditors.
InterViewsalsoincludesclassesfor structuredtext and
graphics.InterViewsis written in C++ andrunson top
of the X window system.

1 Introduction

Graphicaluserinterfacesaredifficult to implementbe-
causeof diverseuserneedsandpreferences.Toolsthat
assista graphicalinterfaceprogrammermust balance
conflictingrequirementscarefully. High-leveltoolscan
restrict the variety of interfacesthat can be created,
while tools at too low a level may not provide much
help to the programmer.

InterViews(InteractiveViews) is a library of C++[5]
classesthat can be usedto constructa graphicaluser
interfacefrom interactivecomponents.The designof
InterViews has been driven by three desires: (1) to
avoidconstrainingthestyleof theinterface,(2) to allow
the interfaceto be definedby compositionof existing
components,and (3) to allow new componentsto be
derivedeasily from existingones.

Like MacApp[4] and Smalltalk MVC[1], the ap-
proachusedin InterViews separatesinteractivebehav-
ior from abstractbehavior. An interactiveobject,called

0Researchsupportedby theSUNDECprojectthrougha gift from
Digital EquipmentCorporationand a grant from the CharlesLee
Powell Foundation.

0An earlyversionof this papertitled “The DesignandImplemen-
tation of InterViews” appearsin Proceedings of the USENIX C++
Workshop, SantaFe,New Mexico, November1987.

a view, definesthe user interface to an abstractob-
ject, called the subject. The separationof subjectand
view supportsdifferent views of the samesubject to
suit the particular application or to customizeinter-
active style. A view can be customizeddynamically
using a metaview, a view of anotherview’s internal
state. For example,a metaviewmight allow the user
to interactivelymodify themappingfrom keystrokesto
commandsin a text view.

Building graphicalinterfacesfrom reusablecompo-
nentsrequirestheability to definean interactiveobject
that can be used in a variety of contexts. To fulfill
this requirement,we must considerthe way in which
thecharacteristicsof a componentandits contextaffect
eachother.

In InterViews,eachinteractivecomponent,calledan
interactor, has a preferredshapeand size. The pre-
ferredshapeandsizeof a compositionof components,
calleda scene, is calculatedfrom thoseof the compo-
nents.However, theactualdisplayspaceallocatedto an
interactormight not correspondto its preferredsize—
the interactoris responsiblefor makingbestuseof the
spaceit hasbeenallocated. Dif ferent scenesallocate
displayspaceto componentinteractorsusingdifferent
algorithms. For example,a box tiles its components,
but a tray allows themto overlap.

We have implementedInterViews on top of the X
window system[3]. A small set of primitive classes
completelyencapsulatestheX interface.Theremaining
library classesand applicationsdo not containany X
calls; they call operationsdefinedby the primitives.

2 Class Organization

Figure1 showsa subsetof the InterViewsclasshierar-
chy. Severalfactorsinfluencedthe structureof the hi-
erarchy. The overridinggoal wassimplicity—to make
theclasseseasyto understand,straightforwardto imple-
ment,andconvenientto extend. From most important
to leastimportant,the factorswere:

ShallowNesting
Classesarea goodpartitioning mechanism,but
there are drawbacksassociatedwith a large
number of classes. Our experiencehas been

- 2 -

Painter Sensor Cursor Color Font Brush Pattern

Resource

Interactor

Scroller Panner Button Scene Glue Menu TextEdit

Frame Viewport Box Tray Deck

Figure1: InterViewsclasshierarchy

that a large class hierarchy overwhelmspro-
grammers,especiallywhentherearemanylev-
els of subclasses.An earlier library had many
small classesnestedup to 12 deep. Usersof
this library had troublegraspingthe many dif-
ferent classesand their inheritedbehavior. In-
terViewscurrentlyhasoneclassnested5 deep;
most classesare at level 2 or 3. Throughout
the developmentof InterViewswe often chose
to add an operationto an existingclassrather
thanaddinga new class.

ObjectSharing
Onereasonfor introducingnewclassesis to al-
low state to be sharedamongseveralobjects.
For example,severalinteractorsshouldbe able
to usethesamegraphicsstate;therefore,graph-
ics stateis a separateclass. Similarly, several
graphicsstatesshould be able to refer to the
same font, so font is a separateclass. The
top set of classesin Figure 1 are subclasses
of resource, becausethey are sharedobjects.
Resourcescontain a referencecount that can
be manually incremented.When a resourceis
destroyed,the referencecount is decremented;

then the resourceis deallocatedif the count is
zero.

CommonUsage
It is often preferableto design for a specific
common casethan for the generalcase. For
example,InterViewsdoesnot definea unifying
classfor all kindsof menus.Instead,it provides
aparticularstyle,pop-upmenus.Theadvantage
is thata userneednotunderstanda complicated
menu model to use pop-up menus. The dis-
advantageis that thereis no direct supportfor
otherkinds of menus,thoughthey arestraight-
forward to implement.

2.1 Interactors

All user interfaceobjectsare derived from the inter-
actor class. Every interactorhasan associatedshape
that it usesto specify its desireddisplayspacealloca-
tion. Shapesdefinea naturalsize, a shrinkability, and
a stretchability. The naturalsizeis the interactor’s pre-
ferredwidth andheight,thestretchabilityis theamount
by whichit is preparedto stretchbeyondits naturalsize,
and the shrinkability is the amountby which it is pre-
paredto shrink. An interactor’s parentscenemay use

- 3 -

the shapesof its componentsto allocatetheir display
areaandto determineits own shape.Theactualdisplay
areaallocatedto a componentinteractoris assignedto
its canvas. If the interactoris a scene,it may in turn
allocatepartsof its canvasto its own componentsac-
cordingto their shapes.Becausethecurrentimplemen-
tation is on top of X, canvasesare alwaysrectangular
andmay overlap.

An interactordefinesa set of operationsthat char-
acterizeits behavior. Figure2 givesthe C++ interface
to theseoperations. The Draw operationdefinesthe
appearanceof the interactor. Calling Draw causesthe
interactorto displaya representationof itself on its can-
vas. If the interactoris a scene,it will alsocall Draw
on eachof its components.Redraw is called when-
evera partof aninteractorneedsto beredrawn,perhaps
becauseit hadbeenobscuredbut is now visible. The
Update operationindicatesthat somestateon which
theinteractordependsmayhavechanged;theinteractor
will usuallyDraw itself in responseto anUpdate call.
Typically, whena subjectchangesit will call Update
on its views. Reshape providesa way of controlling
aninteractor’sshape.If aninteractorchangesits shape,
it will usuallypropagatethe changeto its parentscene.
Resize indicatesthatthe interactor’scanvashasbeen
changedin size. If the interactor is a scene,it will
reallocateits components’canvases.

An interactorperformsoutput to its canvasusing a
painter. A painter providesdrawing operationsand
managesgraphicsstatesuchas foregroundand back-
groundcolors,font, andfill pattern.Eachdrawingop-
erationis passedthe targetcanvas.Canvascoordinates
refer to pixels but can be expressedin inchesor cen-
timetersby multiplyingby thepredefinedglobalvalues
“inch” or “cm”. Also, painterscanperformcoordinate
transformationscomposedof translations,rotations,and
scalings.

A sensor definesinterestin certainkinds of events.
Interactorsinterestedin input eventshavea sensorthat
definestheir current input interest. Eachevent is tar-
gettedto a particularinteractor.

An interactorcanreceiveinput eventsin oneof two
ways: (1) it can readthe next eventfrom the (global)
inputqueue,or (2) aneventcanbepassedfrom another
interactorusingtheHandle operation.The readerof
an eventmay chooseto processor ignorethe event,or
to passit to the event’s target interactor.

A purely event-driven organization, such as in
MacApp, canbe producedby usingthe C++ loop

for (;;) {
Read(e);
e.target->Handle(e);

}

A more traditional control flow, not possible in
purelyevent-drivensystems,canbe producedby read-
ing eventsaspartof interactoroperations.Forexample,
whena button is pressedin a pop-upmenuit may be
desirableto ignoreeventsfor targetsother than menu
items. In casessuchas this, readingeventsdirectly is
morestraightforwardthananevent-drivenimplementa-
tion.

Most interactorshandle input and generateoutput.
Thus,everyinteractorhasa sensorcalled“input” anda
paintercalled“output” for which initial valuesarede-
fined whenthe interactoris created.This approachlets
interactorsdefineeventinterestand graphicsstatedy-
namically. Interactorscanalsodefineadditionalsensors
and painters. For example,an interactorrepresenting
a menuselectionmight useonepainterwhen it is not
selected,andanother(with reversedcolors)to highlight
itself whenit is selected.

Scenesoftenpass“input” and“output” to their com-
ponentinteractors,effectively sharingthe stateamong
severalinteractors.Becausethestatemay be shared,it
is inconvenientto makea particularinteractorrespon-
sible for destroyingthe sensorandpainter. The sensor
andpainterclassesarethereforesubclassesof resource.
The interactorconstructorexplicitly incrementstheref-
erencecountsof “input” and“output”, andthedestruc-
tor decrementsthem.

2.2 Scenes

All interactorsthat containcomponentinteractorsare
derivedfrom the sceneclass. Scenesubclassesdiffer
primarily in theway their shapedependson theshapes
of theircomponentsandin thewaytheyallocatedisplay
spaceto their components.

Scenesdefineoperationsfor managingtheir compo-
nents.TheC++ interfaceis givenin Figure3. Insert
andRemove areusedto specifya scene’s components.
An interactorcanbe a componentof only onescene—
theinteractorstructureis ahierarchy. Somesceneshave
only onecomponent;insertinga componentimplicitly
removesany existingcomponent.Raise andLower
modify thefront-to-backorderingof componentswithin
a scene.Move suggestsa changein the positionof a
componentwithin thescene.Not all scenesimplement
all of theseoperations.For instance,it doesnot make
senseto call Raise on a scenethatcanhaveonly one
component.

The Change operationtells a scenethat oneof its
components’shapeshaschanged.A scenecan do ei-
ther of two things in responseto a Change: it can

- 4 -

virtual void Resize();
virtual void Draw();
virtual void Redraw(Coord left, Coord bottom, Coord right, Coord top);
virtual void Reshape(Shape&);
virtual void Update();
virtual void Handle(Event&);

Figure2: Interfaceto Interactorbaseclassoperations

void Insert(Interactor*);
void Insert(Interactor*, Coord x, Coord y);
void Change(Interactor*);
void Move(Interactor*, Coord x, Coord y);
void Remove(Interactor*);
void Raise(Interactor*);
void Lower(Interactor*);
void Propagate(boolean);

Figure3: Interfaceto Sceneoperations

recalculateits own shapeandpropagatethe changeby
calling Change on its parent,or it can simply reallo-
cateits components’canvasesbasedon thenew shape.
The Propagate operationis usedto specify which
behavioris requiredfor a particularinstance.

2.2.1 Box

Many graphicalinterfacescanbe composedby arrang-
ing componentsside-by-sideeitherhorizontallyor ver-
tically. The scenesubclasseshbox and vbox support
this styleof tiled composition.Glue providesa way of
insertingspacebetweenthe componentsin a box. This
modelis a simplifiedversionof TEX[2] boxesandglue.

A box’s shapeis thesumof its components’shapes.
Whenallocatingits components’canvases,a box tries
to allocateeachcomponentits naturalsize. If thereis a
discrepancybetweentheavailablespaceandthenatural
size,a box distributestheexcessor shortfallaccording
to the proportion of the total stretchabilityor shrink-
ability contributedby eachcomponent. For example,
considera box which containsone interactor whose
shape,expressedas ���������
	����������	�������������	���������� , is� 10� 2 � 7� andanotherwhoseshapeis � 15� 10� 1� . If
thebox is givena canvasof size25, it canallocateeach
componentits naturalsize. If the box is given size19,
thenit will shrinkthefirst componentby 6 � 2� 12 1
and the secondcomponentby 6 � 10� 12 5. If the
box is given size33, then it will stretchthe first com-
ponentby 8 � 7� 8 7 and the secondcomponentby

8 � 1� 8 1. A shapewhich is in effect infinitely
stretchableor shrinkablecanbe specifiedby usingthe
predefinedvalues“hfil” and“vfil.”

Figure4 illustratesa typicalcompositionusingboxes
andglue. Theupperpartof thefigureshowstwo views
of an alert box that consistsof a vbox containingfive
components.Fromthe top, theyarea pieceof glue,an
interactorcontainingthe text of thealert,anotherpiece
of glue,anhboxcontainingthebutton,anda final piece
of glue. The hbox is composedof a buttonwith glue
on both sides. By suitablechoiceof the shapesof the
variouscomponents,the layout of the alert box canbe
controlledfor a rangeof displaysizes. The lower part
of the figure showsthat, in this instance,the glue to
the left of the button is made “infinitely” stretchable
and shrinkable,while that to the right is rigid. Thus
when the alert is madewider, all of the extraspaceis
absorbedby the glue on the left.

Boxes and glue allow flexible specificationof the
presentationof a user interface. Many commonlay-
out strategiescan be expressedeasily. For example,a
componentcanbecenteredwithin aboxby placing“fil”
glue on eitherside,or a numberof componentscanbe
spacedequally by insertingidentically sized glue be-
tweenthem.

2.2.2 Tray

A compositionin which componentscan be placedat
specifiedpositionsis supportedby the scenesubclass

- 5 -

<0,hfil,hfil> <40,0,0>OK

Figure4: An exampleof compositionwith boxesandglue

tray. A tray has a “background” componentthat is
allocatedall of the tray’scanvasanda numberof other
componentseachof whosepositionis determinedby a
setof individualalignments.If no explicit alignmentis
definedfor a component,it is assumedto be alignedto
the lower left cornerof the tray. Componentsin a tray
are arrangedfrom back to front in insertionorderand
canoverlaparbitrarily.

Eachalignmentof a componentinteractoris to some
other “target” interactor, often anothercomponentof
the tray or the tray itself. The alignmentspecifiesa
point on the target, a point on the component,andthe
characteristicsof the “glue” with which to connectthe
alignmentpoints. Thealignedpointscanbea cornerof
theinteractor, themidpointof a side,or thecenter. The
tray will placeeachcomponentto satisfyits alignments
as far as possible. The interactorand the connecting
gluewill bestretchedor shrunkaccordingto their con-
tributionsto the total stretchabilityandshrinkability in
the samemannerascomponentswithin a box.

Trays provide a natural way to describelayouts in
which components“float” in front of a background.
For example,considera compositionto centera title
nearthe top of a diagram. Figure5 showsa possible
layout. The interactorrepresentingthe diagramis the
backgroundof the tray, and an interactor containing
the title hasbeeninsertedwith an alignmentfrom the
midpoint of its top edgeto the midpoint of the tray’s
top edge. The naturalsize of the glue connectingthe
alignedpointsdeterminesthe distanceof the title from
thetop edgeof thediagram.Otherexamplesof layouts
easilydescribedusinga trayinclude“pull down” menus
wherethe menuis alignedto a fixed “menu bar” and

transient“alert boxes” which are often centeredatop
anotherinteractor.

2.2.3 Deck

A third style of compositionis providedby the scene
subclassdeck. Componentsin a deckareconceptually
stackedon top of eachotherso that only the topmost
componentis visible at a time. A decktakestheshape
of the largestof its componentsandallocatesall of its
canvasto the topmostcomponent.A setof operations
provide the meansto “shuffle” the deck to bring the
desiredcomponentto the top. The visible component
canalsobe selectedinteractivelyusinga scroll bar.

A deck is useful in composinga layout such as a
multi-pagedocumentin which eachpageis represented
by an interactorin the deck. Anotherusemight be to
composea “dialog” in which thereareseveralalternate
“panels” of options—adeck could be usedto switch
betweenthe panels.

2.2.4 Single Component Scenes

Graphicalinterfacescommonlyrequireinteractorsthat
arebestdescribedusinganotherinteractor. For exam-
ple, a menuis implementedasa box containingmenu
items. However, a menu does not sharethe behav-
ior of a box in the senseof a subclass;it simply uses
the box to composethe items. This distinction is im-
portant, and it helps simplify the classhierarchy. In
InterViewssuchinteractorsare implementedusingthe
scenesubclassmonoscene, which can containonly a
single component. A monoscenenormally gives all

- 6 -

Figure5: A layout usinga tray

of its displayspaceto the interactor. One subclassof
monoscene,frame, allocatesall of its displayspaceex-
cept for an outline aroundthe interactor. For example,
the alert box of Figure4 hasa framearoundthe vbox
which composesthe inner components.Anothersub-
class,viewport, allows its componentto be largerthan
the availablespace. Part of the componentis visible
throughthe viewport;how muchis visible canbe con-
trolled by the user through interactorssuch as scroll
bars.

2.3 Perspectives

InterViewsprovidesa standardway to handlescrolling,
zooming,andpanningoperationson an interactor. An
interactorthat implementssuchoperationsmaintainsa
perspective. The perspectivedefinesa rangeof coor-
dinatesrepresentingthe total extentof the interactor’s
view anda subrangefor the portion of the total range
thatis currentlyvisible. For example,theverticalrange
for a text editormight be the total numberof lines in a
file; thesubrangewouldbethenumberof linesactually
displayedin the editor’s canvas.

Scrolling and zoomingare performedby modifying
the interactor’s perspective.An interactorcan modify
its own perspective(whenthe text editoraddsa line to
the file, for example),or the perspectivecanbe modi-
fied asa resultof an externaloperationsuchasa user
request.

A scroller is an interactorthat is a view of the per-
spectiveassociatedwith anotherinteractor. A scroller
displaysa sliding barwhoselengthreflectsthe fraction
of thetotal rangethat is currentlyvisible. Theusercan
modify theperspectiveinteractivelythroughthescroller
usingthe mouse.

Other kinds of views of perspectivesare also pro-
vided by InterViews: a panner supportsmovement

in both x and y dimensionsfrom a single interface,
andzoomandscroll buttonsallow steppedadjustments.
Severalviewsof thesameperspectivecanexistatonce.
For instance,a perspectivecould be modifiedby zoom
and scroll buttonsin addition to a scroller. When a
perspectiveis changed,it notifies its views. Thus, a
changemadethroughoneview of a perspectivewill be
reflectedin all of its views.

2.4 Buttons

A button is an interactorsubclassthat is a view of
a button state. The usercan “press” a button to set
theassociatedbuttonstateto a particularvalue. Several
buttonscanbevisiblefor thesamebuttonstate,making
it possibleto usebuttonsto selectfrom a discretesetof
values,eachbuttonrepresentinga differentvalue. Like
any subject,a buttonstatenotifies its views (buttons)
whenit changes.

Three common kinds of buttonsare provided. A
push button hasa round-corneredrectanglesurround-
ing its label. It is drawn in reversecolors when it is
pressed.A pushbuttonremainspressedonly aslongas
the userhold down the mousebutton.A radio button
hasa circle to the left of its label; the circle is filled
when the buttonis pressed.A radio buttonactslike a
tuningbuttononacarradio. Pressingthebuttonsetsthe
associatedbuttonstateto a particularvalue. Thebutton
will staypresseduntil the buttonstateis changedto a
newvalue,usuallyby pressinganotherradiobuttonfor
thesamebuttonstate.A check box hasa squareto the
left of its label; the squareis checkedwhenthe button
is pressed.A checkbox hasa “push-on/push-off ” ac-
tion. Successiveclicks of the mousebuttonalternately
pressandreleasethecheckbox button.Figure8 shows
all threetypesof buttoncomposedin a dialogbox.

- 7 -

In additionto beingattachedto a buttonstate,buttons
canbeattachedto otherbuttons.If button! is attached
to button " , then ! is disabledwhile " is not pressed.
A disabledbuttonignoresinputanddrawsitself “grayed
out” to showthat it is disabled.

The button model implementedby the InterViews
library is well suited to a dialog mode of user
interaction—buttons are usedto set statevariablesbut
causeno immediateaction. Only when the dialog is
dismissed,often with a push button, are the current
valuesof the statevariablesexaminedand interpreted.
Otherbuttonmodels,suchas a buttonwith an associ-
atedactionratherthanstate,canbe derivedeasily.

2.5 Structured Text

InterViewsprovidestext objectsthat canbe structured
hierarchicallyusingcompositionobjectsthat supporta
varietyof layoutstyles.The composition classdefines
the way objectsof classtext arearrangedto fill avail-
ablespace.Subclassesof compositionspecifydifferent
layout strategies.There is a closeparallel betweena
compositioncontainingtext objectsand a scenecon-
taining interactors.In both cases,subclassesof a gen-
eral compositionclassdeterminethe way components
are laid out to fill availablespace.

Primitive textualobjectsderivedfrom the text class
includeword andwhitespace. Theedit word subclass
providescharactereditingoperationssuchasInsert
andDelete. Subclassesof compositionincludesen-
tence, which causesa line breakat the right margin;
paragraph, which definesright and left margins; text
list, which composescomponentshorizontallyor ver-
tically dependingon the availablespace;and display,
which indentsits components.

Conceptually, text objectsform onelong line of text.
Compositionobjectscan be usedto place constraints
on how this line is brokento fit availablespace. For
example,a text list objectwill arrangetextobjectshori-
zontallyif thereis enoughroom;otherwiseit will place
eachof its componentson a separateline.

Composition objectsalsosupporthit detectionby re-
turning the text object correspondingto a coordinate
pair. This facility lets views determinewhich text ob-
ject is selectedwithout knowingthe layout.

2.6 Structured Graphics

Graphic is a baseclassfor definingstructuredgraphics
objects. Each graphichas its own graphicsstatethat
includesattributessuchascolor, line style,andcoordi-
natetransformation.Subclassesof graphicincludeline,

circle, rectangle, and picture (for representinga col-
lection of graphics). All graphicscan draw and erase
themselvesand provide operationsfor examiningand
changinggraphicsstateattributes.

Picturesare the basicmechanismfor building hier-
archiesof graphics.A picturemaintainsa list of com-
ponentgraphicsanddrawsitself by drawingeachcom-
ponentwith a graphicsstateformedby combiningthe
component’s statewith its own. For example,com-
bining color attributesmeansthe component’s color is
overriddenby the picture’s (if the picturedefinesone);
combiningcoordinatetransformationsmeansmultiply-
ing the component’s transformationmatrix by the pic-
ture’s. This schememakesoperationson a pictureaf-
fect its componentsso that an operationworks on the
pictureasa unit.

Graphicsalso supporthit detection;for instance,a
hit can be registeredon a spline object within one
pixel. Picturesperform hit detectionby checkingfor
hits on their componentgraphicsin the picture’s coor-
dinatespace.

Damage is a classthat automaticallyredrawspor-
tions of a graphic that have been changed,erased,
or are otherwise inconsistentwith the graphic’s in-
tendedappearance.Damageobjects try to minimize
theamountof redrawneededto repaira graphic.They
are most useful for repairing graphicsthat are com-
plicated enoughto make redrawingthe entire canvas
undesirable.

2.7 Other Classes

Rubberband is a baseclassfor graphicsobjectsthat
track userinput. For example,a rubber rectangle can
be usedto dragout a new rectangleinteractively. An-
othersubclass,sliding rectangle, canbe usedto move
aroundan existingrectangle.Theseclassescompletely
isolate programmersfrom device-dependentmethods
commonly used to implement “rubberbanding”,such
asuseof exclusive-ordrawingor an overlayplane.

A bitmap representsa bit-mappedmasksuitablefor
drawingiconsor for constructingotherobjectssuchas
cursorsand fill patterns. Operationssuch as scaling,
rotation,andbit manipulationsareprovided.

EveryprogramusingInterViewsmustcreatea world
object. This objectrepresentstheroot sceneof thedis-
play. The constructoropensa connectionto the win-
dow server. Other InterViewsclassesinclude banner,
which displaysheadings,border, which visually sepa-
ratescomponentsin boxes,and menu, which is a box
of menu items that insertsitself into the world when
its Popup operationis called. After insertion,a menu

- 8 -

waits for the userto releasea buttonand then returns
the menuitem that waschosen.

3 Example Usage

Squares is a demonstrationprogramthatusesmanyof
the InterViewsclasses.The programcontainsa simple
subjectthatmanagesa list of squaresof differentsizes
andpositions.The userinterfaceis constructedfrom a
view of the squareslist, a frame aroundthe view, and
a metaviewfor simplecustomization.

Theframesurroundsa verticalbox containinga ban-
ner and two horizontal boxes, all separatedby hori-
zontal borders.The upperhorizontalbox containsthe
squaresview, a vertical border, anda vertical scroller.
The lower horizontalbox containsa horizontalscroller,
a vertical border, anda pieceof glue. Figure6 shows
what the squaresframe looks like, andFigure7 shows
the C++ codethat constructsthe frame.

Using a pop-upmenu, the user can createanother
view of the squareslist, add a squareto the list, open
a metaviewto customizethe squaresframe,or exit the
program. The squareslist notifies its views when the
squareis added,so the new squareis visible in all
views. Each view can be scrolledand zoomedinde-
pendently.

Figure8 showsthe metaviewusedto customizethe
framearounda view. The metaviewconsistsof a dia-
log box containingcheckboxesfor specifyingthepres-
enceof scrollers,buttonsfor specifyingattributesof the
scrollers,anda confirmationbuttonto indicatethatcus-
tomizationis complete.The componentsof the dialog
box areseparatedby glueobjectswith carefullychosen
shapes;the dialogwill maintaina pleasinglayoutfor a
rangeof sizes.

4 Implementation

It took aboutsix man-monthsto implementthe initial
versionof InterViewson top of X. In this section,we
discusssomeof theproblemsin interfacingto X, some
detailsof implementingscenes,andsomecommentson
usingC++ andobject-orientedprogrammingin general.

4.1 Interfacing to X

InterViewsprimitive classoperationsmakedirectX li-
brary calls to implementtheir semantics.The key is-
suesin interfacingto X weremanagingX windowsand
translatingX input eventsinto InterViewsevents.

4.1.1 Window Management

Each canvas is representedas an X window. The
world’s canvasis the root window for a display. The
sceneclasscontainsoperationsto handlethe creation,
mapping,andconfigurationof windows. Thetwo oper-
ationsavailablefor useby scenesubclasseswhenallo-
catingcomponentinteractors’canvasesarePlace and
UserPlace. Place puts an interactorat a specific
position in a sceneand is implementedby creatinga
subwindowof the scene’s window andassociatingthe
subwindowwith the interactor’s canvas.UserPlace
createsa windowandletstheuserinteractivelyposition
it.

4.1.2 Input Events

TheX modelof inputeventsis somewhatdifferentfrom
theInterViewsmodel,butanimportantsimilarity is that
eachX inputeventis associatedwith a destinationwin-
dow. The interactorRead operationmapsthe window
to the target througha globalhashtablemaintainedby
scenes.The eventis thencheckedagainstthe interac-
tor’s currentsensorto seeif the interactoris interested
in the event. Normally, we can tell X to ignoreevents
that arenot of interest;however, X cannotalwaysdis-
tinguisheventsat the level we wish. For example,X
cannotsendeventsfor theleft mousebuttonandignore
eventsfor the middle andright buttons.

X is very differentfrom InterViewsin thesizingand
redrawingof windows. X representstheneedto redraw
part of a window as an input event;InterViewsrepre-
sentsit as an out-of-bandprocedurecall. When the
Read operationseesa redrawevent,it calls Redraw
onthedestinationwindowandproceedsto readthenext
input event.

4.2 Scene Shapes

An importantaspectof implementingscenesis thecom-
putation of the scene’s shape. A graphical interface
designershouldbe free to concentrateon the compo-
nentsand rely on the sceneto composetheir shapes
appropriately.

For example,considerthecalculationof theshapeof
a box. A boxmustcomputeits ownshapeasa function
of the shapesof the interactorsinside it. Along the
majoraxis (horizontalfor anhbox,vertical for a vbox),
the naturalsizes,stretchabilitesandshrinkabilities can
simply be added.

Computingtheparametersfor theminoraxis is more
complicated. The model we adoptedis that the box

- 9 -

Figure6: Squaresview

frame = new VBox(
new Banner("squares demo", "InterViews 2.3", "2/8/88"),
new HBorder,
new HBox(view, new VBorder, new VScroller(view, vwidth)),
new HBorder,
new HBox(new HScroller(view, hwidth), new VBorder, new HGlue(vwidth, 0))

);

Figure7: Codeto constructsquaresframe

Figure8: Squaresmetaviewdialog

- 10 -

shouldbebig enoughto accommodatethe largestcom-
ponentandshouldstretchandshrinkno morethanthe
mostrigid componentwill allow. If theserequirements
conflict, the larger numberis used. Letting # , $, % ,& , ' representnaturalsize, minimum size, maximum
size, shrinkability, andstretchability, respectively, then
for a setof � componentstheparametersarecalculated
asfollows:

#)(+*-,/.�0) 21 �3�4 # 1
� . . . � #6587

$ (+*-,/.90 :1 �3�4 $ 1
� . . . � $ 5 7

where
$ * 2# *�; & * �

and
% (<*-,=.�0 :1 ���>4 % 1

� . . . � % 5 7
where

% * ?# *�@ ' *�A

4.3 Experience with C++

Using C++ as the implementationlanguagefor Inter-
Views hashadseveralbenefits. Classinheritanceand
virtual functions simplify the structureof code and
data, making the implementationeasierto debugand
understand.Much of the complexity is in the primi-
tive classes,hiddenfrom interfacedesigners.Easeof
understandingis especiallyimportant for InterViews,
sinceit is intendedthat interfacedesignerswill derive
application-specificclassesfrom library classesto suit
particularneeds. C++ is also portable,enablingus to
bring up InterViewson a new workstationquickly.

A significantadvantageof usingC++ for InterViews
wasthat therewasa goodmatchbetweenthe language
andthesoftwarewe weredesigning.It wasmucheasier
to implementan object-orienteduserinterfacepackage
using an object-orientedlanguagethan it would have
beenwith a procedurallanguage.Classesdefineobjects
that model closely the real objectsand conceptsthe
systemis meantto manage.The programmerfocuses
on the objectsthat aremanipulated,not on the flow of
control. In fact, an earlier versionof InterViews was
implementedin Modula-2. Rewriting the codein C++
resultedin a considerablycleanerimplementation.

An observationwe madeduring the designof Inter-
Views was that it is important to concentrateon the
protocols for communicationbetweenobjects.If these
protocolsarewell designed,thentheimplementationof
the objectsis relatively straightforward.Conversely, if
considerationis not given to suchissues,muchreorga-
nizationof classhierarchiesandconsiderablerecoding
is likely to result.

5 Current Status

InterViewscurrentlyrunsonMicroVAX andSunwork-
stationson top of either X10 or X11. The library is
roughly25,000linesof C++ sourcecode.Wehavealso
implementedseveralapplicationson top of the library,
including a reminderservice,a scalabledigital clock,
a drawing editor, a load monitor, a window manager,
anda displayof incomingmail. The applicationshave
beenuseddaily by about20 researchersfor a year, and
thelibrary is beingusedin manydevelopmenteffortsat
Stanfordandotheruniversities,andin industry. We are
currentlyworking on a more generaldrawingsystem,
a programstructureeditor, anda visual debugger.

6 Conclusion

InterViewsprovidesa simpleorganizationof graphical
interfaceclassesthat is easyto useandextendvia sub-
classing.Scenesubclassessuchasbox, tray, deckand
framemakeit possibleto composeinteractivecompo-
nentsintocompleteinterfaceswithoutspecifyinglayout
details.Abstractandinteractivebehaviorareseparated
into subjectandview objectsto supportdifferentinter-
facesto the samefunctionality.

The InterViews library completelyhidesthe under-
lying window systemfrom applicationprograms.This
meansthat we can port InterViews applicationsto a
new window systemsimply by porting the primitive
classes.

Using an object-orientedlanguageto implementIn-
terViews resultedin a packagethat is both simple to
useand easyto extend. The interfacedesigneris en-
couragedto think in object-orientedterms,usuallythe
mostnaturalway of expressinginteractivebehavior.

References

[1] Goldberg, A., Smalltalk-80: The Interactive Pro-
gramming Environment, Addison-Wesley, Read-
ing, Massachusetts,1984.

[2] Knuth, D., The TEXbook, Addison-Wesley, Read-
ing, Massachusetts,1984.

[3] Scheifler, R.W., and J. Gettys, “The X Window
System”,ACM Transactions on Graphics Vol. 5,
No. 2, April 1986,pp. 79-109.

[4] Schmucker, K. J., Object-Oriented Programming
for the Macintosh, Hayden, HasbrouckHeights,
New Jersey, 1986.

- 11 -

[5] Stroustrup,B., The C++ Programming Language,
Addison-Wesley, Reading,Massachusetts,1986.

