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Abstract

Many editors use the graphics capabilities of personal workstations to provide a visual

editing environment. Such editors present graphical representations of familiar objects

and allow the user to manipulate the representations directly. This style of interaction is

usually more intuitive to the user than typing statements in a command language. However,

implementing a graphical object editor has been a difficult undertaking. Though many

packages exist that aid in the construction of graphical user interfaces, none are designed

specifically for building graphical object editors. This is significant because there is a

substantial semantic gap between general user interfaces and the functionality of graphical

object editors. For example, user interface packages usually provide buttons, scroll bars,

and ways to assemble them, but they do not offer primitives for building drawing editors

that produce PostScript or schematic capture systems that produce netlists. Higher-level

abstractions are needed to make such applications easier to develop.

Unidraw is a framework for creating object-oriented graphical editors in domains such

as technical and artistic drawing, music composition, and circuit design. The Unidraw archi-

tecture simplifies the construction of these editors by providing programming abstractions

that are common across domains. Unidraw defines four basic abstractions: components

encapsulate the appearance and semantics of objects in a domain, tools support direct ma-

nipulation of components, commands define operations on components and other objects,

and external representations define the mapping between components and the file format

generated by the editor. Unidraw also supports multiple views, graphical connectivity and

confinement, and dataflow between components. This thesis describes the Unidraw design,

implementation issues, and three experimental domain-specific editors we have developed

with Unidraw: a drawing editor, a user interface builder, and a schematic capture system.
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Our results indicate a substantial reduction in implementation time and effort compared

with existing tools.
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Chapter 1

Introduction

Interactive graphics has become a standard part of application software for personal com-

puters and workstations. A growing number of programs provide a visual metaphor in

which the user deals with graphical representations of familiar objects. These representa-

tions are manipulated in ways that are more intuitive to the user than command languages.

Well-designed graphical interfaces allow the user to perform complex operations with ease.

The user can then concentrate on the design problem and not the computer—it becomes

transparent to the task. Thus, more productive use is made of user and computer time alike.

While programs that use interactive graphics offer significant benefits, writing such

programs is difficult. Even with modern programming environments, debugging facili-

ties, user interface toolkits and other aids, developing a new drawing editor or printed

circuit board layout system, for example, requires considerable effort both in design and

implementation. This discourages development of new applications that take advantage of

interactive graphics.

Whenever the complexity of a programming task becomes an obstacle, some mech-

anism must be introduced to augment the programmer’s abilities. Historically, the most

effective way to manage software complexity has been to provide abstractions that shield

the programmer from extraneous detail. One way to provide effective abstractions is to

distill common functionality from some class of programs into a set of primitives that can be

used in each program. First we identify the class of applications we want to support. Then

we characterize their similarities and determine the abstraction level that maximizes both

1



CHAPTER 1. INTRODUCTION 2

flexibility and expressiveness, two often conflicting goals. Once the abstractions are clear,

we define a software architecture to specify and organize them. Finally, the architecture

is implemented in a set of primitives that closely reflect the abstractions. Accompanying

these primitives are mechanisms for assembling them into complete applications.

This thesis presents Unidraw, a system that supports the construction of a wide variety

of interactive graphics editors. Unidraw comprises abstractions that are targeted specifi-

cally towards direct-manipulation graphical editors such as drawing, music, and schematic

editors. Unidraw reduces the effort required to build these programs by providing a set of

primitive objects and operations that programmers use to construct new kinds of graphical

editors. An editor is created by using, modifying, extending, and combining elements from

Unidraw’s repertoire of predefined objects and operations.

Unidraw introduces a higher level of abstraction than existing systems by distinguishing

and catering to a particular class of applications. Unidraw comprises abstractions that

are characteristic of graphical editors: it does not offer toolkit functionality (it is used

in conjunction with a toolkit), nor does it assume the role of a program development

environment (it defines objects that are used in an existing environment). We have avoided

replicating existing functionality in Unidraw; instead we have focused on providing new

and previously unsupported capabilities.

The remainder of this chapter defines terminology that is used throughout the thesis,

discusses the principles that underlie Unidraw’s design and implementation, and describes

the goals, results, and contributions of this research. In Chapter 2 we discuss work by others

that relates to graphical editing systems. Chapter 3 introduces the Unidraw architecture,

providing an overview of the system’s design and basic concepts. Chapter 4 describes

a prototype implementation of the architecture; it presents notable algorithms and the

mechanisms that underlie the programming interface. Chapter 5 covers three experimental

graphical editors we built with Unidraw to evaluate its effectiveness. We describe their

functionality, user interfaces, and implementations, and we evaluate their performance

relative to existing systems. Finally, Chapter 6 summarizes the approach to building

graphical editors, discusses how successful Unidraw is in achieving the goals of this

research, and suggests directions for future work.
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1.1 Terminology

In the thesis, a domain refers to a physical or abstract context in which objects are ma-

nipulated. For example, technical drawing is a domain in which graphical elements are

arranged to form drawings. Circuit layout is a domain in which electronic components are

arranged to form circuits. Programming is a domain in which tokens are arranged to form

programs.

An editor is a program that supports the manipulation of objects in a domain. An

editor usually presents some abstraction of objects in the domain rather than the objects

themselves. A graphical object editor uses interactive graphics to let the user manipulate

pictures of objects from one or more domains. It also maps objects from their pictorial

representation to at least one other representation.

Domain-specific graphical object editors support a single domain only. Graphical

object editors have been built for several domains. Examples of such editors include

� drawing editors that let the user manipulate geometric objects and produce PostScript

or other representations,

� diagram editors for creating pictures of finite state automata (FSAs) and generating

state or excitation tables,

� schematic editors in which the user manipulates schematic circuit symbols to produce

a netlist, and

� music editors that support graphical music composition and generate MIDI code.

Multi-domain editors can be used to manipulate objects in several domains. Current sys-

tems that can be classified as multi-domain graphical object editors are typically drawing

editors with constraint specification capabilities. The user can supplement the graphical

representations with semantics that define relationships between objects. These semantics

depend on the domain, so several domains can be supported by specifying the appropri-

ate constraints. Other systems that can support multi-domain editing are programmable

domain-specific editors and graphical programming environments, which allow the user to

write programs by manipulating graphical objects directly.
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1.2 Principles

Once complexity reaches an unmanageable level in a software system, a new level of

abstraction must be introduced to allow further increases in functionality. This fact has been

demonstrated throughout the history of software development. In the context of interactive

graphics, the progression to higher levels of abstraction has proceeded as follows:

� Device-dependent graphics libraries

� Device-independent graphics libraries

� Window systems

� User interface toolkits

� User interface management systems

Early interactive graphics applications accessed the graphics hardware directly. Later,

libraries of routines were developed both to avoid replicating common graphics program-

ming idioms in every application and to abstract the lowest-level details of generating

graphical output. The next step was the introduction of device-independent graphics pack-

ages [5, 10, 18, 21, 44] that allowed applications to be developed independent of the graphics

hardware. This eliminated the need to retarget applications to new graphics architectures.

To make such portability possible, these packages define a layer of abstraction called an

imaging model upon which to build applications.

The introduction of engineering workstations with large bitmapped displays made it

feasible to run multiple graphical applications at once. To allow applications to share

screen real estate, the desktop metaphor was developed in which applications generate

graphics in one or more windows. Window systems [39, 41, 51, 52] were introduced to

simplify the implementation of this interface; they support the window abstraction, control

access to the screen, direct user input to the proper application, and manage shared resources

in general.

As user interfaces became more sophisticated, the effort required to implement them

increased dramatically. User interface toolkits [2, 22, 24, 33] once again raised the level
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of abstraction by providing common user interface elements such as scroll bars, menus,

buttons, and a framework for combining them into complete applications. User interface

management systems (UIMSs) [35] offer an even higher level of abstraction than toolkits.

UIMSs let an interface designer specify the semantics of interaction with a minimum of

conventional programming, often at the cost of flexibility in the style of interface.

This history suggests a three step process in the development of a new level of abstrac-

tion:

1. Enough experience is gained with a class of applications so that their implementation

is well understood.

2. The class of applications is examined as a whole to ascertain the fundamental elements

they have in common.

3. A set of abstractions is developed that embodies the common elements and allows

them to be used in concert.

This process is readily apparent in the progression of abstraction in interactive graphics.

Device-dependent graphics libraries exploit the similarities between applications on specific

graphics hardware; device-independent packages raise this level of abstraction just enough

to accommodate the common attributes of most graphics hardware. Window systems use

a unifying concept, the window, to let graphical applications coexist on the same display.

When programmers tired of reimplementing the same user interface elements in each

application, they developed toolkits. UIMS researchers recognized that the communication

between user and application can be modeled as a dialog of inputs and outputs, and they

sought to support this abstraction directly in their systems.

To make graphical object editors easier to build, therefore, we applied this three step

process to create a new level of abstraction. Domain-specific graphical object editors are

commonplace, and their implementation is understood well enough that a variety of systems

are mass-marketed. The term “graphical object editor” is important because it groups a

variety of programs under a common classification. This makes it possible to limit our

search for commonality to a well-defined subset of existing applications.

There are other principles to consider. The abstractions that generalize the functionality

of graphical object editors must have efficient implementations. Generalization often breeds
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inefficiency, because a generalized system represents a compromise between constraints

that do not exist for a specialized system. Specialization means the implementor can deal

with a problem at a finer granularity. He can take advantage of special cases that do not

apply in general. He can ignore considerations that may be critical to other specializations.

To be a viable alternative to hand-crafted editors, a general system must yield editors with

comparable performance.

Moreover, graphical editors seldom live in a vacuum; they generate output (in addition

to that of their graphical interface) that is read by humans or consumed by other systems.

For instance, drawing editors generate at least one representation of user drawings in a

page description language such as PostScript. Music editors may generate both scores in

PostScript and MIDI code for driving a synthesizer. Without provisions for such output, an

editing system is of limited use in a larger environment.

Finally, there must be a balance between generality and functionality. It is unlikely

that a very general system will offer abstractions that closely match the semantics of a

particular editor. On the other hand, a highly functional system necessarily narrows its

focus to support specific abstractions well, while other abstractions are unsupported or even

discouraged. The tradeoff between generality and functionality depends on the level of

abstraction, and achieving a good balance is difficult.

1.3 Goals

This research has focused on creating a software system with three key attributes:

1. It supports graphical object editing in a broad range of domains.

2. It significantly reduces the time it takes to develop a domain-specific editor compared

to implementation from scratch.

3. It can be used to create stand-alone editors with performance and utility comparable

to their from-scratch counterparts.

We designed and built Unidraw to fulfill these goals. To determine how well they were

achieved, we used Unidraw to write three experimental editors: one for drawings, one for
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user interfaces, and one for schematics. Later in the thesis we summarize this implementa-

tion experience and discuss the benefits of using Unidraw to build graphical object editors.

We also discuss the impact of the major design decisions on the final system and suggest

areas for improvement.

1.4 Results and Contributions

This thesis contributes a new level of abstraction for building graphical object editors. By

identifying and characterizing this class of applications, we were able to design and build

a general software system for supporting their development. The Unidraw architecture

simplifies the design of graphical object editors, while our prototype implementation of that

architecture simplifies their realization.

This work has demonstrated the viability of the Unidraw architecture and its imple-

mentation by using it to build editors for three different domains. Though these editors do

not represent polished systems, they have proven themselves useful tools for their intended

purposes. These editors were created in a fraction of the time needed to implement them

from scratch, and their performance is more than adequate for production use—only a slight

performance penalty is introduced by the Unidraw architecture.

Unidraw is a new tool for creating specialized graphical object editors. Since producing

an editor for a domain is significantly easier than before, it becomes economical to develop

editors for domains that have never benefited from interactive graphics. Programmers

can create Unidraw-based graphical front-ends to a variety of programs that are currently

batch-oriented. Users can then model and manipulate graphical representations of their data

and let the editor produce the corresponding external representations required by the batch

program. The key concept is that with Unidraw, programmers with little or no experience

in the development of graphical object editors can build useful systems with relatively

little effort, and users can enjoy the benefits of interactive graphics in a wider range of

applications. In the past, systems that have put such flexibility into the hands of people

have been used in ways that were never foreseen by their creators.



Chapter 2

Related Work

Work in the area of graphical object editing can be divided into three types of systems:

domain-specific editors, multi-domain editors, and graphical programming environments.

In this chapter we describe systems that characterize these three types of editors. We

conclude by discussing the shortcomings of existing systems in achieving the goals of this

research.

2.1 Domain-Specific Editors

Domain-specific editors are the most common graphical object editors. Most commercial

graphical editors are targeted and optimized for a particular domain. Of the three types of

editors discussed in this chapter, the design and implementation of domain-specific editors

is understood best.

2.1.1 Drawing Editors

The prototypical graphical object editor is the drawing editor, many of which have been

implemented and are in wide use. MacDraw [1] is probably the best-known example.

MacDraw produces PostScript and QuickDraw representations of drawings and provides

tools for creating geometric shapes and textual elements. Shapes can have different line

styles and fill patterns, and text can appear in a variety of typefaces, fonts, and sizes.

8
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MacDraw also provides simple alignment capabilities for positioning objects relative to

one another. Other drawing editors provide more sophisticated features. For example, Juno

[30] uses a constraint solver for enforcing relationships between objects, while Gargoyle

[4] has mechanisms for specifying complicated graphical constructions precisely.

2.1.2 CAD Tools

Computer-aided design (CAD) tools that provide a direct manipulation metaphor for pro-

ducing design specifications qualify as domain-specific graphical object editors. Magic

[32] is a CAD tool for editing hierarchical VLSI layouts. It provides tools for manipulat-

ing representations of circuits directly. Leaf components are represented with geometric

objects, typically rectangles. A cell is the basic unit of hierarchy that can contain leaf com-

ponents and subcells. Magic generates CIF (Caltech Intermediate Form) files that can be

processed by other design aids, as well as files containing Magic’s internal representation

of the circuit and subcircuit extraction information. Schematic capture systems such as

Valid’s SCALDsystem [54] and Cadence’s EDGE [8] support interactive specification of

hierarchical schematic diagrams and generate corresponding netlist representations. The

user can assign attributes to schematic elements to add information to the netlist. Solid

modeling systems such as Worldview [20] let users build three-dimensional volumetric

models of solid objects such as spheres and parallelepipeds to produce a database of topo-

logical and geometric information. Once accumulated, the user can peruse the “world” of

objects using two-dimensional interfaces to specify arbitrary points of view. Other CAD

tools that qualify as domain-specific editors include mechanical design tools and project

management systems.

2.1.3 Diagram Editors

Graphical abstractions are often used to specify,model, and document physical or mathemat-

ical processes. Finite-state diagrams and Petri nets [34] are examples of such abstractions

for which graphical editors have been built. Finite state diagrams are used to model the

behavior of finite-state automata. Jacob [19] describes a system that supports graphical

specification and execution of finite state automata. The system is actually a visual version
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of a state diagram language. It lets the user create a state diagram with a drawing editor-like

interface and produces a corresponding textual representation of the diagram in the state di-

agram language. The user labels each state with an identifier and associates each transition

with an action procedure, which is implemented in a conventional programming language.

The system can then execute the state diagram, highlighting each state as it is encountered.

The user can make the automaton enter any state immediately by clicking on its graphical

representation.

Petri nets are diagrams that model asynchronous concurrent processes. They are often

used to describe and analyze the parallel and nondeterministic aspects of computer hardware

and software systems. SPAN [25] is a graphical editor developed at Carnegie-Mellon

University for the construction and analysis of stochastic Petri nets. The SPAN interface

provides iconic representations of Petri net elements (places, arcs, and transitions) that

the user assembles to form complete networks. The user can peruse the network with

scrolling and zooming operations. The system also provides analysis capabilities, including

commands for generating the network’s reachability set, for finding and solving the Markov

matrix, and for animating the propagation of tokens through the network.

2.1.4 User Interface Builders

Domain-specific editors have also been developed for building user interfaces. Examples of

experimental user interface builders are Carnegie-Mellon’s GLO [31], Myer’s Peridot [27],

and Cardelli’s dialog editor [9]. SmethersBarnes markets Prototyper [45], perhaps the first

commercial user interface builder, while NeXT’s Interface Builder [59] popularized the

concept. These systems let the user arrange user interface elements into a prototype of the

final interface and generate a textual specification for the interface. The textual specification

might be conventional source code or code in a specialized user interface language; source

code is compiled and linked into the application, while user interface language code is

usually interpreted by a run-time library in the application.
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2.1.5 Other Domains

The number and variety of domain-specific editors continues to increase as researchers and

developers find new ways to use bitmapped displays and pointing devices. The systems

mentioned do not represent an exhaustive list; other domains for which graphical object

editors have been developed include music composition, calculator simulation, even pinball

game construction.

2.2 Multi-Domain Editors

Characterizing an editor as either domain-specific or multi-domain is not always easy.

Many of the editors described in Section 2.1 as being domain-specific can in fact be used in

other domains. For example, a user of the Petri net editor who recognizes that Petri nets are

a superset of finite state diagrams1 can use the Petri net editor to edit finite state diagrams.

A schematic capture system that can produce a PostScript representation of the schematic

can be used as a special-purpose drawing editor.

In this discussion, we distinguish between domain-specific and multi-domain editors

based on the following criteria:

1. What is the editor’s intended purpose? If the editor is designed to be used for a

particular problem, such as creating musical scores or editing VLSI layouts, then this

suggests a specific domain.

2. How easy is it to program or otherwise modify the editor’s semantics? If the editor

cannot be extended conveniently, either by programming or other means, then it is

doubtful that it can be used in a variety of other contexts.2

3. How is the editor generally used? If users do not apply the editor to problems in a

significant range of domains, then probably it is not an effective multi-domain editor.

1A state machine can be represented by a Petri net that has been restricted so that each transition has
exactly one input and one output.

2There is a limit, however, to how extensible such an editor can become before it is no longer a multi-
domain editor but a general graphical programming system. This issue is addressed in Section 2.2.6.
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We use these criteria to justify a particular system’s classification if there is any doubt about

which one is appropriate.

2.2.1 Sketchpad

Perhaps the most famous multi-domain editor is also one of the earliest graphical object

editors. Sketchpad [53], created by Ivan Sutherland at MIT in the early ’60s, was a

pioneering computer drawing system with support for constraint specification and solution.

A light pen was used to draw and manipulate images of objects on a vector display.

Constraints were specified in a generic block that recorded how many variables were

constrained, which of these variables could be changed to satisfy the constraint, and how

many degrees of freedom were removed from the constrained variables. Constraints were

implemented by adding new subroutines to the system. A number of constraints were

predefined. Sutherland demonstrates in his thesis how the program’s drawing and constraint

capabilities were used to model mechanical linkages, trusses under load, and electrical

circuits. He also shows how he created drawings in which dimension labels were constrained

to reflect the proper values as objects were resized.

2.2.2 ThingLab

Borning’s ThingLab [7, 6] owes much to the ideas developed in Sketchpad. ThingLab

is a constraint-based drawing system that uses more contemporary technology to provide

what Sketchpad did and more. ThingLab is implemented in Smalltalk [13, 14] and takes

advantage of the object-oriented model to provide part-whole and inheritance hierarchies

(also known as instance and class hierarchies) for describing the structure of a graphical

simulation. ThingLab uses constraints to describe relations between the parts of the simu-

lation, and it compiles constraints into Smalltalk code immediately after they are specified.

The Smalltalk system then incorporates the code into the running program and executes it to

satisfy the constraints. Thus, new constraints can be specified and implemented more easily

than in Sketchpad. Moreover, Sketchpad required a large dedicated computer; ThingLab

runs on a variety of personal workstations, and it uses bitmapped graphics with familiar

user interface elements such as pop-up menus, windows, and scroll bars.
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2.2.3 Alternate Reality Kit

The Alternate Reality Kit (ARK) [47] is a simulation environment with a strong emphasis

on direct manipulation. ARK’s design centers on a real-world metaphor in which graph-

ical objects exhibit physical properties such as mass, velocity, and acceleration. A user

manipulates these objects in artificial worlds called alternate realities. Objects called

interactors govern the behavior of other ARK objects in an alternate reality just as the

rules of nature govern real objects. For example, ARK includes a gravity interactor that

defines a gravitational constant for an alternate reality. The gravity interactor provides an

interface for changing the gravitational constant, thereby affecting the dynamic behavior of

objects in the alternate reality. The ARK metaphor thus seeks to model reality as faithfully

as possible to maximize ease of learning and use, but it balances this goal against the need

to empower the user beyond the limitations of the physical world. Like ThingLab, ARK is

built on top of the Smalltalk environment, and any Smalltalk object can have a graphical

representation in an alternate reality.

2.2.4 Impulse-86 and GROW

Impulse-86 [48] is an editor for knowledge bases implemented in the Strobe extension to

the Interlisp-D programming environment. Its designers wanted developers and users of

knowledge-based systems to be able to design domain-specific interfaces without requiring

extensive expertise in interactive graphics.

The system provides editing tools that are specialized for each of three semantic lev-

els: objects and their internal structure, relationships between objects, and systems of

objects, relationships, and overall behavior. Editors for new domains are constructed from

five building blocks: Editor, EditorWindow, PropertyDisplay, Menu, and Operations.

Each of these building blocks is an object in the Impulse knowledge base that embodies

information specifying its function. Most Impulse-86-based editors require some code to

be written to implement domain-specific commands. Editors have been built for domains

such as graphs and dataflow diagrams.

GROW [3] builds on the capabilities of Impulse-86 to simplify the implementation of an

editor’s graphical objects. GROW helps the user specify the appearance and semantics of
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graphical objects, including techniques for composing them hierarchically and for defining

arbitrary dependencies between them. The system can also enforce layout constraints on

the graphical objects using its dependency mechanism, in contrast to the more general

constraint-solving approaches of Sketchpad and ThingLab. GROW’s creators deliberately

narrowed the role of constraints in their system, observing that general-purpose constraint

management is not necessary in most graphical editors.

2.2.5 ThinkerToy

ThinkerToy is a problem modeling tool for decision support that replaces traditional math-

ematical models with concrete, directly-manipulable models. Like ThingLab and ARK,

ThinkerToy is implemented on top of the Smalltalk environment. Since ThinkerToy at-

tempts to enhance the decision-making process in disciplines as diverse as landscape plan-

ning, bond trading, and flow modeling, the system is necessarily multi-domain in nature.

Central to ThinkerToy is the ManiplIcon, a graphical object whose semantics are exhibited

through direct manipulation. ManiplIcons can be assembled into a tableau that comprises

a decision support tool for a particular domain. Gutfreund [16] describes four experimental

tableaus he developed with the system:

1. Array, a tableau for storing a group of ManiplIcons (numeric, textual, graphical) that

supports spreadsheet functionality,

2. Chart, a tableau for analyzing two-dimensional data,

3. TerrainMap, a tableau for analyzing three-dimensional data, and

4. DataFlow, a tableau for modeling flow rate problems.

Although ThinkerToy is targeted explicitly at decision support and thus could be deemed

a domain-specific editor, in practice this “domain” encompasses a broad range of disciplines.

Moreover, ThinkerToy can be extended through composition of existing ManiplIcons to

form new tableaus, and new ManiplIcons can be defined in Smalltalk.
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2.2.6 LabVIEW

LabVIEW [29, 42] is a commercial system that, like ThinkerToy, is not targeted specifically

towards multiple domains but nonetheless satisfies our criteria for a multi-domain editor.

LabVIEW was originally intended to provide a graphical interface to instruments connected

by a IEEE 488 bus. Over time, however, the system developed into a editor that nearly

qualifies as a graphical programming environment. The key element of LabVIEW is the

virtual instrument, an object having a graphical representation with underlying semantics.

A virtual instrument can accept inputs from the user or from an external source (such as a

file, I/O port, or another virtual instrument), perform arbitrary computations, and generate

output in the form of control signals, ASCII data, or graphics. An instrument on the 488

bus can be represented on the screen with a virtual instrument; entirely abstract virtual

instruments, having no corresponding device on the bus, can also be defined. Virtual

instruments are connected to each other much like real instruments using graphical wires.

Virtual instruments are defined in two parts: the user must specify the appearance of

the instrument’s front panel and define the instrument’s semantics by constructing a block

diagram in a graphical programming language. The front panel is composed with various

predefined, realistically rendered controls and indicators such as switches, meters, dials,

and paper tape generators. The parameters controlled by these elements are represented by

graphical variables in the block diagram. The user defines computations on these variables

in a graphical syntax resembling dataflow, complete with graphical representations of

familiar programming language constructs such as conditional branches, iterative loops,

and subroutines (nested diagrams).

We classify LabVIEW as a multi-domain editor because the virtual instrument concept

is general enough and supported well enough that users can use LabVIEW in different

domains. The manufacturer describes LabVIEW as a “software construction environment

for engineering and scientific applications”; as such it is designed to be extended easily

by letting the user create and compose virtual instruments. The product literature [28]

demonstrates how to create instruments for graphical calculation and theorem proving;

ecological, process control, and signal transmission simulations; and data acquisition and

analysis.
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Based on the classification criteria, it is clear that LabVIEW is not restricted to a

single domain. We have stopped short of calling it a graphical programming environment,

however, even though it supports graphical programming. LabVIEW it is not intended to

replace or augment a conventional programming language and environment, which is an

attribute common to the graphical programming environments described in the next section.

2.3 Graphical Programming Environments

It has been a long-standing dream of researchers to let users program by drawing pictures.

Experienced programmers often use graphical notations to diagram their algorithms before

turning them into code. Novices often find programming difficult because they are uncom-

fortable with the rigid syntax of textual languages. By specifying programs in graphical

terms that closely match the programmer’s mental pictures, the expert can simply draw

his algorithms; the novice can show the computer how to perform its task. Graphical pro-

gramming environments would thus make programming easier for everyone, and creating

domain-specific editors would be a natural extension of their capabilities.

Many systems have been designed to support graphical programming. Myers [26],

Raeder [36], and Shu [43] provide surveys of work in the field. Myers classifies systems

that use graphics for program specification into two groups: visual programming systems,

and programming-by-example systems.

2.3.1 Visual Programming

A visual programming system allows the user to specify algorithms and data structures

graphically as an alternative to conventional textual languages. Flow chart, data flow, and

message passing notations are typically used as graphical programming languages. Two

representative systems are Pict [12] and Garden [37, 38].

Pict uses a flowchart paradigm to model programs graphically. Icons representing

conventional programming language constructs are connected by paths that indicate flow

of control. The interface is almost entirely non-textual. Color is used liberally to enhance

the appearance and understandability of the program. Icons, paths, and four six-digit,
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nonnegative integer variables are color coded to indicate their interrelationships. Pict

aids in the layout of program components by finding the shortest and straightest path

possible between selected icons, and it redefines and moves paths previously laid down if

necessary. The user’s program is continuously checked for correct syntax; illegal constructs

are disallowed. The Pict run-time supervisor interprets and animates the program to depict

its execution visually.

Garden differs from Pict in that instead of limiting the programmer to a flow chart

paradigm, Garden lets him design and implement one or more graphical languages in which

to program. The environment supports the creation of these languages and their use in the

programming process.

A new graphical language is defined in three steps. First, the programmer defines the

objects that underlie the graphical representations in the language. Next, the semantics

of the objects are specified. Finally, a visual and textual syntax is associated with each

object. Once the graphical language is developed, it can be used in conjunction with

the other graphical languages in the environment to create complete programs. Thus,

the programmer can use whatever language is most appropriate to express a particular

computation.

2.3.2 Programming-by-Example

A programming-by-example system allows the user to demonstrate how to manipulate

graphical representations of data objects to accomplish a task. The system then infers algo-

rithms from the user’s actions and generates a program to implement them. Programming-

by-example emphasizes “doing” rather than “telling.” The purpose of this is to make

programming easier, especially for the novice, by abstracting away implementation details

and letting the user program by carrying out familiar actions on concrete representations of

data.

Pygmalion [46] was one of the first programming-by-example systems. Later systems

include Rehearsal World [15], which pioneered a theatrical programming metaphor, Hal-

bert’s SmallStar [17], and ThinkPad [40], a programming-by-examplesystem incorporating

constraints.
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2.4 Unsolved Problems

None of the systems categorized in the preceding sections fulfills the goals outlined in

Section 1.3 for supporting the construction of practical graphical object editors, largely

because none is designed specifically for this purpose. In this section we discuss the

weaknesses in this regard of each type of system.

The obvious problem with domain-specific editors is that they support editing only in

the domain for which they were designed. Thus, the versatility per unit implementation

effort of these editors is low. For each domain-specific editor, the programmer must design

the user interface, deal with many implementation details, recode functionality common to

many other editors, and provide enough flexibility to avoid reprogramming later.

In general, multi-domain systems offer few abstractions for graphical object editing.

These systems support extensibility by imperative or declarative means without providing

more focused abstractions, for example, for direct manipulation and generating alternate

representations of domain-specific objects. In particular, multi-domain editors that rely

solely on constraint mechanisms for generality suffer performance problems when they

are used for substantial editing tasks. Constraint specifications tend to grow quickly

as the relationships between objects become more complex. Solutions to the resulting

simultaneous equations are not guaranteed to be computable in reasonable time or even to

exist at all. Moreover, most multi-domain systems are tightly coupled to an underlying

exploratory programming environment, essentially precluding their integration into other

environments. The expressiveness of a general-purpose programming language is indeed

necessary for supporting graphical editing in multiple domains. But systems that have

relied on a few broad abstractions and an elaborate run-time environment have proven

uncompetitive with hand-crafted applications in terms of their efficiency and ability to

work with other systems.

Graphical programming environments have proven inadequate as well. Though many

such environments have been developed, none has succeeding in supplanting textual pro-

gramming. Graphical programming languages generally lack efficiency of expression.

They are adequate for describing simple algorithms and data structures but quickly become

unwieldy for specifying more sophisticated constructs. Since the program is expressed in
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pictures, it grows spatially, often resulting in a sprawling, unstructured mass of lines and

boxes. The user must then pan about the diagram to search for information of interest, a

task complicated by the lack of suitable sorting and searching utilities—facilities taken for

granted in textual systems. Moreover, most graphical programming systems are interpretive

and must deal with considerable overhead associated with pictorial representations. Thus,

performance is acceptable only for simple graphical programs.

Programming-by-example has added shortcomings. Deducing non-trivial algorithms

from a limited number of user actions is difficult. Often there is no way to infer the precise

behavior for a program because the demonstration simply does not convey all the necessary

information. A minor change in the demonstration can radically alter the code produced.

Choosing the definitive examples usually requires considerable forethought to ensure that

unambiguous and non-redundant information is supplied to the system, thus limiting its

utility.

A practical graphical programming environment remains an elusive goal, and it is

arguably more than we need in the first place. Our goal is to support graphical object

editing, not general-purpose programming. Graphical object editors share many features

and have interfaces that are considerably less flexible than a programming language. This

suggests that a subset of the abstractions needed for graphical programming will suffice in

creating editors for new domains.

2.5 Summary

The goals of this thesis were to create a framework for building a variety of graphical object

editors in less time and with performance and functionality comparable to conventionally-

developed graphical editors. Domain-specific editors are not sufficient because they are

designed for a particular domain. Current multi-domain editors are generally not flexible

or efficient enough to substitute for a given domain-specific editor. Graphical program-

ming environments have not proven to be a practical replacement for traditional textual

programming environments, especially for building large systems.

Unidraw avoids these shortcomings by providing an object-oriented architecture that
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� is organized as a collection of classes some or all of which are incorporated into an

editor for a particular domain,

� provides abstractions that embody functionality common to graphical object editors,

� avoids overgeneralization by supporting simple subsets of more general facilities (for

example, constraint solving),

� supports a compiled implementation for efficiency, and

� leverages existing programming environments and user interface tools to aid in editor

development.

The next chapter describes the Unidraw architecture in detail.
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Unidraw Architecture

There are two users in the Unidraw context: the programmer who uses Unidraw objects to

build a domain-specific editor, and the end-user of that editor. It is the programmer who

must understand the Unidraw architecture, for it is his responsibility to create a working

editor; the end-user, on the other hand, does not need to be at all familiar with Unidraw or

even know that the editor was built with it. To the end-user, the domain-specific editor is

just another stand-alone application.

The purpose of this chapter is to describe the Unidraw architecture in enough detail

to allow one to develop a useful implementation. We begin with an overview of the

architecture, relating the philosophy behind it, outlining its major elements, and showing

how the elements are assembled to form an editor for a particular domain. Then we consider

the elements in detail, describing their semantics and relationships. We conclude the chapter

with a summary of the architecture.

3.1 Overview

Unidraw spans the semantic gap between traditional user interface toolkits and the imple-

mentation requirements of graphical object editors. An editor for a particular domain relies

on Unidraw for its graphical editing capabilities, on the toolkit for supporting the “look

and feel” of the user interface, and on the window and operating systems for managing

workstation resources.

21
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Operating system

Domain-specific editor

Window system

User interface toolkit

Unidraw

basic dependencies

other possible dependencies

application software

system software

Figure 1: Layers of software underlying a domain-specific editor

Figure 1 depicts the dependencies between the layers of software that underlie a domain-

specific editor based on Unidraw. The operating and window systems provide the lowest

level support. Above the window system level are the abstractions furnished by the user

interface toolkit, including buttons, scroll bars, menus, and a framework for composing

them into generic interfaces. Unidraw stands at the highest level of system software,

contributing abstractions that are closely matched to the requirements of graphical object

editors.

A fundamental design decision in Unidraw was to adopt an object-oriented model in

which objects encapsulate the common attributes of domain-specific editors. Objects are

appropriate for modeling these attributes for the following reasons:

� Objects facilitate the conceptualization and representation of an idea. The concept

of a transistor, for example, is readily modeled and implemented in an object of class
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Transistor that mimics the behavior of real transistors. The transistor abstraction is

thus reflected directly in its representation.

� Objects are a good program structuring and complexity control mechanism. The

operations defined on an object class form a protocol that subclasses understand.

Since objects encapsulate state and behavior, inter-object dependencies are limited

by the semantics of the protocol. Objects are thus insulated from one another,

promoting modularity and reusability.

� Inheritance and dynamic binding make extension easy. Programmers can create new

classes of object incrementally, that is, by specifying only those aspects that differ

from another class. A general concept can be embodied in a base class from which

classes with particular behavior are derived. Dynamic binding allows objects from

the same class hierarchy to be treated uniformly, independent of their subclass, simply

by manipulating them in terms of the protocol defined in the base class.

An object-oriented architecture has several advantages over more traditional approaches.

Objects that model reality give the application programmer insight into the “proper” way to

create a domain-specific editor. Such objects are suggestive of their intended purpose and

thus focus the programmer’s attention on their role rather than the mechanics of their use.

Moreover, partitioning editor functionality into a set of base classes narrows the design

space. This frees programmers from making design decisions that are independent of the

editing domain. For example, how the system supports multiple, mutually-consistent views

of a domain-specific diagram is a design decision that spans many kinds of editors. The

architecture can provide for multiple views with standard objects and protocols, allowing

programmers to concentrate on more domain-specific issues.

Finally, the inherent extensibility of an object-oriented model makes library-based

implementations attractive. The object classes and protocols can be packaged as a library of

components dedicated to the construction of domain-specific editors. Non-object-oriented

libraries are usually far less extensible than object-oriented ones primarily because they

lack inheritance. Such libraries compensate by offering a broader range of functionality to

lessen the need for extension, but this is not feasible in a library that is meant to support

graphical object editing in general. An object-oriented model thus enhances a library-based
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implementation, which in turn gives programmers more flexibility to create production-

quality editors.

3.1.1 Basic Abstractions

In designing the architecture we focused on the common attributes of domain-specific

editors. The attributes we identified are reflected in four class hierarchies:

1. Components represent the elements in a domain: for example, geometric shapes in

technical drawing, schematics of electronic parts in circuit layout, and notes in written

music. Components encapsulate the appearance and semantics of these elements. A

domain-specific editor’s main objective is to allow the user to arrange components to

convey information in the domain of interest.

2. Tools support direct manipulation of components. Tools employ animation and

other visual effects for immediate feedback to reinforce the user’s perception that he

is dealing with real objects. Examples include tools for selecting components for

subsequent editing, for applying coordinate transformations such as translation and

rotation, and for connecting components.

3. Commands define operations on components and other objects. Commands are sim-

ilar to messages in traditional object-oriented systems in that components can receive

and respond to them. Commands can also be executed in isolation to perform arbi-

trary computation, and they can reverse the effects of such execution to support undo.

Examples include commands for changing the attributes of a component, duplicating

a component, and grouping several components into a composite component.

4. External representations convey domain-specific information outside the editor.

Each component can define one or more external representations of itself. For

example, a transistor component can define both a PostScript representation for

printing and a netlist representation for circuit simulation; each is generated by a

different class of external representation. An external representation object thus

defines a one-way mapping between a component and its representation in an outside

format.
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The Unidraw architecture provides base classes for component, command, tool, and

external representation objects. Subclasses implement the behavior of their instances

according to the semantics of the protocol defined by their base class. For example,

components support operations that define how commands affect their internal state. The

partitioning of graphical object editor functionality into components, commands, tools, and

external representations is the foundation of the Unidraw architecture.

3.1.2 Subjects and Views

A well-established user interface concept is the distinction between (1) the state and op-

erations that characterize objects, and (2) the way the objects are presented in a particular

context. In Unidraw this distinction is manifest in the separation of components into subject

and view objects.1 A subject encapsulates the context-independent state and operations of a

component. A view supports a context-dependent presentation of the subject. A component

subject may have any number of component views, each offering a different representation

of and interface to the subject. A subject notifies its views whenever its state is modified to

allow them to change their state or appearance to reflect the modification.

A component subject maintains information that characterizes the component; in the

case of a logic gate component, for example, the subject might contain information about

what is connected to the gate and its current input values. Different views of the subject

can reflect this information in distinctive ways and can provide additional information as

well. One view can depict the gate graphically by drawing the appropriate logic symbol,

and it might also define what it means to manipulate the gate with a tool. Another view can

provide the external representation of the gate by generating a netlist from the connectivity

information in the subject.

Subjects and views also let users edit components out of context. While one view of

a logic gate shows it buried in a larger circuit, another view can be edited in isolation.

Since different views of a subject are independent of one another, the isolated view can be

scrolled and zoomed to make it easier to edit without having to extract the component from

the circuit. This makes it easy to manipulate an otherwise inaccessible component.

1Throughout the thesis, the term “component” unqualified by either “subject” or “view” refers to both the
subject and its view(s).
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3.1.3 Structure of a Unidraw-Based Application

Figure 2 shows the general structure of a domain-specific editor based on the Unidraw

architecture. The diagram depicts five classes of object:

1. Two component subjects appear at the bottom level in the diagram. Component

subjects can contain a hierarchy of subcomponent subjects; the component subject

in the lower left of the diagram contains two subcomponent subjects. Hierarchical

composition of component subjects is the basis for such features as grouping in a

drawing editor and eliding circuit elements in a schematic capture system. An entire

domain-specific drawing is represented by a composite component subject that can

be incorporated into a larger work.

2. At the second level from the bottom are the corresponding views of the subjects.

Note that the right-hand component subject has two views attached. A component

view can be composed of other views to reflect its subject’s structure, or the view and

subject structures can be independent.

3. Each component view is placed in a viewer at the third level. A viewer displays a

graphical component view, most often the root view in a hierarchy. A viewer provides

a framework for displaying the view, supporting such “non-semantic” manipulations

as scrolling and zooming. Viewers also take raw window system or toolkit events

and translate them to conform to standard Unidraw protocols.

4. An editor associates tools and user-accessible commands with one or more viewers

and combines them into a coherent user interface. An editor also uses a selection

object, which manages a list of distinguished component views. A Unidraw-based

application can create any number of editor objects, allowing the user to work on

multiple views of the same or different domain-specific components.

5. Operations that require inter-editor communication or coordination access the

unidraw object, a one-of-a-kind object maintained by the application. For example,

commands that open and close editors and quit the application must access this object.

The unidraw object also maintains logs of commands that have been executed and

reverse-executed to support arbitrary-level undo and redo.
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Figure 2: General structure a domain-specific editor based on Unidraw

Not shown in the diagram is the catalog object, which manages a database of com-

ponents, commands, and tools. At minimum, a domain-specific editor uses the catalog to

name, store, and retrieve components that represent user drawings. An editor could also

access uninstalled commands and tools and incorporate them into its interface at run-time.

This structure provides a standard framework for building domain-specific editors,

yet it allows substantial latitude for customized interfaces. Nothing in this architecture

dictates, for example, a particular look and feel for a given editor object. A domain-specific

editor may define editor objects that use separate windows for their commands, tools, and
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return values operation arguments
Attach component view
Detach component view
Notify
Update
Interpret command
Uninterpret command

component subject GetParent
fchild iteration and
manipulation operationsg

state variable GetStateVariable name
transfer function GetTransferFunction

Table 1: Component subject protocol

viewers. The architecture only specifies how the editor mediates communication between

components and the commands, tools, and viewers that affect them.

3.2 Components

Components are perhaps the most important class of objects in Unidraw. Components

represent the objects of interest in the editing domain. They define and manage informa-

tion to mimic the behavior of real-world objects. They can maintain one or more graphical

representations for themselves and can support non-graphical representations as well. Com-

ponents also define how they respond to commands and tool manipulation. Developing an

editor for a new domain centers largely on choosing, designing, and implementing a good

set of components.

3.2.1 Subject and View Protocols

The Unidraw architecture defines separate communication protocols for component subjects

and views. Table 1 lists the subject protocol’s basic operations.

Component subjects define Attach and Detach operations to establish or destroy a con-

nection with a component view. These operations assume the specified view is compatible
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with the subject; undefined behavior will result if an incompatible view is specified. Notify

alerts the subject’s views to the possibility that their state is inconsistent with the subject’s.

Upon notification, a view reconciles any inconsistencies between the subject’s state and its

own. The Update operation notifies the subject that some state upon which it depends has

changed. The subject is responsible for updating its state in response to an Update message.

A component subject can be passed a command object to interpret via the Interpret

operation. The semantics of this operation are component-specific; the subject typically

retrieves information from the command for internal use or executes the command. The

Uninterpret command allows the component to negate the effects of interpreting a command;

the subject might undo internal state changes based on information on the command, or it

might simply reverse-execute the command.

The GetParent operation returns the component subject’s parent (if any) to allow tra-

versal up the subject hierarchy. Component subjects also define a family of operations for

iterating through their child subjects (if any) and for reordering them. Only the immediate

children of the subject can be accessed and manipulated with this interface; other descen-

dants must be accessed through the children. Finally, components can define one or more

state variables and one transfer function (described in Section 3.3) that can be accessed

via the GetStateVariable and GetTransferFunction operations, respectively.

The component view protocol duplicates some of the subject protocol’s operations

(Update, Interpret, Uninterpret, GetParent, and those for iteration and child manipulation)

and adds SetSubject and GetSubject operations that set and return the view’s subject.

SetSubject should be accessible only to the view’s subject for use in such operations as

Attach and Detach. A subject’s Notify operation usually sends an Update message to each

of its views. Interpret and Uninterpret are defined on views because some objects (notably

viewers and selections) manipulate component views rather than their subjects; thus it is

convenient to send a command to a view for (un)interpretation, which may in turn send it

to its subject. A component view may have a subcomponent view structure, which may or

may not reflect its subject’s structure, so the view protocol also defines child iteration and

manipulation operations.
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return values operation arguments
graphic GetGraphic

SetMobility mobility
mobility GetMobility

Table 2: Additional operations defined for graphical component subjects

return values operation arguments
graphic GetGraphic

Highlight
Unhighlight

manipulator CreateManipulator tool, event
command InterpretManipulator manipulator

Table 3: Additional operations defined for graphical component views

3.2.2 Graphical Components

An important extension of the basic component protocols adds operations to support graph-

ical components—components that can be displayed in a viewer. To support this extension,

we introduce the concept of a graphic, an object that contains graphics state and geometric

information. A graphic uses this information to draw itself and to perform hit detection.

Graphical components use graphic objects in both their subjects and views to define their

appearance. Since components can be structured hierarchically, graphics must also support

hierarchy; thus, a composite graphical component can define its appearance by assembling

its subcomponents’ graphics into a composite graphic.

Table 2 shows the operations added to the basic component subject protocol for graphical

component subjects (or “graphical subjects” for short). By definition, graphical subjects

encapsulate their geometric and graphics state in a graphic, permitting a standard interface

for retrieving this information. The GetGraphic operation returns the information in the

subject’s graphic. Graphical subjects can also have mobility, and the protocol provides

operations for assigning and retrieving this attribute. Later we show how mobility affects

the component’s connectivity semantics.
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(a) (b) (c) (d)

Figure 3: Various highlighting styles: (a) unhighlighted, (b) handles, (c) color reversal, (d)

substitution

Several operations augment the basic component view protocol to support graphical

component views (“graphical views” for short). These operations are shown in Table 3.

Graphical views maintain their own graphic to characterize their appearance. The view’s

graphic is thus independent of the subject’s graphic. In practice, however, most views

define some dependency between the two graphics. For example, an eighth note subject in

a music editor might keep a graphic that defines the note’s color and size; the corresponding

eighth note view would have a graphic with a matching color and size plus a B-spline

defining the note’s outline on the screen.

Selection is a fundamental concept in graphical object editors. The user must be able

to specify components of interest, and those components should distinguish themselves

graphically once they are specified. The graphical view protocol adds Highlight and

Unhighlight operations to allow components to distinguish themselves graphically in an

appropriate way. For example, highlighting may take the form of “handles” surrounding

the component (Figure 3b), reversing its color scheme (Figure 3c), or substituting another

graphic altogether (Figure 3d). The Highlight operation lets the graphical view define its

highlighted appearance, and the Unhighlight operation allows it to revert to its unhighlighted

state.

The last two operations in Table 3, CreateManipulator and InterpretManipulator, define

how a graphical view reacts when it is manipulated by a tool and how the tool affects the

component following manipulation. Both operations rely on an intermediary object called

a manipulator to characterize the manipulation. Manipulators abstract and encapsulate the

mechanics of direct manipulation. They provide a standard interface to an abstract state
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machine that a tool can use to implement its interaction semantics. Tools and manipulators

are described in greater detail in Section 3.5.

Since a graphical view can be manipulated by many tools and can exhibit different dy-

namic behavior for each, the view must be responsible for creating the proper manipulator

for a given tool. The CreateManipulator operation lets the graphical view do this. Once

the view has returned a manipulator, the controlling object (usually the enclosing viewer)

can use it to carry out the direct manipulation. Following manipulation, only the view that

contributed the manipulator is in a position to carry out its desired effect. The InterpretMa-

nipulator operation allows the graphical view to extract any information it deems significant

from the manipulator and convert it into a command that encapsulates the overall effect of

the manipulation. The command can then be processed in same way as any other command,

as will be discussed in Section 3.4.

3.3 Component Semantics

The preceding section introduced the basic component classes, including the protocols that

govern their appearance and response to commands and direct manipulation. Domain-

specific components implement the protocols to fit their semantics. This section discusses

Unidraw abstractions that are useful for implementing component semantics common to

many domains.

3.3.1 Connectors

A common semantics requires that components maintain connectivity or stay within a

prescribed area. For example, a schematic capture system should allow the user to connect

circuit components, and it should guarantee that the components stay connected when they

are moved. A music editor should confine notes to their position on the staff, allowing them

to move only laterally unless their vertical position (signifying pitch) is changed explicitly.

Moreover, lateral motion should be limited so that a note cannot slide off the staff.

Unidraw supports connectivity and confinement semantics with the connector graphical

component subclass. Since connectors are components, each consists of a subject and zero
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or more views and can be manipulated directly. Often, however, connectors are embedded

in larger components that use them to define their own connectivity semantics.

Standard Connector Subclasses

A connector can be connected to one or more other connectors. Once connected, two

connectors can affect each other’s position in specific ways as defined by the semantics

of the connection. Connector subclasses support different connection semantics, and the

architecture defines three such subclasses:

1. A pin contributes zero degrees of freedom to a connection. A degree of freedom

is an independent variable along a particular dimension, which for connectors is a

cartesian coordinate. A pin defines its position.

2. A slot supports one degree of freedom within certain bounds. Slots define their

position, a finite length, and a slope.

3. A pad provides two degrees of freedom within certain bounds. Pads define their

position and size and are rectangular.

The semantics of the connection depends on the connectors in it; different combinations

of pin, slot, and pad connections yield different semantics. Figure 4 shows how connectors

behave in several connections, using the connectors’ default graphical representations. The

centers of two connected pins must always coincide (Figure 4a). A pin connected to a slot

(Figure 4b) is free to move along the slot’s major axis until it reaches either end of the

slot; the pin cannot move in the transverse dimension. Two connected slots (Figure 4c) can

move relative to each other as long as the center lines of their major axes share a point.2

Finally, Figure 4d shows how a pad-pin connection constrains the pin to stay within the

confines of the pad.

2These semantics are equivalent to those of a pin connected to two slots. We have defined them explicitly
to obviate the introduction of another connector and to allow for a more efficient implementation. The same
is true of slot-pad and pad-pad connections.



CHAPTER 3. UNIDRAW ARCHITECTURE 34

+ (coinciding)

+

+

(a) pin-pin

(b) pin-slot

(c) slot-slot

(d) pad-pin

+

Figure 4: Several connections and their semantics
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return values operation arguments
Connect connector[, connector glue]
Disconnect connector

(x, y) GetCenter
SetBinding state variable

state variable GetBinding
SetTransmission transmission method

transmission method GetTransmission
Transmit

Table 4: Connector subject protocol

Connector Protocol

Table 4 depicts the connector subject protocol, which extends the graphical subject protocol.

The connector view protocol is identical to the basic graphical view protocol.

The Connect operation connects the centers of two connectors, optionally with a piece

of connector glue interposed. Connector glue is characterized by a natural size, elasticity,

and deformation limits (see Figure 5). Elasticity is specified in terms of independent

stretchability ("+) and shrinkability ("�) parameters. Deformation limits are expressed as

independent limits on the total amount the glue can stretch (�+) and shrink (��). Elasticity

is dimensionless; it determines how deformation is apportioned to a collection of mutually-

dependent connections.

For example, Figure 6 shows three pins P1, P2, and P3 connected “in series,” which

implies the two connections share a connector. Glue is represented schematically (and in one

dimension only) with resistor symbols. The elasticity (both shrinkability and stretchability)

of glue G1 is twice that of G2. Thus if P1 and P3 are pushed together or pulled apart, then

G1 will shrink or stretch twice as much as G2. In general, ideal connector glue behaves

like two non-linear springs, one horizontal and the other vertical, each having independent

spring constants and travel limits in tension ("+, �+) and compression ("�, ��).

The Disconnect operation dissolves a connection to a component, deleting any asso-

ciated connector glue. GetCenter returns the coordinates of the connector’s center, which
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defines its position. The last five operations support dataflow semantics and are described

in Sections 3.3.4 and 3.3.5.

Mobility

Figure 4 presents the behaviors of several connections without specifying which connector

moves relative to the other. The connectors’ mobilities characterize how each connector

moves to satisfy the connection constraints.

Recall that the graphical subject protocol defines operations for setting and retrieving a

mobility attribute. The attribute can have one of three values: fixed, floating, or undefined.

In general, a fixed component’s position cannot be affected by a connection, regardless of

the connection’s semantics, while a floating component will move to satisfy the connec-

tion’s semantics. The behavior of a component with undefined mobility is indeterminate.

Composite components often have undefined mobility to avoid overriding their children’s

mobilities.

Mobility specifications disambiguate the semantics of a connection. In Figure 4b, for

example, it is unclear which connector, the pin or the slot, actually moves. If, however, the

slot’s mobility is fixed and the pin’s is floating, then the pin will always move to satisfy

the connection constraints. If the slot is moved explicitly, then the pin will follow to stay

within it. An attempt to explicitly move the pin beyond the slot’s bounds will fail; in fact, if

the pin is also connected to another, orthogonal slot, any attempt to move it explicitly will

fail. As a corollary, a connection can have no effect on two fixed connectors.

The concept of mobility is essential to connectors, but it applies to all graphical com-

ponents. Often, a composite component containing several connectors will not define a

mobility attribute itself but will define SetMobility to set its components’ mobilities. Its

components (such as connectors) that define a mobility attribute will then set it accord-

ingly. The composite component might compute its own mobility from the mobilities of its

components.
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Figure 7: Possible composition of an inverter component

3.3.2 Domain-Specific Connectivity

We have discussed connectors and their semantics, but we have not explained how they

support connectivity between domain-specific components. For instance, how does one

define an inverter schematic component whose wires remain connected when the user moves

it? Such domain-specific components are often compositions of simpler components.

Figure 7 shows how the inverter subject and view can be composed with polygon,

circle, and pin subjects and views. Note that the pins are treated as any other component in

the composition, but they have a special responsibility to define the inverter’s connectivity

semantics. The inverter sets their mobility according to the desired semantics. For example,

it will fix both if their position should not be affected by any connections in which they

participate. When the inverter interprets a command to move itself, it moves all its

components accordingly, including the pins. Since the pins are fixed, they will not be
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affected by their connections; rather, any floating connectors that are connected to the pins

will move according to the connection semantics.

To illustrate further, consider a wire component composed of a line and a floating pin

at each endpoint. The wire implicitly connects its pins with a piece of connecting glue

reflecting its size and desired elasticity. This connection has several implications. The pins

could shift temporarily relative to the line as they move to satisfy connectivity constraints

imposed by external connectors. The wire subject will be notified automatically of its pins’

movement via its Update operation. It might then change its shape to reflect the new pin

position(s). The wire can thus deform as the connecting glue stretches or shrinks; in effect

it acquires the elastic properties of the glue. Therefore, when the user moves an inverter

with a wire connected to it, the wire will stretch or shrink to maintain the connection.

Composite components can thus define connections between their internal connectors,

and they can base their appearance on their connection semantics. This provides a simple

way to extend the canonical connectivity behavior to domain-specific components.

3.3.3 State Variables

Component subjects often maintain state on which other subjects depend or state that must

be accessible to the user. State variables provide a standard way to represent and access

this state. State variables are commonly used to allow user modification of component

attributes and to support dataflow between components.

Like components, state variables are partitioned into subjects and views. The state

variable subject represents a typed datum, and views provide a graphical interface that

lets a user examine and modify the subject. The GetStateVariable operation defined on

component subjects (see Table 1) provides external access to a component’s state variables

through a component-specified naming convention.

The basic state variable subject protocol defines Attach, Detach, and Notify operations

analogous to those for component subjects. Subclasses often augment the basic protocol to

include assignment and arithmetic operators or other functions. The view protocol defines

SetSubject and GetSubject operations and an Update operation for reconciling the view’s
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state with its subject’s. Because state variable views do not interact with other Unidraw

objects, their implementation can be based directly on toolkit objects.

If the inverter component discussed previously was meant to support logic simulation,

then the inverter subject might define two state variables, input and output, to represent the

logic levels at its input and output. These state variables could be instances of a LogicLevel

subclass of the state variable subject. The LogicLevel subject maintains a boolean value to

store the logic value. Instances of a LogicLevelView class could provide a user interface

to viewing or changing the logic level using LED and switch metaphors, respectively.

The relationship between a component and its state variables is analogous to that of an

object and its instance variables. Indeed, if the architecture is implemented in an object-

oriented language, it may be unclear to the programmer whether to use state or instance

variables for a component’s local data. As a rule, state variables are appropriate for data

the user will view or change, or for data that can be affected by other components through

Unidraw’s dataflow mechanism (described in Section 3.3.5). Instance variables may be

more appropriate for other local data.

3.3.4 Transfer Functions

As was shown in Section 3.2.1, the component subject protocol defines an operation for

retrieving a component’s transfer function. The transfer function is an object that defines

relationships between state variables. For example, the inverter could use an Invert transfer

function to establish a dependency between a pair of logic level state variables; Invert assigns

the inverse value of the input variable to the output variable.

The basic transfer function protocol consists of a single operation, Evaluate, that in-

structs the transfer function to evaluate the dependencies on its state variables. A component

can have an arbitrary number of state variables, but the protocol allows for only one trans-

fer function. Thus transfer function subclasses normally add operations for specifying and

distinguishing between different state variables. Components that require a combination

of existing transfer functions must use a transfer function subclass that composes other

transfer functions.
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3.3.5 Dataflow

Communication between components is often tied closely to their connectivity. Unidraw

provides a standard way for components to communicate via dataflow and for associating

dataflow with their connectivity. The dataflow model unites components, connectors, state

variables, and transfer functions to make dataflow semantics straightforward to implement.

A state variable can be bound to a connector. The SetBinding and GetBinding operations

defined by the connector subject protocol (see Table 4) respectively set and get the state

variable currently bound to the connector. This binding is meaningless unless the connector

is connected to another connector also having a bound state variable. Connectors define

“parameter passing” or transmission semantics for any bound state variable, one of in,

out, or inout. When connected, two connectors with bound state variables will pass their

values according to their respective transmission methods. For example, an in connector’s

state variable will receive the value of an out connector’s variable. The parameter passing

semantics between incompatible connectors (such as two out connectors) are undefined;

such connections should be disallowed by the tool or command making the connection.

The SetTransmission and GetTransmission operations set and get the transmission method

on a connector.

Transfer functions complete the dataflow model by participating in the propagation of

state variable values. The component’s transfer function maintains dependencies between

state variables, modifying one set of variables based on the values of another set. Thus

values can change as they propagate from one component to another.

Transmission of state variable values occurs “instantaneously” between connected con-

nectors to which they are bound. Values are guaranteed to propagate until they reach a

connector through which propagation has already occurred; circularities are thus avoided.

Propagation begins whenever Transmit is called on a connector (for example, following

modification of the bound state variable), and the rate at which propagation proceeds is

nondeterministic. For example, if a state variable can be affected through two connection

paths, it is indeterminate which path will affect it first. However, since transfer functions

can define dependencies between state variables, transfer functions can be used to “latch”
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return values operation arguments
Execute
Unexecute

boolean Reversible
Store component subject, any

any Recall component subject
SetClipboard clipboard

clipboard GetClipboard
SetEditor editor

editor GetEditor
fchild iteration and
manipulation operationsg

Table 5: Command protocol

the values of input state variables onto outputs through a control input. Transfer functions

can thus support synchronization.

3.4 Commands

Commands are analogous to messages because they can be interpreted by components.

Commands are also like methods in that they are executable, and they resemble transactions

because they can be reverse-executed to a previous state. Some commands may be directly

accessible to the user through menus, while others are used only by the editor internally. In

general, an undoable operation should be carried out by a command object.

Table 5 shows the basic operations defined by the command protocol. Execute performs

computation to carry out the command’s semantics. Unexecute performs computation to

reverse the effects of a previous Execute, based on whatever internal state the command

maintains. A command is responsible for maintaining enough state to reverse one Execute

operation; repeated Unexecute operations will not undo the effects of more than one

Execute. Multilevel undo can be implemented by keeping an ordered list of commands to

reverse-execute. It may not be meaningful or appropriate, however, for some commands

to reverse their effect. For example, it is probably not feasible to undo a command that
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generates an external representation. The Reversible operation returns whether or not the

command is unexecutable and uninterpretable. If the command is irreversible, then it can

be ignored during the undo process.

Since a command can affect more than one component, the command protocol must

allow components that interpret the command to store information in it that they can use

later to reverse its effects. The Store operation allows a component to store information in

the command as part of its Interpret operation. The component can retrieve this information

later with the Recall operation if it must uninterpret the command. Commands that operate

on selected or otherwise distinguished components must also maintain a record of the

component subjects they affected, in the order they were affected. Commands therefore

store a clipboard object, which can be assigned and retrieved with the SetClipboard and

GetClipboard operations. A clipboard keeps a list of component subjects and provides

operations for iterating through the list and manipulating its elements. Typically, the

clipboard is initialized with the component subjects whose views are currently selected

when the command is first executed. Purely interpretive commands should define their

Execute and Unexecute functions to invoke Interpret and Uninterpret on the components in

their clipboard.

It is often convenient to create “macro” commands, that is, commands composed of

other commands. The command protocol includes operations for iterating through and

manipulating its child commands, if any. By default, (un)executing or (un)interpreting a

macro command is identical in effect to performing the corresponding operations on each

of its children. Finally, the protocol provides SetEditor and GetEditor operations to set

and get the editor that owns the command, whose state the command potentially affects.

SetEditor is generally called once as part of the command’s initialization.

3.5 Tools

By definition, a graphical object editor supports the direct manipulation model of interaction.

Unidraw-based editors use tool objects to allow the user to manipulate components directly.

The user grasps and wields a tool to achieve a desired effect. The effect may involve a

change to one or more components’ internal state, or it may change the way components
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return values operation arguments
manipulator CreateManipulator event
command InterpretManipulator manipulator
component subject GetPrototype

SetEditor editor
editor GetEditor

Table 6: Tool protocol

are viewed, or there may be no effect at all (if the tool is used in an inappropriate context,

for example). Tools reinforce the user’s belief that the components are physical objects

that can be changed and controlled by gesture. For example, tools often use animated

graphical effects as they are wielded to suggest how they will affect their environment. The

architecture defines how tools interact with other Unidraw objects and how tools implement

a wide range of manipulation semantics.

3.5.1 Tool Protocol

The basic tool protocol is shown in Table 6. Conceptually, tools do their work within

viewers, in which graphical component views are displayed and manipulated. Whenever

a viewer receives an input event (such as a mouse click or key press), it in turn asks the

current tool (defined by the enclosing editor object) to produce a manipulator object. A

tool implements its CreateManipulator operation to create and initialize an appropriate

manipulator, which encapsulates the tool’s manipulation semantics by defining the three

phases (grasp, wield, effect) of the manipulation. A tool may modify the contents of the

current selection object (also defined by the enclosing editor) based on the event. Moreover,

a tool can delegate manipulator creation to one or more graphical views (usually among

those in the editor’s selection object) to allow component-specific interaction. A tool’s

InterpretManipulator operation accesses and analyzes information in the manipulator that

characterizes the manipulation and then creates a command that carries out the desired

effect. If a tool delegated manipulator creation to a graphical view, then it must delegate its

interpretation to the same view.
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return values operation arguments
Grasp event

boolean Manipulating event
Effect event
fchild iteration and
manipulation operationsg

Table 7: Manipulator protocol

The GetPrototype operation is defined by the graphical component tool subclass.

Graphical component tools maintain a prototype component and define how that component

is created and added to the component hierarchy in the viewer. The prototype is a graphical

subject that the tool copies and modifies to conform to the direct manipulation. The tool

then inserts the copy into the component hierarchy using an appropriate command. Lastly,

tools (like commands) store a reference to the editor that owns them and provide SetEditor

and GetEditor operations for assigning and retrieving this reference.

3.5.2 Manipulator Protocol

The manipulator protocol (Table 7) reflects the grasp-wield-effectbehavior of tools. The

Grasp operation takes an input event and initializes whatever state is needed for the direct

manipulation (such as animation objects). During direct manipulation, the Manipulating

operation is called repeatedly until the manipulator decides that manipulation has terminated

(based on its own termination criteria) and indicates this by returning a false value. The

Effect operation gives the manipulator a chance to perform any final actions following the

manipulation.

Because some sorts of direct manipulation may require several sub-manipulations to

progress simultaneously (for instance, the editor may allow the user to manipulate more than

one component at a time), a manipulator may have children. Thus the manipulator protocol

also includes operations for iterating through and manipulating its child manipulators.

This simple protocol is sufficient to describe direct manipulations ranging from text entry

and rubberbanding effects to simulating real-world dynamics such as imparting momentum

to an object. Since manipulators must maintain information that characterizes the final
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Figure 8: Communication between objects during direct manipulation

outcome of a manipulation, subclasses usually augment the protocol with operations for

retrieving state that determines this outcome. For example, a manipulator that supports

dragging the mouse to translate a graphical component will define an operation for retrieving

the distance moved.

3.5.3 Object Communication during Direct Manipulation

Figure 8 diagrams the communication between objects during direct manipulation to clarify

the roles of tools, manipulators, commands, viewer, and graphical views. The numeric

labels in the diagram correspond to the transmission sequence:

1. The viewer receives an input event, such as the press of a mouse button.

2. The viewer asks the current tool to CreateManipulator based on the event.
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3. Manipulator creation: the tool either

(a) creates a manipulator itself (based on the selection or other information), or

(b) asks the component view(s) to create the manipulator(s) on its behalf. The tool

must combine multiple manipulators into a composite manipulator. Each class

of component view is responsible for creating an appropriate manipulator for

the tool.

4. Direct manipulation: the viewer

(a) invokes Grasp on the manipulator, supplying the initiating event;

(b) loops, reading subsequent events and sending them to the manipulator in a Ma-

nipulating operation (looping continues until a Manipulating operation returns

false);

(c) invokes Effect on the manipulator, supplying the event that terminated the loop.

5. The viewer asks the current tool to InterpretManipulator.

6. Manipulator interpretation: the tool either

(a) interprets the manipulator itself, creating the appropriate command, or

(b) asks the component view(s) to interpret the manipulator(s) on its behalf. The

view(s) then create(s) the appropriate command(s). The tool must combine

multiple commands into a composite (macro) command.

7. The viewer executes the command.

8. The command carries out the intention of the direct manipulation.

To illustrate this process, consider the following example of direct manipulation in a

drawing editor. Suppose the user clicks on an rectangle component view (RectangleView)

in the drawing area (viewer) with the MoveTool. The viewer receives a “mouse-button-

went-down” event and asks the current tool (the MoveTool, as provided by the enclosing
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editor) to CreateManipulator based on the event. MoveTool’s CreateManipulator operation

determines from the event which component view was hit and adds it to the selection. More

precisely, the selection object provided by the enclosing editor appends the view to its list.

If the selection object contains only one component view, then MoveTool’s Create-

Manipulator operation calls CreateManipulator on that component view. This gives the

component view a chance to create the manipulator it deems appropriate for the MoveTool

under the circumstances. Since the user clicked on a RectangleView, the component view

will create a DragManipulator, a manipulator that implements an downclick-drag-upclick

style of manipulation. DragManipulators animate the dragging portion of the manipulation

by drawing a particular shape in slightly different ways in each successive call to their

Manipulating operation. The definition of DragManipulator parameterizes the shape so

that subclasses of DragManipulator are not needed to support dragging different shapes.

Once the viewer obtains the DragManipulator from the MoveTool, the viewer creates

the illusion that the user is grasping and wielding the tool. First the viewer calls Grasp

on the manipulator, which allows the manipulator to initialize itself and perhaps draw the

first frame of the animation. Then the viewer loops, forwarding all subsequent events to

the manipulator’s Manipulating operation until it returns false. Successive calls to Ma-

nipulating produce successive frames of the animation. Once manipulation is complete,

the viewer invokes the manipulator’s Effect operation, which gives the DragManipulator a

chance to finalize the animation and the state it maintains to characterize the manipulation.

The viewer then asks the tool to InterpretManipulator; in this case, the MoveTool in turn

asks the RectangleView to InterpretManipulator. In response, RectangleView constructs

and returns a MoveCommand, which specifies a translation transformation. The Rectan-

gleView initializes the amount of translation in the MoveCommand to the distance between

the initial and final frames of the animation, which it obtains from the DragManipulator.

3.5.4 Tools versus Manipulators

Early in the architecture’s design, there was no distinction between tools and manipu-

lators—tools defined their own manipulation semantics. We then found that many tools

shared the same semantics, some shared similar ones, some could exhibit different semantics
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return values operation arguments
error Emit stream
error Definition stream

Table 8: External view protocol

at different times, and others had unique (but potentially idiomatic) semantics. Tying

distinctive behavior to individual tool subclasses was unsatisfactory because we found no

way to factor the classes so that different behaviors could be mixed and matched with

different tools.

The solution, of course, was to encapsulate the manipulation semantics in an independent

object, the manipulator. The more we experimented with this concept, the more apparent it

became that it was a good solution. Manipulators package direct manipulation semantics

nicely. Components can define independent manipulation semantics for the same tool,

though even divergent semantics for a given tool should reflect the spirit of the tool. The

notion of allowing a component to create a specification of its manipulation semantics

and later produce a command based on the manipulation’s outcome is hard to recast into

a model that lacks manipulators. Manipulators also increase the chances for code reuse,

because they can be used in many contexts and can be composed easily. For example,

the DragManipulator described above can be used by other component-modifying tools

in addition to the MoveTool. Thus we found it useful to abstract the mechanics of direct

manipulation with tools in a separate manipulator object.

3.6 External Representations

An external representation of a component is simply a non-graphical view of its subject.

Domain-specific external representations are derived from the external view subclass of

component view.

The external view protocol is shown in Table 8. The protocol defines two operations,

Emit and Definition, that generate a stream of bytes constituting the external representation.

Emit initiates external representation generation and calls Definition recursively. Emit
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normally calls the external view’s own Definition operation first. Then if the external view

contains subviews, Emit must invoke the children’s Definition operations in the proper

order to ensure a syntactically correct external representation.

Emit is often used to generate header information that appears only once in the ex-

ternal representation, while Definition produces component-specific, context-independent

information. For example, a drawing editor may define a PostScriptView external view

subclass that defines Emit to generate global procedures and definitions. Component-

specific subclasses of PostScriptView then need only define Definition to externalize the

state of their corresponding component. Thus when Emit is invoked on an instance of any

PostScriptView subclass, a stand-alone PostScript representation (known as “encapsulated”

PostScript) will be generated. When the same instance is buried in a larger PostScriptView,

only its definition will be emitted.

The architecture predefines preorder, inorder, and postorder external views. These

subclasses manage subviews and support one of three common traversals of the external

view hierarchy.

3.7 Application Framework

Having described components, commands, tools, and external representations in detail, we

can now focus on how they function in a domain-specific editor. This section describes the

protocols associated with the objects shown in Figure 2, beginning with the viewer object

and proceeding upward toward the unidraw object.

3.7.1 Viewer

A viewer displays a graphical component view and provides an interface to scrolling and

zooming it. The viewer can also process user input events and translate them to conform

to Unidraw protocols. Viewers are therefore implemented in terms of window system or

toolkit abstractions; the viewer class might be derived from Window, a window system

object that can receive events and draw on the screen. The underlying window system or

toolkit must allow the viewer to examine all input events that such a window can receive.
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return values operation arguments
Update
Handle event
SetGraphicalView graphical view

graphical view GetGraphicalView
SetEditor editor

editor GetEditor
fscrolling and zooming operationsg

Table 9: Viewer protocol

The viewer generates Unidraw requests in response to one or more “interesting” events,

usually those characteristic of direct manipulation. For example, a viewer by default may

ignore all events until a mouse-button-down event arrives, at which point begins the process

outlined in Section 3.5.3 for using a tool. From then on, the viewer forwards all events to

the manipulator until manipulation stops.

The viewer protocol is shown in Table 9. Update informs the viewer that some part of

the graphical view has changed. The viewer then redraws the graphic object defined by

the graphical view. Viewer implementations can use incremental techniques to speed the

process of redrawing complicated graphics that change only slightly in the common case.

Graphical views should thus delegate redrawing themselves to the viewer, which can often

optimize away many individual redraws.

The Handle operation provides an interface to the corresponding window system or

toolkit mechanism for receiving input events. Handle is responsible for converting these

events into Unidraw protocol requests. The SetGraphicalView and GetGraphicalView

operations set and get the graphical view the viewer displays. SetEditor and GetEditor set

and get the editor object that owns the viewer. Finally, the viewer protocol should provide

window system or toolkit-compatible operations for scrolling and zooming the graphical

view.
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return values operation arguments
Update
Open
Close

state variable GetStateVariable name
SetComponent component subject

component subject GetComponent
SetViewer viewer, int

viewer GetViewer int
SetCurrentTool tool

tool GetCurrentTool
SetSelection selection

selection GetSelection

Table 10: Editor object protocol

3.7.2 Editor

An editor provides a complete user interface to editing a graphical component subject. It

unites one or more viewers with the commands and tools that act upon the component

and its subcomponents. Editors are normally derived from toolkit objects that can compose

buttons, menus, and the like into a finished user interface. Each window of a domain-specific

editor is usually an instance of an editor subclass designed for the domain.

Table 10 depicts the editor object protocol. The Update operation simply invokes the

corresponding operation on the editor’s viewers. Open informs the editor that it has just

become visible and accessible to the user, in case it needs to know, and Close signals that it

is no longer needed and should perform any final housekeeping operations. For example,

the editor may display a copyright message when it is first opened, or it may take the

opportunity when closed to warn the user to save a modified component.

The protocol also defines several operations for setting and retrieving its characteristic

state. GetStateVariable provides a standard interface to accessing editor state variables,

which may store, for example, the name of the component being edited, the current magni-

fication of a viewer, or the font with which new text components appear. SetComponent and

GetComponent respectively set and get the component subject that the user edits with the
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return values operation arguments
fgraphical view iteration and
manipulation operationsg
Show
Hide
Clear

Table 11: Selection protocol

editor. SetViewer and GetViewer set and get the viewer(s) owned by the editor. Multiple

viewers are identified serially, and each contains a view of the editor’s graphical component

subject. The SetCurrentTool and GetCurrentTool operations involve the editor’s notion of

the current tool, that is, the tool that the user will wield should he initiate direct manip-

ulation. Similarly, the SetSelection and GetSelection operations set and get the selection

object used by the editor. How the current tool and selection operations are implemented

depends on the particular interface: if the application defines a single, global selection, then

all editors should share the same selection object; if each editor provides its own palette of

tools, then each one must store the current tool for itself.

3.7.3 Selection

A selection object is nominally a convenient interface to managing a set of distinguished

graphical component views. Its protocol is shown in Table 11. Each selection object

maintains a list of graphical views and provides operations for iterating through and ma-

nipulating the list. Show invokes the Highlight operation on each view (see Table 3), while

Hide invokes Unhighlight. The Clear operation is equivalent to calling Hide and then

removing all the views from the list.

This protocol provides bare-minimum functionality for handling selected graphical

views; convenient operations can be built on top. For example, the order in which views

appear in the list usually reflects the order in which the user selected them with a tool. This

order is probably not the order in which the views occur in their parent view. If the user

cuts and pastes the components, they must retain their original relative ordering. A Sort
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return values operation arguments
Register component subject, name
Unregister component subject

component subject GetComponent name
name GetName component subject

Register command, name
Unregister command

command GetCommand name
name GetName command

Register tool, name
Unregister tool

tool GetTool name
name GetName tool

Table 12: Catalog protocol

operation that orders the views according to their position in their parent view would make

cut-and-paste editing commands easier to implement.

3.7.4 Catalog

The structure of Unidraw objects can be quite complex. For example, a component can

have several views and can contain other components with their own views. Since Unidraw

objects must live beyond a particular editing session, some provision must be made for

maintaining these objects in non-volatile storage. The potential complexity of these objects

makes it difficult for a programmer to manage their storage manually. The catalog abstrac-

tion is designed to free the programmer from this responsibility by letting him store and

retrieve only those objects in which he is explicitly interested; other objects are managed

automatically by the system.

A catalog provides independent name-to-object mappings for component subjects, com-

mands, and tools. Table 12 depicts the catalog protocol. Name mappings are defined and

undefined with the Register and Unregister operations, respectively, for each of the three

base classes. The GetComponent, GetCommand, and GetTool operations take a name as
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return values operation arguments
Run
Open editor
Close editor
Update
Quit
Log command
Undo int
Redo int
SetHistoryLength int

int GetHistoryLength
SetCatalog catalog

catalog GetCatalog

Table 13: Unidraw object protocol

an argument and return the corresponding object, if the name has been mapped to one. The

GetName operations carry out the reverse mappings.

These catalog semantics imply that an object stored in the catalog must survive across

activations of the domain-specific application. Note that the protocol does not mandate a

flat name space; implementations can extend the protocol as needed to support name spaces

of unrestricted structure.

3.7.5 Unidraw

A domain-specific editor application must create exactly one instance of a unidraw object,

which implements the main loop of the program, makes editors appear and disappear on the

screen, maintains a log of all commands that have been (un)executed and (un)interpreted,

and stores a reference to the (one and only) catalog. The unidraw object obeys the protocol

shown in Table 13.

The Run operation defines the application’s main loop. Run’s implementation is gen-

erally window system/toolkit-specific; it may read events explicitly and forward them to

their target objects, or it may simply encapsulate the equivalent operation defined by the

underlying system. Run might also convert raw events into Unidraw protocol requests itself
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if convenient or necessary. For example, Run might execute a QuitCommand or invoke

the Quit operation (described below) directly if a special key is pressed. Open makes the

given editor appear on the display, carrying out any system-specific initialization, while

Close removes the editor from the user’s viewpoint. Open and Close call the corresponding

operations on the editor. Update synchronizes the application and the state of its constituent

objects: connectors move to satisfy their connection semantics, and viewers redraw parts

of their graphical views that have changed. Unidraw objects may experience many internal

state changes before the corresponding effects are made visible by Update, which is usually

issued as the last protocol request in user-accessible commands. The application is termi-

nated by invoking the Quit operation. Quit performs whatever housekeeping is necessary

before the program exits.

The architecture supports arbitrary-level undo and redo semantics through the Log,

Undo, and Redo operations defined on the unidraw object. Log places a command on a

list of previously-executed commands. We refer to this list as the past log, or past for

short, which represents the history of undoable operations. Log insures that only reversible

commands are logged. Commands should be logged wherever they are executed, preferably

immediately thereafter; however, commands are not responsible for calling Log themselves

within their (Un)execute or (Un)interpret operation—in fact, doing so will log the command

twice.

The Undo operation reverse-executes the specified number of past commands, removing

them from the past and placing them on another list of commands, the future log, or simply

future. Redo performs the reverse operation: it re-executes the specified number of

commands from the future and moves them to the past. Note that Undo and Redo assume

that past and future commands are either executable or unexecutable; there is no way

for these operations to arrange to have the command interpreted or uninterpreted by the

proper components. However, this is not a problem if interpretive commands define their

(Un)execute operation to call (Un)interpret on their stored components, as suggested in

Section 3.4.

This model directly supports both history undo/undo and linear undo/redo as described

by Vitter [55]. In history undo/undo, undo itself is an undoable operation; undoing it

corresponds to a redo, and no explicit redo is required. This model can be implemented
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with a reversible undo command. Linear undo/redo specifies that undo and redo are “meta-

operations” that are not included in the command history, which lists only “primitive”

commands. Undo and redo simply manipulate the history of primitive commands, as

suggested by the corresponding unidraw object operations. Linear undo/redo can be imple-

mented by defining irreversible undo and redo commands. A domain-specific application

can extend the unidraw object’s undo model via subclassing to support more sophisticated

semantics.

The last four operations defined by the unidraw object protocol set and get two of its

attributes. SetHistoryLength specifies the past log’s (and, consequently, the future log’s)

maximum length, from zero to infinity; GetHistoryLength returns this attribute’s current

value. Finally, SetCatalog and GetCatalog set and get the catalog appropriate for the

application. SetCatalog should be called once by the unidraw object when the application

creates it.

3.8 Summary

The Unidraw architecture defines object-oriented abstractions that simplify the construction

of graphical object editors. Unidraw spans the gap between general-purpose toolkits and

domain-specific editors by providing functionality that is common across domains but not

supported by existing systems. This functionality is partitioned into four basic classes:

components encapsulate the appearance and semantics of objects in a domain, tools support

direct manipulation of components, commands define operations on components and other

objects, and external representations specify the mapping between components and the file

format generated by the editor. Domain-specific editors use specializations of these objects

to suit their needs.

In addition to these basic classes, the architecture provides abstractions that aid in im-

plementing domain-specific semantics. Editors for many domains require that components

remain connected to one another, both visually and in an information-transfer sense. The

connector component subclass supports various connectivity and confinement semantics.

Connectors also support dataflow between components when used in concert with state

variables and transfer functions. Tools use manipulators to define their behavior during



CHAPTER 3. UNIDRAW ARCHITECTURE 58

direct manipulation and commands to define their effects afterwards, while commands use

clipboards to store enough information to reverse their effects.

Lastly, the architecture specifies a framework for assembling the basic objects into a

complete application. A viewer acts as a gateway through which the user manipulates a

component and its subcomponents with tools, converting raw window system or toolkit

events into Unidraw protocols. An editor combines viewers and toolkit objects for engag-

ing commands and tools into a self-contained interface that the user perceives to be the

domain-specific application. An editor uses a selection object, which stores a list of distin-

guished components, to manage components in which the user has expressed interest. The

application uses a single catalog object to keep track of components (both predefined and

user-defined) and commands and tools (both those already incorporated into the application

and those that are available for incorporation). The application also creates and maintains

a single unidraw object that acts as prime mover and global coordinator of the application.

While a detailed architectural specification is an important part of achieving the goals

of this thesis, the only way to determine whether they truly have been achieved is to build

an implementation from the specification and use it to develop real domain-specific editors.

These undertakings are the subjects of the next two chapters.



Chapter 4

A Prototype Implementation

We developed a prototype Unidraw library to test the viability of the architecture. Subse-

quently, we used the prototype to build three domain-specific editors; that effort is described

in the next chapter.

In this chapter we focus on the salient aspects of our Unidraw implementation. We do

not present a detailed description of every object; instead, we consider the overall structure

of the system, the subsystems on which it is built, key objects, relevant algorithms, and

novel techniques we applied. We hope this discussion proves useful not only to Unidraw

implementors but to user interface developers in general.

First we describe briefly the object-oriented language we chose and the user interface

toolkit that we developed and used with the prototype. Later we introduce the fundamentals

of the prototype, explaining its organization in terms of the major class hierarchies. Then we

consider the implementation of components, arguably the most complex objects in Unidraw.

The special requirements of connector components are examined next (how connectivity

is maintained and how dataflow works), followed by a section on the command and tool

implementations. Finally, we discuss the implementation of catalog semantics and close

with a summary of the chapter.

59
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4.1 C++

Our experience with user interface development has underscored the importance of using

an object-oriented rather than procedural language to express the implementation of an

object-oriented architecture. Simulating inheritance, dynamic method binding, and data

abstraction in a procedural language is a burden for programmers, forcing them to do book-

keeping that is far removed from the architectural concepts being implemented. A language

that reflects object-oriented concepts explicitly narrows the gap between architecture and

implementation, freeing the programmer to concentrate on complexity at higher levels. We

have found that code produced by a skilled programmer in an object-oriented language

is more readable, maintainable, and extensible than a functionally-equivalent procedural

implementation.

In mid-1986, after our research group had built several object-oriented systems in

Modula-2, we switched to C++ [50], a C-based object-oriented language developed at

AT&T Bell Laboratories. C++ retains C syntax and adds Simula-style classes with single

and multiple inheritance, optional run-time method lookup, and full static type checking,

plus a host of ancillary features such as operator overloading and reference parameters.

C++ is an attractive language because it supports object-oriented programming without

compromising the execution efficiency of C. C++ compilers generate conventional object

files that are linked into stand-alone applications. While C++ lacks useful features such as

run-time access to class information, untyped message passing, and garbage collection, its

explicit object-oriented semantics greatly simplifies the implementation of object-oriented

systems compared to procedural languages, and its efficiency was highly desirable for the

purposes of our research.

4.2 InterViews

The prototype does not include toolkit functionality because a toolkit was available from the

start. Originally to support our group’s programming environment research, we developed

InterViews [23], an object-oriented toolkit implemented in C++. InterViews provides a

library of predefined objects and a set of protocols for composing them. A user interface
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is created by composing simple primitives in a hierarchical fashion, allowing complex user

interfaces to be implemented easily.

InterViews supports composition of two categories of object. Each category is imple-

mented as a hierarchy of object classes derived from a common base class. Composition

subclasses within each class hierarchy allow hierarchical composition of object instances.

1. Interactive objects such as buttons and menus are derived from the interactor base

class. Interactors are composed by scenes. Scene subclasses define specific compo-

sition semantics such as tiling or overlapping.

2. Structured graphics objects such as circles and polygons are derived from the graphic

base class. Graphic objects are composed by pictures, which provide a common

coordinate system and graphical context for their components.

Domain-specific editors use objects from these hierarchies to implement their basic user

interface, and they use Unidraw objects to support graphical object editing. The Unidraw

prototype uses InterViews structured graphics objects extensively; these are described in

more detail in the next section. Several other InterViews objects are used in the prototype and

experimental applications; these are described where they are introduced in the remainder

of the thesis.

4.3 Structured Graphics

In addition to providing primitive and composition objects for building the controlling

elements of a user interface, InterViews includes abstractions for creating and manipulating

graphical objects. Structured graphics refers to a graphics model in which geometric

primitives such as circles and polygons can be assembled into hierarchies. Each primitive

has some associated state, such as its geometric and coordinate system specification and

rendering information. Primitives can be composed hierarchically to impose structure on

the graphics being displayed. In contrast, the immediate mode graphics model does not

associate state with graphics; shapes are drawn by calling procedures that simply modify

display memory. The shapes have no storage associated with them and cannot be accessed or
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manipulated after they are drawn. Most window systems and toolkits (including InterViews)

rely on immediate mode graphics at some level to produce graphical output.

Structured graphics can simplify the implementation of graphical object editors because

structured graphics packages implement much of the basic graphics capabilities such editors

require. Programmers can use structured graphics to represent the data on which a graph-

ical editor operates. For example, drawing editor operations for translating and scaling

geometric shapes, enlarging and reducing the drawing, and storing and later reconstructing

its representation on disk are supported by most structured graphics packages. Graphical

hierarchies could be used to compose and manipulate groups of notes on staves in a music

editor. A project management system could define the elements of bubble charts using

graphical primitives and allow the user to make structural changes interactively by call-

ing operations for editing the hierarchy. Moreover, structured graphics packages usually

provide operations for detecting when a user selects an element with the mouse and for

redrawing the image efficiently following modification.

However, there are drawbacks to using traditional structured graphics packages [18,

21, 44]. The library of procedures they provide is typically large and monolithic, rich

in functionality but difficult for the programmer to extend. Extensibility usually requires

access to and manipulation of internal data structures, which can compromise the reliability

of the system. Also, it is often difficult to edit and manipulate the graphical structure,

particularly when its elements are represented procedurally, because there is no way to

refer to graphic and geometric attributes directly. Editing the graphical structure may be

inefficient as well. For example, if the structure is compiled into a more compact or efficient

form, then recompilation is required before a modified drawing can be rendered. These

deficiencies make it likely that the structure provided by the package will not map well

to that required by the application, forcing the programmer to define data structures and

procedures that parallel the library’s.

We addressed these problems in InterViews with an object-oriented approach to struc-

tured graphics. InterViews partitions structured graphics functionality into a collection

of classes that correspond to individual graphical primitives. The graphic base class and

derived classes collectively form the InterViews Graphic library. The prototype Unidraw

implementation relies quite heavily on this library to facilitate building domain-specific
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Graphic Label
Line
Picture
Point
RasterRect
Stencil
Rect S Rect

F Rect
SF Rect

Ellipse S Ellipse S Circle
F Ellipse F Circle
SF Ellipse SF Circle

Vertices MultiLine S MultiLine
SF MultiLine

Polygon S Polygon
F Polygon
SF Polygon

OpenBSpline S OpenBSpline
F OpenBSpline
SF OpenBSpline

ClosedBSpline S ClosedBSpline
F ClosedBSpline
SF ClosedBSpline

Table 14: Graphic library class hierarchy

editors. The following sections describe the Graphic library and the advantages of its

object-oriented approach over those of traditional structured graphics packages. A more

detailed description and analysis of the library appears in an earlier report [57].

4.3.1 Class Organization

Table 14 lists the classes in the Graphic library according to the inheritance hierarchy.

The hierarchy’s design was guided by the desire to share code as much as possible without
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compromising the logical relationships between the classes. The derived classes define the

following graphical objects:

� Point, Line, MultiLine: point and line objects

� Label: a string of text

� Stencil: a bitmapped, monochrome image

� RasterRect: a bitmapped, color image

� Picture: a collection of graphics

� S Rect, F Rect, SF Rect: stroked, filled, and stroked-filled rectangles

� S Ellipse, F Ellipse, SF Ellipse: stroked, filled, and stroked-filled ellipses

� S Circle, F Circle, SF Circle: stroked, filled, and stroked-filled circles

� S MultiLine, SF MultiLine: stroked and stroked-filled connected line segments

� S Polygon, F Polygon, SF Polygon: stroked, filled, and stroked-filled polygons

� S OpenBSpline, F OpenBSpline, SF OpenBSpline: stroked, filled, and stroked-

filled open B-splines

� S ClosedBSpline, F ClosedBSpline, SF ClosedBSpline: stroked, filled, and

stroked-filled closed B-splines

All graphics maintain graphics state and geometry information. Graphics state parame-

ters are defined in separate base classes, including transformer (transformation matrix),

color, pattern (for stippled area fills), brush (for line drawing), and font. Each graphics

state class implements operations for defining and modifying its attributes. For example,

transformers have translation, scaling, rotation, and matrix multiplication operations, and

colors provide an interface for varying their component intensities.

The graphic base class contains a minimal set of graphics state that includes a transformer

and foreground/background colors. Derived classes maintain additional graphics state
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according to their individual requirements. For example, the label class includes a font in

addition to inherited state, filled objects maintain a pattern, and outline objects include a

brush.

All graphics implement a set of operations defined in the base class. These include

operations for

� drawing and erasing, optionally clipped to a rectangle,

� setting and retrieving graphics state values,

� translating, scaling, and rotating,

� obtaining a bounding box, and

� ascertaining whether the graphic contains a point or intersects a rectangle.

4.3.2 Graphics State Concatenation

A picture is a composite graphic that composes other graphics into a single object. Compos-

ite graphics are like other graphics in that they maintain their own graphics state information,

but they do not have their own geometric information. Composition allows us to define

how the composite’s state information affects its components. The graphic base class im-

plements a mechanism for combining, or concatenating, graphics state information. The

default behavior for concatenation is described below. Composite graphics can redefine the

concatenation operations as needed.

Given two graphics states A and B, we can write their concatenation as A � B = C ,

where C is the resultant graphics state. Concatenation associates but is not commutative;

B is considered dominant. C receives attributes defined by B. Attributes that B does not

define are obtained from A. An exception is the transformation matrix: C’s transformer is

defined by postmultiplying A’s transformer by B’s. B thus dominates A in that C inherits

B’s attributes over A’s, and C’s coordinate system is defined by A’s transformation with

respect to B’s.

A graphic might not define a particular attribute either because it is not meaningful for

the graphic to do so (a filled rectangle does not maintain a font, for instance) or because
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the attribute’s value has been set to nil deliberately. Defined attributes propagate through

successive concatenations without being overridden or modified by undefined attributes.

For example, suppose graphics stateA defines a font butB does not. Moreover,C maintains

a font but its value has been set to nil. Then D = A�B�C will receive A’s font attribute.

If A’s transformer is nil but B and C’s are non-nil, then D will receive a transformer that

is the product of B’s and C’s. If D = C �A �B, then D will receive a transformer that

is the product of C’s and B’s.

Composite graphics use graphics state concatenation to define their appearance. Pictures

are the basic mechanism for building hierarchies of graphics. Each picture maintains a list

of component graphics. A picture draws itself by drawing each component with a graphics

state formed by concatenating the component’s state with its own. Thus, operations on a

picture affect all of its components as a unit.

The semantics for concatenation as defined in the base class are useful for describing how

composite graphics are drawn, but derived graphics can implement their own concatenation

mechanism. This creates the potential for concatenation semantics that are more powerful

than the default precedence relationship. For example, the concatenation operation could be

redefined so that concatenating two colors would yield a third that is the sum or difference

of the two. Two patterns could combine to form a pattern corresponding to an overlay of

the two. This behavior could be used to define how to draw overlapping parts of a VLSI

layout.

The ability to redefine concatenation semantics demonstrates how inheritance lets the

programmer extend the graphics library easily. Flexibility is thus achieved without com-

plicating or changing the library.

4.3.3 Incremental Update

Structured graphics can be used to represent and draw arbitrarily complicated images.

Many images (and most interesting ones) cannot be drawn instantaneously. Incremental

techniques can speed the process of keeping the screen image consistent with the underlying

graphical structure. Such techniques will be effective if the user makes small changes most

of the time, and experience with interactive graphics editors shows this to be the case.



CHAPTER 4. A PROTOTYPE IMPLEMENTATION 67

void Incur(Graphic*);
void Incur(BoxObj&);
void Incur(Coord, Coord, Coord, Coord);
void Repair();
void Reset();
boolean Incurred();

Figure 9: Interface to damage class

The Graphic library includes a damage base class to support incremental update. A

damage object is used to keep the appearance of graphics consistent with their represen-

tation. Damage objects try to minimize the work required to redraw corrupted parts of

a graphic. The base class implements a simple incremental algorithm that is effective

for many applications. The algorithm can be replaced with a more sophisticated one by

deriving from the base class.

The C++ interface to the damage class appears in Figure 9. When a damage object

is created it is passed a graphic (usually a picture) for which it is responsible. The Incur

operation is called by the client program whenever the graphic is damaged. The pro-

grammer must supply the damaged region to the Incur call, either by passing the graphic

that contributed the region or by specifying a rectangular area explicitly. The graphic is

incrementally updated when Repair is called. Reset discards accumulated damage without

updating the graphic. Clients can determine whether any damage has been incurred using

the Incurred operation.

4.4 Overview of the Unidraw Prototype

The Unidraw prototype is a library of C++ classes built on top of InterViews and the X

Window System [41]. Table 15 presents a breakdown of the prototype implementation in

classes and lines of source code.
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code (lines)

classes interface implem.

components 38 1090 4810

commands 42 900 2390

tools/manipulators 16 500 1510

ext. representations 18 300 1150

state vars./transf. fns. 20 410 1000

applic. framework 5 460 2450

creator 1 30 170

toolkit-derived classes 22 390 1260

utilities/globals 18 940 3260

totals 180 5020 18000

Table 15: Unidraw prototype library code breakdown

The prototype defines C++ classes corresponding to each of the major architectural

classes. Component and ComponentView base classes provide the protocols for compo-

nent subjects and views, respectively, while GraphicComp and GraphicView subclasses

furnish the additional protocol required by graphical components. ExternView is a sub-

class of ComponentView that defines the external representation protocol, from which

PreorderView, InorderView, and PostorderView classes are derived. Connector and

ConnectorView classes and corresponding pin, slot, and pad subclasses implement con-

nector semantics. Command and Tool base classes embody the command and tool proto-

cols. Also included are Catalog, Clipboard, Editor, Manipulator, Selection, StateVar,

StateVarView, TransferFunct, Unidraw, and Viewer classes.

To these elementary classes the prototype adds many predefined subclasses, shown in

Tables 16 and 17, that programmers can use immediately to build domain-specific edi-

tors. These subclasses include basic graphical components (such as lines and polygons),

their views and PostScript external representations; commands for manipulating compo-

nents and changing their attributes; commands that let the user access the catalog; tools

for selecting, transforming, and otherwise modifying graphical components; manipulators
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Component GraphicComp GraphicComps
EllipseComp
LineComp LinkComp
RectComp TextComp
VerticesComp SplineComp

ClosedSplineComp
MultiLineComp
PolygonComp

Connector PinComp PadComp
SlotComp HSlotComp VSlotComp

ComponentView GraphicView GraphicViews
EllipseView
LineView LinkView
RectView TextView
VerticesView SplineView

ClosedSplineView
MultiLineView
PolygonView

ConnectorView PinView PadView
SlotView HSlotView VSlotView

ExternView InorderView
PostorderView
PreorderView PostScriptView PostScriptViews

PSEllipse PSLine
PSLink PSRect PSText
PSPin PSSlot PSPad
PSVertices PSSpline

PSClosedSpline
PSMultiLine
PSPolygon

Table 16: Predefined component subclasses

Command AlignCmd BackCmd BrushCmd CenterCmd CloseEditorCmd
ColorCmd ConnectCmd CopyCmd CutCmd DeleteCmd DupCmd
FontCmd GravityCmd GridCmd GridSpacingCmd MacroCmd
MobilityCmd NewCompCmd NormSizeCmd OrientationCmd PasteCmd
PatternCmd PrintCmd QuitCmd RedToFitCmd RedoCmd ReplaceCmd
RevertCmd RotateCmd SaveCompAsCmd SaveCmd ScaleCmd
SlctAllCmd UndoCmd ViewCompCmd
StructCmd GroupCmd UngroupCmd

Tool ConnectTool GraphicCompTool MagnifyTool MoveTool
ReshapeTool RotateTool ScaleTool SelectTool StretchTool

StateVar BrushVar ColorVar FontVar GravityVar MagnifVar
ModifStatusVar NameVar PatternVar

StateVarView BrushVarView ColorVarView FontVarView GravityVarView
MagnifVarView ModifStatusVarView NameVarView PatternVarView

TransferFunct TF 2Port TF Direct
Manipulator ManipGroup TextManip

DragManip ConnectManip VertexManip

Table 17: Additional predefined subclasses
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supporting common direct manipulation such as “downclick-drag-upclick” interactions and

text editing; state variables for basic graphical component attributes (such as color and fill

pattern) together with sample views; and transfer functions that support simple dependen-

cies between state variables.

4.5 Components

The implementation of the component subject and view base classes is straightforward.

The subject maintains a list of views that have been attached; it calls Update on each of

these views when Notify is called. The view keeps a pointer to its subject. The base classes

do not maintain local state apart from these attributes; a component subclass that defines

state variables and transfer functions, for example, must allocate them and redefine the

corresponding access functions to return them.

One complication stems from C++ in that it disallows sending arbitrary messages to

objects. Messages are sent via strongly-typed procedure calls, so a class must declare all

acceptable messages at compile-time. As a result, component operations such as Interpret

and Uninterpret cannot be implemented by accepting untyped messages from commands.

In lieu of this capability, components must query the command to determine its class,

but C++ cannot provide this information at run-time. Our implementation defines an IsA

operation based on programmer-managed class identifiers to solve this problem, but ideally

the language would provide either run-time class resolution or untyped (or dynamically-

typed) method lookup.

Another subtlety concerns how to create an appropriate view given a subject. For

example, a command responsible for generating an external representation for a particular

graphical subject must create the corresponding external view of that subject; a command

that produces a graphical view of a component must instantiate the proper graphical view,

if it exists. This implies that component views should be categorized and that a mapping is

required between a component subject and its view for a given category.

The prototype predefines COMPONENT VIEW and POSTSCRIPT VIEW view

categories and extends the component protocol to include a Create operation, which takes

the view category as an argument and returns a component view. Calling Create on a
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graphical subject with COMPONENT VIEW as its argument yields the corresponding

graphical view, while doing so with POSTSCRIPT VIEW produces the corresponding

PostScript external view. For example, if pinComp is a pin component, then

Create(pinComp, COMPONENT VIEW)

returns an instance of PinView. The mapping between subjects, views, and view categories

is defined by the Creator object, discussed in Section 4.9. Additional categories are

supported by deriving domain-specific creators.

4.5.1 Composition

The architecture encourages programmers to build complex components from simpler ones.

To be practical, composite components must work nearly as efficiently as components built

from scratch. One of the most common composite components is a hierarchy of graphical

components, often representing graphical elements that are treated as a unit. In this case,

the leaves of the hierarchy are primitive graphical components such as lines, ellipses, and

polygons.

Assume these primitives respond to commands for graphical transformations such as

scaling and rotation. The naive approach to transforming the composite component would

have the root component interpret, say, a command to scale itself about its center by some

amount. The root would then issue this command to each of its children for interpretation,

the children would issue it to their children, and so on until the leaf components interpret

the command. Such an approach incurs the significant overhead of command interpretation

at each node in the hierarchy: each component checks the command against those it is

prepared to interpret. Thus, basic graphical operations will take time proportional to the

size of the composition multiplied by the average number of commands each component

can interpret.

To speed this common case, the base class for composite graphical subjects, Graphic-

Comps, relies on the graphics state concatenation mechanism described in Section 4.3 to

propagate graphics state throughout graphical component hierarchies. Each GraphicComps

instance stores a picture into which each child’s graphic is inserted. When the Graphic-

Comps object interprets a graphical transformation or attribute-modifying command and
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applies it to its picture, it will affect the children’s graphics automatically via the concatena-

tion mechanism. An added benefit of this approach stems from limiting changes to a single

subject, namely the root of the hierarchy. Had each child subject interpreted the command,

each would in turn notify its view(s). Instead, only the views associated with the root are

notified, and the same optimization is used to propagate graphics state through the view

hierarchy. Thus the concatenation mechanism takes care of propagation in the views as

well.

This optimization assumes that graphical components will not interpret graphics-

oriented commands in special ways. Graphical components that must do so can define

new Graphic subclasses with special concatenation semantics; otherwise, the programmer

must employ the naive approach described earlier, or he might consider avoiding compo-

sition altogether. This raises an important question: When should components be defined

in terms of other components, and when should they be built from scratch? Maximum

flexibility is realized by composing existing components into new ones, and, all else being

equal, implementors should strive to define most domain-specific components through com-

position. Only when efficiency or other pragmatic considerations are an issue should one

try to implement a significant number of components from scratch. Doing so often limits

how extensible the application is from the user’s perspective, and it usually complicates the

implementation.

4.5.2 View Consistency

A component view must reconcile its internal state with its subject’s when its Update

operation is called. This is usually trivial for leaf components, which ordinarily reconcile

only a limited number of attributes, but components with children must be prepared to

restructure themselves to conform to their subject’s child structure. To accomplish this, the

view could assume that all its children are inconsistent with its subject’s children and just

rebuild them from scratch based on the subject’s structure. That approach is simple but

potentially expensive. Moreover, the subject’s structure usually stays the same or changes

only slightly, so an incremental approach in which the view reuses most of its children is

preferable. Our implementation supports the common case where the view’s child structure
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UpdateViewStructure(s; v) f

    s � component subject;

    v � component view;

    fs1; s2; : : : ; smg � Cs � set of children of s;

    fv1; v2; : : : ; vng � Cv � set of original children of v;

    L �łist of triples (sh; vi; j), 1 � h � m, 1 � i � m, 1 � j � m;

    Lk � kth triple in L; 
 
    Initialize(s; v; L);

    Rearrange(s; v; L);

    Damage(s; v; L);

g

Figure 10: View structure update algorithm

is identical to the subject’s. Components with differing subject and view structures must

implement their own update algorithm.

The algorithm consists of three routines, as shown in Figure 10: an initialization routine,

a view rearrangement routine, and a damage routine.

Initialization and View Rearrangement

Figure 11 details the Initialize and Rearrange routines. Initialize discards any child

views that no longer have a corresponding child subject in the parent subject, and it creates

views for child subjects that have no child views in the parent view. The graphics of newly

added or deleted views are damaged in the process. This routine also initializes a list of

triples, each associating a child subject with its view in the parent and the position of that

view. This information is used in the remaining routines to expedite view rearrangement

and to calculate damage information.
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Initialize(s; v; L) f

    s; v; L; Cs; Cv; n; h; i� (as above);

    1 � k � n; 
 
    for each (vk ) f

        if (Subject(vk) 62 Cs) discard vk, damaging its graphic;

        else f

            h   index of Subject(vk);

            Lh  (sh; vk; k);

        g

    g

    for each (sh ) f

        Lh $ (sh; vk; k); 
 
        if (vk 62 Cv) f

            create new view of sh , making it thełast child vi of v and damaging its graphic;

            Lh  (sh; vi; i);

        g

    g

g 
 
Rearrange(s; v; L) f

    s; v; L; h; i; j � (as above); 
 
    for each (sh ) f

        Lh $ (sh; vi; j); 
 
        if (vh 6= vi) move vi from position i to position h;

    g

g

Figure 11: Initialization and view rearrangement
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Damage(s; v; L) f

    s; v; L;m; h; i� (as above);

    0 � imin � m+ 1; imin  0;

    0 � imax � m+ 1; imax  m+ 1;

    Dfwd ; Dbwd � sets of views, initially empty; 
 
    for each (sh ) f

        Lh $ (sh; vh; i); 
 
        if (i < imin) add vh to Dfwd;

        else imin  i; 
 
        if (m � i+ 1 > imax) add vh to Dbwd;

        else imin  m� i+ 1;

    g

    if (Dfwd < Dbwd) damage graphics from views in Dfwd;

    else damage graphics from views in Dbwd;

g

Figure 12: Damage incursion

Rearrange simply iterates through the child subjects and views in tandem, comparing

each subject with the corresponding view’s subject. If there is a mismatch, Rearrange finds

the proper view for the subject in the list of triples and moves it to the current view position.

Damage Incursion

The Damage routine, shown in Figure 12, determines a set of graphics to damage so that

the parent view’s appearance will reflect any restructuring. We assume in this algorithm that

minimizing the number of damaged graphics maximizes efficiency. While this assumption

is not always valid (it may be cheaper, for instance, to damage five primitive graphics rather

than one complicated picture), it is reasonable for the common case where siblings in a

graphic hierarchy have similar complexities.
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Each child view contributes one graphic. To incur the minimum damage, we first find a

maximum-size set of views whose relative order has stayed the same. We need not damage

the graphics from views in this set because restructuring did not change the order in which

they are drawn; graphics in the set that obscured others still obscure them, and graphics that

were visible are still visible. However, the remaining graphics are out of order with respect

to the final ordering; their graphics must be damaged so that they (and anything they can

affect) will be drawn correctly.

The Damage routine scans through the child views in forward and reverse order, look-

ing up each one’s original position. As it scans, it records the largest original position

encountered so far in the forward direction and the smallest in the reverse direction. Any

views whose original position is less that the largest in the forward direction are out of

order with respect to those already encountered; these views are added to a set of views

to damage. Similarly, any views whose original position is greater than the smallest in the

reverse direction are out of order with respect to those already encountered; these are added

to another set of views to damage. Once these sets have been accumulated, the algorithm

damages the graphics from the views in the smaller set.

To incur damage, the view follows the chain of ancestor views up to the root view, which

is being displayed in a viewer (otherwise the view is not visible and we need not damage

anything). Each viewer maintains a damage object and places the root view in a special

graphical view called a ViewerView, which stores a pointer to the viewer that contains it.

The graphical view base class defines a GetViewer operation that the ViewerView class

redefines to return its viewer (by default, GetViewer calls itself on the view’s parent). Thus

the interior view retrieves the viewer with its GetViewer operation; it then incurs damage

on the viewer’s damage object. The viewer repairs the accumulated damage by calling

Repair on the damage object in its Update operation.

The Damage routine is suboptimal in that it does not always find a maximum-sized set

of ordered views; it merely determines a set that is maximum-sized in the common case.

Most structural editing operations involve moving some of a component’s children ahead

of or behind their siblings (the bring-to-front and send-to-back operations). In these cases,

either the forward or the backward scan will identify exactly those views as having changed

position. The algorithm falls down when relatively few views are out of order, and they are
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encountered early in both forward and backward directions. The worst case occurs when

the first and last views are swapped with respect to their initial order, and the remaining

views have not changed order. In this case, both scans will encounter an out-of-order view

immediately after the first and will damage all other views’ graphics, when all that should

have been damaged were the swapped views’ graphics. Fortunately, few editors require a

restructuring capability that will give rise to such a case.

The advantages of this damage incursion algorithm are its simplicity and an O(n)

running time in the number of views being updated.1 The search for triples uses a hash

table and thus takes constant time on average. Since UpdateViewStructure does a constant

number of linear scans and hashed lookups, its running time is linear in the average case.2

4.6 Connectivity

Connectivity semantics are enforced by a CSolver object that manages connection net-

works, or disjoint sets of connections. A connection is defined by two connectors and

a piece of connector glue. The connector glue characterizes the relationship between the

connectors’ centers in conformance with their connectivity semantics. The three standard

connector subclasses define a limited number of connection semantics; each semantics is

modeled with connector glue of specific natural size, elasticity, and deformation limits.

The csolver is responsible for solving connection networks that have been perturbed,

meaning it must position the connectors to satisfy all connection semantics. The csolver

stores each connection network as a list of connections. It solves a network first by

recursively identifying primitive combinations of connections and then replacing them with

equivalent connections. Recursion terminates either when a single connection remains or

when all connectors are fixed, at which point the connectors’ positions are determinate. The

csolver then unwinds the recursion, apportioning the amount of stretch or shrink applied to

each equivalent connection to the connections they replaced until the original network is

obtained. Then the csolver issues translation commands to the connectors that must move.

1Floyd reports an unpublishedO(n logn) algorithm he invented “around 1963” [11] that is optimal. My
thanks to Barry Hayes for bringing that algorithm to my attention.

2This supersedes an O(n2) UpdateViewStructure algorithm reported earlier [58].
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This approach is a compromise between supporting general connector semantics (in-

cluding connections with connector glue interposed) and ensuring efficient run-time per-

formance. The recursive subdivision technique assumes that an equivalent connection is

indistinguishable from the connections it replaces, an assumption that does not hold for

connections involving inherently non-linear connector glue. In practice, however, strict

adherence to the architectural specification is not necessary for the majority of connections

that occur in domain-specific editors. Our implementation models the most common con-

nections (pin-pin) accurately and offers reasonable behavior for more complex connections.

4.6.1 Modeling Connectivity Semantics

The connector glue parameters for each combination are shown in Table 18. The natural size

parameters (h and v) are not shown in the table because connected connectors are centered

by default; thus all glue used to model pin, slot, and pad connections has zero natural size.

Where horizontal and vertical dimensional subscripts (h;v) are not specified in the table,

the value given applies for both the horizontal and vertical parameter. The notation h1, v2,

etc., refers to the width or height of the connector with the matching subscript. Also, all

elasticity and limit values are identical for both stretching and shrinking modes; that is,

"+ = "� and �+ = �� for all " and � in the table.

To simplify the csolver, slots and pads are limited to orthonormal orientations; that is,

they cannot be rotated. This lets us ignore dependencies between horizontal and vertical

dimensions. To be useful, however, the implementation must allow at least horizontal and

vertical slot orientations. The prototype therefore provides separate horizontal (HSlot)

and vertical (VSlot) connector subclasses, allowing ten different connections between pins,

horizontal and vertical slots, and pads.

Table 18 shows that connector glue of zero natural size and elasticity (h = v = " = � =

0) models pin-pin connection semantics. Pin-pad connections are modeled with a piece

of glue of infinite elasticity within limits that keep the pin inside the pad. In connections

where connector glue is interposed explicitly between the connectors, the connection’s glue

is defined by the series equivalent of the specified glue and the glue that normally models
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pad2 hslot2 vslot2 pin2

pin1 " =1 "h =1 "h = 0 " = 0

�h = h2=2 "v = 0 "v =1 � = 0

�v = v2=2 �h = h2=2 �h = 0

�v = 0 �v = v2=2

vslot1 " =1 " =1 "h = 0

�h = h2=2 �h = h2=2 "v =1

�v = (v1 + v2)=2 �v = v1=2 �h = 0

�v = (v1 + v2)=2

hslot1 " =1 "h =1

�h = (h1 + h2)=2 "v = 0

�v = v2=2 �h = (h1 + h2)=2

�v = 0

pad1 " =1

�h = (h1 + h2)=2

�v = (v1 + v2)=2

Table 18: Connector glue parameters for modeling standard connectivity semantics
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a b

a

b

a b

c c

ba

name topology equivalent

series

parallel

Y 1 2

3

2

31
Y

Y

Y

1

1

1

2

2

1

2

2
a     b||

a     b+

Table 19: Primitive connections

the connection. Thus, a pin-glue-pad connection is modeled with the equivalent of the

given glue in series with the glue already described for regular pin-pad connections.

4.6.2 Primitive Combinations and Equivalents

Csolver identifies three primitive connection combinations: series, parallel, and Y. Ta-

ble 19 shows the topology of each primitive and its equivalent. The S-shaped terminations

denote the points at which the connections fit into the rest of the network. These points are

numbered to clarify the relationship between the primitive combination and its equivalent.

The equivalents’ glue parameters are calculated from the original glue parameters as

shown in Table 20. The row labels refer to the glue for each equivalent connection as labeled

in Table 19, and the columns refer to their corresponding glue parameters defined in terms of

the original glue parameters. Unless otherwise noted, the relationship shown in each table

entry holds in both horizontal and vertical dimensions and in both shrinking and stretching

modes; thus n refers to either natural width h or natural height v, and most dimensional

subscripts (h;v) and elasticity mode superscripts (+;�) are omitted. For example, the vertical

stretch limit for the series equivalent glue is the sum of the limits from the two pieces of

glue in the original connection, that is,

�+va+b = �+va + �+vb ;
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glue n " �

a+ b na + nb "a + "b �a + �b

akb max(na; nb) min("a; "b) min(�a; �b)

aY na + nb min("a + "b; "c) �a + �b

bY nc � nb

8<
:

"+bY = min("�b + "+c ; "a)

"�bY = min("+b + "�c ; "a)
�c � �b

cY na + nc min("a + "c; "b) �a + �c

Table 20: Parameter definitions for equivalent connector glue in terms of primitive combi-

nation parameters

and the natural width of the glue labeled aY in the Y equivalent connection is defined in

terms of the original glue widths as

haY = ha + hb:

These relationships provide reasonably-behaved connector semantics without attempt-

ing to precisely model the non-linear nature of connector glue. Many applications require

only standard connectivity semantics and do not use connector glue in connections. It is in

these cases and others (where the glue parameters are limited to those shown in Table 19)

that the equivalents model their combinations most accurately. Moreover, series and paral-

lel connections are by far the most common; true Y connections (where the central node is

not fixed) are rare.

4.6.3 Recursive Substitution

Figure 13 depicts the process of recursive substitution. The network contains three con-

nections. Circles represent connectors, and resistor symbols represent connector glue. The

shaded connectors have fixed mobility, while the others are floating. On the initial recur-

sion, the csolver identifies the parallel combination of G2 and G3 and replaces it with an

equivalent connection. It replaces the resulting series combination with another equivalent

connection on the second recursion, leaving a single connection. Both connectors in the
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G1

G2

G3

G1 G(2 || 3) G(1 + (2 || 3))

recurse recurse

Figure 13: Recursive solution of connection network

primitive hai hbi hci

parallel lima(limb(hakbi)) hai —

series

8<
:

na if "a = 0
lima(ha+ bi � nb) if "b = 0
lima(ha+ bi"a=("a + "b)) otherwise

limb(ha+ bi � hai) —

Y

8<
:

na if "a = 0
lima(haY i � nb) if "b = 0
lima(haY i"a=("a + "b)) otherwise

limb(haY i � hai) limc(hcY i � hai)

Table 21: Actual sizes for primitive combination connector glue in terms of equivalent glue
actual sizes

remaining connection are fixed, thus determining both their positions and the amount by

which the glue must stretch or shrink.

In general, recursion terminates whenever such a degenerate network is reached. A

network is degenerate if and only if

1. all connections are fixed, or

2. no primitive combinations remain.

If all connectors are fixed, then the actual size of all glue is determinate. If the network

contains floating connectors and no primitive connection combinations are found, then no

further recursion is possible; remaining floating connectors are treated as fixed connectors.

Once the actual size of all glue is known, the csolver unwinds the recursion, replacing

equivalent connections with the corresponding primitive combinations. Csolver calculates

the actual size of the glue in primitive combinations from the actual size of the equivalent

glue.
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The formulas for these calculations appear in Table 21. The notation hxi means “the

actual size of glue x,” and the function limi is defined for i = fa; b; cg as

limi(x) � max(min(x; ni + �+i ); ni � ��i ):

This function imposes the deformation limits of the primitive combination glue on its

argument.

The final positions of the floating connectors in the network are based on the positions

of fixed connections and the actual size of all glue between them. Note that the architecture

does not specify which connectors’ positions will be affected if all are floating. In the

implementation, however, it is certain under such circumstances that some connectors will

behave as though they were fixed—namely those that remain at the end of the recursion.

Exactly which connectors remain depends on the order of substitution of equivalent con-

nectors, and that depends on both the order in which connections are listed and the order

in which csolver searches for primitive combinations. The prototype csolver searches first

for fixed connections (those with both connectors fixed, which can be removed outright),

then series (which tend to be most common), parallel, and Y connections.

4.6.4 Connector Translation

Once the csolver has computed the positions of the individual connectors, it must then

translate them to those positions and notify their parent components of the change. Figure 14

shows what happens when a connection is perturbed.

Assume a transformation (step 1 in the figure) is applied to a component having con-

nector subcomponents, and at least one of these connectors participates in a connection. At

some point after the transformation, Update is called on the unidraw object to synchronize

the screen with the editor’s internal state. Unidraw’s Update operation in turn calls Solve

on the csolver (step 2), which solves the connection networks associated with the drawing.

The csolver then issues translation commands (step 3) to the affected connector subjects,

which in turn call Update on their respective views (step 4). As the csolver issues translation

commands, it detects when all the connectors of a given component have been translated; it

then notifies the component subject by calling its Update operation (step 5). Notifying the

subject only once avoids the overhead associated with notifying the subject each time the
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Component View

Component View
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Component Subject

CSolver
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if necessary
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subcomponent
connectors have
been translated

Solve

Connector

Figure 14: Response to connection perturbation

csolver translates one of its connectors. Finally, the component subject updates its views

in response to the csolver’s notification (step 6).

4.6.5 Algorithmic Complexity

The time required to solve the connection networks depends on their number and size. We

characterize the running time in terms of the number of connections.

At one extreme, all connections are disjoint—each network has only one connection.

Here each network is degenerate by definition, so its solution takes constant time. Therefore

the time to solve all such networks is linear. At the other extreme, there are no disjoint sets

of connections—there is only one network. The running time is proportional to the number

of connections multiplied by the average length of a search for a primitive combination.

The worst case occurs when all connections are examined on each recursion. Though the

list of connections shortens on each recursion, it still takes n(n+1)=2 / n2 searches, where

n is the number of connections. If we can identify a primitive connection in constant time,

then overall the algorithm is O(n2) at worst.
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The csolver stores information in each connector that it uses to identify primitive com-

binations in constant time. Whenever a connection to a previously free (i.e., unconnected)

connector is established, the csolver stores in the free connector the address of the connec-

tion network in which the connection (and consequently the connector) resides. Csolver

also stores a reference to the free connector’s peer (the connector to which it is connected) if

they have not already been connected; otherwise the csolver increments a count represent-

ing the number of connections between the two connectors. It also increments a count of

the total number of redundant connections to the free connector. Likewise, csolver records

similar information in the peer. If the peer is also free, then a new network is created. If

two non-free connectors are connected, and if their networks differ, then the two networks

are merged, guaranteeing that networks remain disjoint.

The network information expedites finding the right network for a connection, while the

connection information helps identify primitive combinations quickly. For example, two

connections in series share a connector; this connector will have a record of exactly two

connections in which it participates, each to a different peer. Similarly, three Y -connected

connections will share a single connector; that connector will have a record of exactly three

connections in which it participates, and no peers can be the same. If a connection is in

parallel with another, their connectors will record at least one redundant connection. Thus

all primitive combinations can be detected in a linear search through the network.

We can expect significantly better than O(n2) performance on average in many appli-

cations. Editors that use only the standard connectors with no glue interposed realize linear

average running times if we assume that few if any multiple connections occur; that is, each

pin, slot, or pad is connected to one other. Each connection is disjoint in this case, and the

running time is linear in the number of connections. In general, nodes-and-arcs-style con-

nectivity is maintained in linear time, unless the nodes and arcs have elastic characteristics.

Elastic components make internal connections with glue interposed, thus connecting more

connectors together and reducing the number of disjoint networks. Often, however, such

elastic behavior is not necessary; only simple connectivity or confinement is required, and

components do not define internal connections. For these applications, network solution

takes linear time. But even editors that produce few disjoint networks fare better than the

worst case. Even a few smaller networks reduce the complexity substantially compared to
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solving one big network, where the squared term is several times larger. Yet applications

that rarely produce disjoint networks are conceivable, and these will have O(n2) running

time at worst.

4.7 Dataflow

Connectors, state variables, and transfer functions are the sole participants in the dataflow

model defined by the architecture. The prototype implementation adds another class of

object, called Path, to detect circularities. A path maintains a record of connectors that

have been visited, that is, connectors through which data has passed. The path class defines

two functions: Visit registers a connector with the path as having been visited, and Visited

returns whether or not a connector has been visited. By default, transfer functions and

components call Transmit on a connector if a path does not record that the connector has

been visited. In the implementation, Transmit and Evaluate take a path as an optional

argument on which to base this decision.

Figure 15 presents the dataflow algorithm, and Figure 16 depicts the participating objects

schematically. Dataflow is initiated when Transmit is called on a connector. A component

might call Transmit because it modified one of its state variables in response to a command

and it must propagate this change via dataflow. A path is not normally supplied to the initial

Transmit operation; Transmit creates a path if one is not supplied and then proceeds with

the dataflow algorithm.

Let c0 represent the connector on which Transmit is called initially, and c0 has a bound

state variable s0 (otherwise no data can flow). For each unvisited peer of c0 with a bound

state variable, Transmit

1. selectively assigns the value of s0 to the peer’s bound state variable according to the

connectors’ transmission methods,

2. tells the transfer function maintained by the peer’s parent (if any) to Evaluate itself,

3. notifies the parent to Update its internal state, and finally

4. calls Transmit on the peer.
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c0 � connector on which Transmit was called initially;

c1; c2; : : : ; cn � peers of c0;

s1; s2; : : : ; sn � state variables bound to c1; c2; : : : ; cn, respectively;

s0

i; s
00

i ; : : : ; s
(m)
i � state variables dependent on si ; 1 � i � n;

Xi � transfer function defining dependency F (j) between si and s(j)i , 1 � j � m;

c0

i; c
00

i ; : : : ; c
(m)

i � connectors bound to s0

i; s
00

i ; : : : ; s
(m)

i , respectively; 
 
ci : Transmit(Pj) f

    Pj � a path; 
 
    for all (ck; 1 � k � n) f

        if (not Pj  : Visited(ck)) f

            if (k > 1 and k 6= j) Pk � copy(Pj);

            sk  si;

            Xk  : Evaluate(Pk);

            Parent(ck ) : Update();

            ck  : Transmit(Pk);

        g

    g

g 
 
Xi : Evaluate(Pi) f

    Pi � a path; 
 
    for all (s(k)i ; 1 � k � m) f

        s � F (k)(si); 
 
        if (s(k)i 6= s) f

            s(k)i  s;

            c(k)i  : Transmit(Pi);

        g

    g

g

Figure 15: Dataflow algorithm
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Figure 16: Dataflow schematic

Steps 1 and 2 actually propagate data. The semantics of assignment between state variables

is defined by the state variables themselves, since only they know what information should

be transferred. The direction of the assignment, however, is determined by the transmission

methods of the two connectors. By default, information is transferred through a connection

between c0 and peer ci with bound state variable si if and only if c0 is either out or inout

and ci is either in or inout. This prohibits transfer between two in or two out connectors

and disallows information flow from an in to an out connector.

Step 3 gives the peer’s parent a chance to update its state in response to a possible change

in one of its state variables. For example, a component that provides visual feedback about

the state of a system might use a state variable to represent that state. If that state variable is

then affected through dataflow, step 3 insures that the component can modify its appearance

to reflect the variable’s new value. Finally, step 4 initiates transmission on the peer should
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it have peers of its own (including c0 itself, though potential backflow is disallowed because

c0 has been visited already).

Now let s0i; s
00

i ; : : : ; s
(m)

i denote the state variables that depend on si as defined by the

transfer function of the peer’s parent. In response to the Evaluate message, the transfer

function computes the new value of each dependent state variable s(k)i ; 1 � k � m. If the

current value of s(k)i does not correspond to the new value, then the transfer function assigns

the new value to s
(k)

i and calls Transmit on the connector c(k)i bound to it, if any. Then the

dataflow algorithm is applied recursively to c
(k)

i .

4.8 Commands and Tools

The main complication in the implementation of commands stems from strict type checking

in C++. A component cannot interpret a command without knowing the type of command,

so we embed type information in commands explicitly. Tools also require such information

to let component views determine the proper manipulator to create for a given tool. We

therefore add type information to tools as well. We also realized that type information

would be required to support catalog semantics, described in Section 4.9, so we put type

information into all objects managed by the catalog.

A common implementation decision involves static versus dynamic command com-

position. The library defines a MacroCmd command subclass that supports composi-

tion of command instances. When a MacroCmd is executed or unexecuted, it simply

(un)executes its children. By default, the component base class (un)interprets a MacroCmd

by (un)interpreting its children. The MacroCmd thus provides an alternative to defining a

command statically, assuming the command is decomposable into a sequence of simpler

commands.

Dynamic command composition is desirable because it is often easier to compose ex-

isting commands than to implement a new command from scratch. Moreover, composition

affords the flexibility to create new commands and modify existing ones at run-time. On

the down side, a dynamic composition can be somewhat less efficient in space and time

than a command specified statically, but the difference is usually imperceptible to the user.
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The key to realizing the benefits of composition rests in the library—the commands

it provides must be designed with composition in mind. This is a recurring theme in

library design: the more general and less monolithic the library-supplied objects are, the

more likely they will be reused and the greater the leverage delivered to the programmer.

But even if such objects are supplied, they are of limited use without techniques for

composing them into more sophisticated objects. The prototype currently provides only

one composition mechanism for commands, namely MacroCmd. Other useful command

composition classes might support classic programming language constructs such as control

structures for looping and iteration as well as data structures for specifying stacks and queues

of commands.

Some tool semantics can be specified dynamically as well. While the library does not

support composition of tools themselves, it does allow manipulator composition via the

ManipGroup subclass of manipulator. A ManipGroup manages an arbitrary number of

child manipulators. Calling Grasp, Manipulating, or Effect on the ManipGroup calls the

corresponding operation on each child. The ManipGroup’s Manipulating operation returns

true if any child’s Manipulating operation returns true, and it calls Manipulating only on

those children that have not yet returned a false value. ManipGroup thus provides a simple

form of manipulator composition in which several manipulations can proceed at once;

however, it does not support mixing the way different manipulators interpret events.

The prototype predefines only four other manipulators:

1. DragManip supports a downclick-drag-upclick style of interaction, with optional

constraints on motion (for example, horizontal or vertical only).

2. VertexManip is a DragManip that supports multiple downclick-and-drag interactions

terminated by a distinguished downclick.

3. ConnectManip is a DragManip that adds a gravitational bias towards connector

views.

4. TextManip provides a text editing interface.

These manipulators cover most of the direct manipulation needs of current graphical object

editors. This is possible because these manipulators are parameterized to handle different
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animation effects. For example, DragManip takes a rubberband as a parameter. Rubber-

bands are InterViews objects that abstract the animation effects common to graphical object

editors.

A rubberband varies its appearance as its tracking point changes, and it ensures that

that graphical update happens quickly enough so that changes appear animated. Inter-

Views predefines many rubberbands, such as RubberRect (a rectangle of varying shape),

SlidingEllipse (an ellipse that moves to follow the tracking point), and GrowingBSpline (a

B-spline that reshapes itself as control points are added and moved). Thus, a single Drag-

Manip class supports creation and modification by direct manipulation of most graphical

components.

4.9 Catalog Semantics

The architecture specifies that the catalog manages components, commands, and tools and

that these objects remain accessible indefinitely; consequently they must survive beyond

the application’s lifetime. The prototype maps component, command, and tool names to

file names and stores a representation of the object in the corresponding file. Such objects

must therefore define what information is written to and read from disk by defining Write

and Read operations. Since components can contain state variables and transfer functions,

moreover, these too must define Read and Write.

Each class of object that can be written to and read from disk must store type information

so that it can be reconstructed when it is read. Programmer-specified class identifiers

uniquely identify instances of each catalog-managed class. A Creator object maps each

class identifier to a constructor for the corresponding class. The catalog prepends the

identifier to the information that the instance writes to disk. When the instance is read from

disk, the catalog reads the identifier and supplies it to the creator object, which creates an

instance of the object. The catalog then calls Read on the new object to initialize its internal

state.

This approach is applied recursively to build component and command hierarchies.

The catalog manages references between objects in a hierarchy (connections between

connectors, for example) by keeping a table of unique instance identifiers when it reads
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and writes the hierarchy. More specifically, whenever the catalog saves a connector in a

component hierarchy, it first checks to see if that connector has been written previously; if

not, it writes the connector out in its entirety along with a unique instance identifier, which

it records in a table. If the connector has been written already, then the catalog looks up its

instance identifier in the table and writes it out in the connector’s place. When the catalog

later reads the component hierarchy, it instantiates connectors as it encounters them, and it

records their instance identifier in a table. The catalog recognizes subsequent references to

instantiated connectors by looking up their instance identifiers as it finds them.

Obviously, the library must let domain-specific editors define their own objects for the

catalog to manage. The programmer must ensure uniqueness among class identifiers, both

within the application and with the respect to the library. The prototype reserves a range

of class identifiers but places no restrictions on those outside the range. Similarly, domain-

specific editors must have domain-specific creator objects. The programmer derives from

the creator object to add constructors for the new class identifiers.

Finally, the prototype extends the catalog protocol to support reading and writing of

EditorInfo objects, which store a list of strings or string tuples. Domain-specific editors

can use these objects to store information about what components, commands, and tools

they incorporate in their interface. The user could then specify the configuration of the

editor by editing the file that contains this information.

4.10 Summary

Our prototype Unidraw implementation benefits greatly from both C++ and InterViews.

C++ allowed us to express the implementation in object-oriented terms without sacrificing

the efficiency or portability of C. InterViews provided a comprehensive user interface toolkit

with object-oriented structured graphics, which eliminated considerable low-level graphics

work. As a result, the Unidraw library is much smaller than it would have been had we

used C and a less powerful toolkit.

The implementation of components was the hardest part of the development effort.

In particular, it took a disproportionate amount of time to formulate and implement our

approach to enforcing connectivity semantics, while dataflow, view consistency, and other
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implementation problems were less difficult to solve. Overall, however, the time spent on

the implementation effort was less than that spent designing and refining the architecture.

And though the architecture and implementation efforts did overlap and complement each

other, the implementation did not affect the basic architecture, which has not changed

fundamentally since it was proposed [56].

The prototype demonstrates that the Unidraw architecture is realizable. It implements

all the functionality prescribed by the architecture except non-orthonormal slots and pads

and truly non-linear connector glue. Yet these compromises had minimal impact on the

performance of the three experimental domain-specific editors we built, which are described

in the next chapter.



Chapter 5

Experimental Applications

We implemented three domain-specific editors to evaluate both the Unidraw architecture

and the prototype implementation. Our aim was to demonstrate that the implementation

(and, by implication, the architecture) supports diverse domains, that it reduces development

time significantly, and that the resulting graphical object editors are comparable in utility

to their conventionally-developed counterparts.

The editors we built include a drawing editor, a user interface builder, and a schematic

capture system. We chose these three applications because each represents a traditional

stand-alone application. Moreover, there is little overlap in their design goals; they are dif-

ferent enough to preclude easily turning one into another using existing tools. For example,

user interface builders are not usually designed to produce drawings, and schematic capture

systems are not meant to facilitate building user interfaces. Hence a tool that simplifies the

development of all three applications should do the same for other domain-specific editors

as well.

We experimented with the three editors to evaluate their utility and to discover their

strengths and weaknesses relative to conventional implementations. This chapter covers

both the design of these domain-specific editors and our experience with them.

94
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5.1 Drawing Editor

The drawing editor, called Drawing, is similar to MacDraw in that it provides an object-

oriented, direct-manipulation editing environment for producing drawings and diagrams. It

allows the user to instantiate geometric objects, arrange them spatially, and compose them

hierarchically. The user can apply affine transformations to the objects and specify graphical

attributes such as color, font, and fill pattern. The user can also pan the drawing and view

it at different magnifications. Drawing generates a PostScript external representation for

printing the drawing and incorporating it into larger works.

Unlike MacDraw, Drawing also supports multiple views. The user can edit in one view,

say, at high magnification for detailed work, while the drawing is fully visible in another

view for editing at low magnification. Unidraw ensures that changes to the drawing made

in one view appear automatically in other views. Drawing also gives users considerable

control over its interface, allowing them to include only the components, commands, and

tools they need.

5.1.1 User Interface

Figure 17 shows a Drawing editing session and depicts the default interface schematically.

The application presents one or more editor instances, each enclosing a viewer, pull-down

menus containing controls that execute a specific command, controls for engaging the

current tool, a panner for panning and zooming the viewer, and state variable views that

display the values of state variables maintained by the editor. The controls, pull-down

menus, and panner are defined by or derived from toolkit objects, while other objects are

based on Unidraw abstractions.

Drawing creates a single editor instance initially. The user engages the current tool

by clicking on the appropriate control along the editor’s left edge. Two types of tools

are available: graphical component tools for instantiating graphical components and tools

for manipulating components already instantiated. Drawing provides graphical component

tools for eight different components: text, simple line, compound line, ellipse, rectangle,

polygon, open B-spline, and closed B-spline. Other tools include a Select tool for spec-

ifying components of interest; Move, Scale, Stretch, and Rotate tools for applying affine
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Figure 17: Drawing editor

transformations by direct manipulation; a Reshape tool for repositioning vertices and con-

trol points and for editing text components; and a Magnify tool that lets the user zoom in

on a particular part of the drawing by dragging a rectangle around the area of interest.

Once a tool is engaged, the user wields it by clicking in the viewer. The tool’s behavior

thereafter varies with the type of tool and the component(s) on which it is used, if any. All

the tools provide dynamic feedback to show the consequence of their use. For example,

the graphical component tools obtain a manipulator from their prototype component; the

resulting component-specific animation supplies feedback that helps the user specify the

new component’s size and shape with ease. Transformation-applying tools such as the

Rotate and Stretch tools animate the intermediate steps of the transformation before the

user commits to the final transformation. The user can change the position of a spline’s

control point with the Reshape tool and watch the spline’s shape change in real time.

Each pull-down menu contains a set of controls, each with an associated command.

A control executes its command after the user selects the control through the pull-down

menu. Most of Drawing’s commands are predefined by the Unidraw library. These include

commands for saving and restoring drawings via the catalog; modifying attributes such
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as line style and color; cutting, copying, and pasting components to and from a global

clipboard; undo and redo commands; and structuring commands for grouping, ungrouping,

and otherwise altering the component hierarchy.

To create a new view of the current drawing, the user invokes a command from the

View menu that copies the editor, including its commands, tools, viewer, and other interface

elements. The copy creates a new view of the component being edited and places the view

in its viewer. The user may then edit the component subject through either the original editor

or the copy; changes made through one editor are reflected in the other. Any number of

editors may be produced in this way. Once instantiated, they can be used to edit the original

component subject or to edit other drawings. Each editor maintains its own selection object,

allowing the user to select objects in one editor without disturbing the selections in another,

even if the editors contain the same subject.

Drawing’s interface can be reconfigured at start-up time to include only those features

a user requires. Through a command line option, the user can direct Drawing to write

out a configuration file containing a list of individual and pairs of strings; the individual

strings represent tool names, while the pairs associate a command name with the name of a

pull-down menu. When the user starts Drawing with this file as an argument, the editor will

incorporate into its interface only those commands and tools whose names it encounters in

the file. The order in which the names appear dictates the arrangements of the controls in

the tool palette and pull-down menus. By editing the configuration file, then, the user can

exercise control over which commands and tools are included and their arrangement.

5.1.2 Implementation

Drawing represents a lower bound of functionality and complexity for practical Unidraw

applications. In general, drawing editors are the simplest graphical object editors in that

most offer only

� graphical components with no underlying semantics,

� basic commands and tools for creating, manipulating, and modifying those compo-

nents, and



CHAPTER 5. EXPERIMENTAL APPLICATIONS 98

code (lines)

classes interface implem.

components 0 0 0

commands 1 20 40

tools/manipulators 0 0 0

ext. representations 0 0 0

state vars./transf. fns. 0 0 0

editors 1 80 890

creator 1 20 30

toolkit-derived classes 0 0 0

globals 0 30 110

totals 3 150 1070

Table 22: Drawing code breakdown

� external representations that are straightforward mappings of their component struc-

ture onto a page description language such as PostScript.

These elements are useful in many domains other than drawing, and most graphical object

editors incorporate at least some drawing editing capabilities in their own interfaces.

For these reasons the prototype Unidraw library predefines all the components, com-

mands, and tools needed for basic drawing editing. Drawing’s implementation assembles

these predefined elements into a complete application with a minimum of new classes and

code. Drawing does not exploit many of the architecture’s advanced features, but it does

demonstrate useful capabilities, particularly multiple views and static interface customiza-

tion. Drawing thus constitutes a bare-bones Unidraw application; it serves both as an

example of a trivial (but useful) test case and as a tutorial for application writers unfamiliar

with Unidraw.

Table 22 presents a breakdown of the Drawing implementation in classes and lines of

source code. Since most of Drawing’s functionality is inherited from the Unidraw library,

the Drawing-specific code is dedicated mainly to defining the application’s look and feel.
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Drawing defines three new classes, the largest a subclass of editor called DrawingEdi-

tor. Each window shown in Figure 17 is a DrawingEditor instance providing an indepen-

dent interface to editing a drawing. Each DrawingEditor has its own component, command,

and tool instances and its own selection object. The lone command defined in Drawing,

NewViewCmd, creates a new DrawingEditor instance by copying the original. Then it

creates a new view of the component in the original editor, places it into the copy’s viewer,

and tells the unidraw object to Open the editor, making it visible on the screen. There is

also a DrawingCreator, derived from the library’s Creator class, that allows the catalog to

recreate NewViewCmds from disk.

DrawingEditor uses an EditorInfo object to record the names of the commands and

tools in its interface. If the user supplies a configuration file name on the command line,

then DrawingEditor asks the catalog to supply an EditorInfo object corresponding to the

name. If the catalog returns a valid EditorInfo object, then the editor creates and assembles

commands, tools, and controls based on its information. The catalog returns nil if it could

not create an EditorInfo object. This would happen if the user has never before supplied a

command line argument to produce the configuration file; DrawingEditor assumes this to

be the case and instantiates a new EditorInfo object with information reflecting the editor’s

default appearance. It then tells the catalog to save the EditorInfo object for later use, which

will produce a configuration file with the specified name.

5.1.3 Experience

Of the three experimental applications we built with the Unidraw prototype, Drawing

gives us the best opportunity for comparison with existing editors. In designing Drawing

we tried to match the functionality and look and feel of idraw [49], an object-oriented

drawing editor developed and distributed with InterViews. Idraw provides roughly the

same functionality as MacDraw, but idraw is more appropriate for comparison purposes

because it is a workstation-based application that runs in the X environment. Idraw has a

substantial following of users and has established itself as one of the leading object-oriented

drawing editors for X. We therefore used idraw as a benchmark in evaluating Drawing’s

performance.
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Idraw is implemented on top of InterViews, and since InterViews abstracts the under-

lying window system, idraw does not call X directly. Idraw uses InterViews’ predefined

interactors to compose its look and feel, and it uses the toolkit’s structured graphics objects

to support its graphical editing capabilities. Even with these assists, however, idraw still

contains roughly 15,000 lines of source code. The difference in source code size between

idraw and Drawing is considerable, but in fairness we should offer the following caveats:

� Drawing is particularly small, even compared to other Unidraw-based editors,because

most of its functionality is provided by the Unidraw library. This follows our assertion

that drawing editors represent the lowest-common denominator among graphical

object editors.

� Idraw and Drawing are nearly identical in functionality and appearance, but there

are notable differences. Drawing provides multiple views and a customizable in-

terface, features absent from idraw. On the other hand, idraw offers arrowheaded

lines and operations for specifying graphical transformations numerically; Drawing

does not support arrowheads and provides only a direct-manipulation interface for

transforming objects.

� Idraw benefits from two years’ refinement and user experience. We plan to replace

idraw eventually with Drawing for our day-to-day drawing tasks, and doubtless this

will yield improvements in both Drawing and the library that will affect their line

count.

Despite these qualifications we can still conclude that Unidraw substantially reduced the

size of the Drawing implementation, with an attendant decrease in implementation time.

We also verified that Drawing is a viable replacement for idraw by measuring the storage

requirements and dynamic response of both editors. The measurements were made on an

8-plane DECstation 3100 using InterViews version 2.6 and the X11 Release 4 server and

libraries.

To characterize the editors’ run-time space requirements, we measured the size of their

processes under six conditions:

1. Immediately after startup (“cold”).
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process size (MB)

idraw Drawing �%

cold 1.43 1.58 10.5

warm 1.46 1.65 13.0

1 testobj 1.48 1.66 12.2

10 testobjs 1.52 1.70 11.8

100 testobjs 1.86 2.10 12.9

1000 testobjs 5.55 6.58 18.6

Table 23: Run-time space requirements for idraw and Drawing

2. After having exercised their interfaces (pulling down menus, scrolling their drawing

areas, etc.) but before creating any drawing objects (“warm”).

3. After having read in a testobj, a group of eight different geometric objects, one for

each of the basic geometric objects the editors provide.

4. Displaying 10 copies of testobj.

5. Displaying 100 copies of testobj.

6. Displaying 1000 copies of testobj.

Table 23 shows that the Unidraw-based editor takes slightly more space to represent a

drawing because of the overhead for maintaining multiple views. The predefined graphical

components require almost twice as much storage as the corresponding idraw objects

because the components maintain graphical information in their subject as well as their

views. The added cost could be reduced if we treat the single-view case specially, but we

have not applied such optimizations.

Another set of measurements relates idraw and Drawing’s run-time performance. We

measured how long it took idraw and Drawing to do each of four operations on two drawings,

a sports car (car) and a circuit diagram (ckt). These are representative of two common

types of drawings: artistic drawings with complex, overlapping polygons and splines, and
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time (sec)

test idraw Drawing

car zoom #1 0.67 0.66

(53 leaf objects zoom #2 0.74 0.75

nested 5 deep) rotation 0.38 0.39

restruct 0.49 0.64

ckt zoom #1 0.94 0.70

(440 leaf objects zoom #2 0.65 0.49

nested 4 deep) rotation 0.43 0.42

restruct 0.64 0.98

Table 24: Comparison of idraw and Drawing run-time performance

technical drawings consisting mainly of rectangles, lines, and text with little or no overlap.

We timed the following operations:

1. In the “zoom #1” test, the drawing is zoomed from half size to quarter size and back.

The drawing is fully visible throughout the test.

2. In “zoom #2,” the drawing is zoomed from half size to full size and back. The

drawing is clipped at full size so that only half is visible.

3. In “rotation,” the top-level object in the drawing is rotated 90�.

4. In “restruct,” the top-level object in the drawing is ungrouped and grouped again.

Table 24 shows the average times for each test based on twenty trials. Drawing performs at

least as well as idraw in all but the restruct test. Idraw uses InterViews’ structured graphics

facility to implement its graphical objects, and the prototype Unidraw library uses the same

structured graphics to represent the graphical attributes of components. Since the first

three tests involve changes to graphical attributes, then, it is not surprising that the times

for these tests are virtually identical. This proves that Unidraw-related overhead such as
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subject-view communication and command interpretation and logging does not measurably

affect performance.

The Unidraw-based editor’s performance does suffer slightly compared to the custom-

built editor when a component is restructured. The overhead stems from the grouping

operation: the multi-view update algorithm discards the old views of the children that have

been grouped, and then it creates a view for the group, which includes views for the children.

In contrast, idraw simply reparents the existing graphical objects without destroying or re-

creating them. The update overhead amounts to a constant factor, because the destruction

and re-creation of the views amounts to two extra traversals of the component hierarchy—

both idraw and Drawing must perform similar traversals to draw the graphics following the

grouping operations. In practice, it appears that this overhead is inconsequential; at any

rate, the comparison is not entirely fair, since the Unidraw-based editor offers additional

functionality in the form of a multi-view editing environment in exchange for somewhat

slower response in some cases.

From these findings and from hands-on experience with both editors, Drawing easily

meets our goals in providing a viable replacement for its custom-built counterpart. Draw-

ing offers essentially the same functionality and performance as idraw at a fraction of

idraw’s implementation cost, measured in lines of code. Since drawing editors reflect the

basic capabilities of graphical object editors, these results imply that the basic operation

and graphics performance of Unidraw-based editors will be comparable to conventional

implementations—Unidraw incurs no significant space or time penalties.

5.2 User Interface Builder

User interface builders are designed to let the user specify the appearance of a user interface

by direct manipulation instead of programming. The goals of such systems are threefold:

1. Shorten design time for a particular interface by eliminating the edit-compile-debug

cycle from the design process.

2. Shorten implementation time by generating code from the graphical specification

produced through direct manipulation.
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3. Allow non-programmers, especially those with graphic design and human factors

skills, to design and implement user interfaces.

An effective user interface builder should therefore reduce application development time

as it encourages the design of higher quality user interfaces.

Our Unidraw-based user interface builder, called UI, provides a direct-manipulation

environment for assembling InterViews toolkit objects into a complete interface. UI defines

components that correspond to basic interactors such as scroll bars and push buttons,

and it provides components that implement the InterViews composition mechanisms. UI

components closely match the composition behavior of their toolkit counterparts, supporting

the semantics of interactor attributes such as shape and canvas. Thus the interface designer

can experiment with an interface without writing and compiling source code. UI generates

C++ code from the graphical specification as its external representation. Once the interface

designer is satisfied with the interface’s appearance and behavior, he can generate the source

for incorporation into the application.

5.2.1 User Interface

Figure 18 shows a dialog box being built with UI. Along the top edge are state variable

views of internal state and pull-down menus for issuing commands. In the center is a

viewer in which the user composes interfaces. Below the viewer are two rows of controls

and a panner for scrolling and zooming the viewer’s contents. The upper row’s controls

engage graphical component tools for instantiating user interface components, while the

lower row’s engage tools that manipulate instantiated components. UI supports multiple

views in the same way Drawing does, that is, by copying the editor and editing the original

component subject through a new view. UI also incorporates the Select and Move tools

from the Unidraw library, and each UI editor maintains its own selection.

UI provides components for a subset of the predefined interactors in InterViews, includ-

ing scrollers, buttons, borders, glues, message, string editor, and file browser. The graphical

component tool controls let the user create these components in the same way that graphical

components are created in Drawing. The user engages the graphical component tool of

choice by clicking on the corresponding control; he then creates a copy of the prototypical
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Figure 18: User interface builder

component by clicking in the viewer. Most UI interface components adopt the default

behavior of graphical components when they are manipulated by a graphical component

tool; that is, a box corresponding to the bounds of the prototypical component appears when

the user clicks down in the viewer. The user can drag the bounding box to any position

while the button is down, and the prototype is copied and inserted into the interface when

the button is released.

UI also defines components that implement InterViews composition mechanisms, in-

cluding box and tray. These components have no appearance of their own; they compose

other interface components in different ways. Composition components are created through

commands in the Composition menu. For example, the user can place components into a

horizontal box by selecting them first and then choosing the “HBox” entry in the menu.

The command inserts components into the box in the same order they were selected. The
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Figure 19: Pop-up from a click on a glue component with the Examine tool

box then tiles the components horizontally to effect the composition semantics of hori-

zontal boxes. The composition can then be treated as a unit and incorporated into larger

compositions.

UI provides Resize and Examine tools for manipulating interactor components. The

controls for engaging these tools lie alongside the controls for the Select and Move tools.

The Resize tool lets the user observe how an interactor (primitive or composite) would

be affected by a change in the size of its canvas. This feature can help the user fine-tune

the shape (natural size, shrinkability, and stretchability) of glue and other interactors in the

interface.

The Examine tool lets the user examine and modify a component’s internal state, such

as its shape, canvas, or button state (if any). Clicking on a component with the Examine

tool engaged produces a pop-up menu containing two submenus: one for displaying and

modifying the component’s internal state or that of its parents, and one for creating new

views on portions of the composition hierarchy in which the component lives.
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Figure 20: Dialog box containing glue component information

In Figure 19, the user has clicked on a piece of vertical glue (which renders itself

with vertical bars by default for easy identification) and selected the “Info...” submenu,

whose body lists the names of interactors in the hierarchy from the glue up to its parent.

Revealing the hierarchy in this way allows the user to examine internal nodes of the

composition without disturbing it. Figure 20 shows the result of choosing to examine the

glue component: a dialog box containing information about the glue’s canvas and shape.

Since InterViews allows programmers to specify shape parameters of glue in its constructor,

the dialog allows the user to change these parameters in the dialog. The user cannot alter

these parameters for buttons, for example, since the programmer cannot change these values

in InterViews without deriving a new button subclass.

The Examine tool also allows the user to create views of parts of a composition,

permitting him to edit otherwise inaccessible parts of the hierarchy. The “View” submenu

in the pop-up menu displays a list of the chosen component’s parents; Figure 21 shows this

list for a radio button in the composition. The user clicked on a radio button composed
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Figure 21: Examining a composition hierarchy

in a horizontal box with two other buttons and some glue. In turn this horizontal box is

composed in a vertical box. By selecting the “HBox” entry in the submenu, the user can

see the horizontal box composition in a separate view, as shown in Figure 22. The user

can now edit the components in the horizontal box without tampering with the rest of the

composition. As with all views of the same subject, changes to the composition in either

view are reflected immediately in the other.

Multiple views are also instrumental in specifying tray compositions. The user specifies

a tray’s components by selecting the components and invoking the “Tray” entry in the

composition menu. Doing so does not, however, define alignments between the tray’s

components, which is why one would create a tray in the first place. Such alignments are

made by creating a view of the tray, in which its components will be individually selectable,

and issuing alignment commands from the Align menu. These commands normally align

components by simply moving them, but when the commands are applied to components
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Figure 22: Part of the composition hierarchy presented in a separate view

in a tray, the alignments behave as tray alignments—they persist. Once a tray component is

aligned to another, therefore, it stays aligned even if the user attempts to move one of them.

The last tool in the palette, the Edit tool, lets the user change strings as they appear in

the interface. It behaves like the Reshape tool in Drawing when reshaping text objects: the

user can relabel a button or edit the text in a message by clicking on it and typing the new

text.

UI also includes the usual predefined commands for saving and restoring components

(interfaces in this domain) and editing commands such as cut, copy, paste, delete, and

duplicate. In addition, UI defines a command for dissolving compositions (similar to

ungrouping in a drawing editor) and for generating the C++ external representation.
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5.2.2 Implementation

UI defines many new classes, shown in Table 27. Class names in boldface type are for

objects provided by the Unidraw library, while those in italics are defined by InterViews.

Table 26 presents a breakdown of the UI implementation in classes and lines of source code.

Like Drawing, UI defines a single editor subclass, UIEditor. A new instance of UIEditor

is created for each view of an interface. Interfaces are compositions of InteractorComp, a

subclass of GraphicComps. There is an InteractorComp subclass for each interactor a user

can instantiate, each with a corresponding InteractorView.

Interactor Components

InteractorComp adds several operations to the GraphicComps protocol to access state that

characterizes the interactor. This state includes state variables for the interactor’s class

name, canvas, shape, and button state (if any). An InteractorComp also uses a specialized

graphic, UIGraphic, to define its graphical characteristics, and it provides a GetUIGraphic

operation to retrieve this graphic without casting. UIGraphics define their appearance based

on information in a canvas state variable, which the interactor component supplies. Most

interactor components use a specialized UIGraphic that reflects the interactor’s appearance

based on the dimensions stored in the canvas variable. By deriving a UIGraphic and

redefining its drawing operation, we can specify the interactor’s appearance with immediate-

mode graphics. This approach has two benefits:

� It is generally easier to render the interactor with immediate-mode graphics. Interac-

tors are simple to draw procedurally, their structure does not change, and the drawing

procedure can be parameterized to conform to the canvas.

� Since most interactors use immediate-mode graphics, derived UIGraphic drawing

operations can use the corresponding interactor drawing code virtually unchanged.

The interactor component class also defines Reconfig and Resize operations analogous to

the corresponding InterViews interactor operations. Conceptually, Reconfig notifies the

interactor that the library has computed its final graphics state, upon which its shape may
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Editor UIEditor
GraphicComps InteractorComp HVComp BorderComp

GlueComp
ScrollerComp

MessageComp ButtonComp FBrowserComp
StrEditComp

SceneComp TrayComp
BoxComp HBoxComp

VBoxComp
GraphicViews InteractorView HVView BorderView

GlueView
ScrollerView

MessageView ButtonView FBrowserView
StrEditView

SceneView
Picture UIGraphic HVGraphic BorderGraphic

GlueGraphic
ScrollerGraphic

MessageGraphic PushButtonGraphic
RadioButtonGraphic
CheckBoxGraphic
StrEditGraphic

StateVar NameVar ButtonStateVar
CanvasVar
ShapeVar

StateVarView ButtonStateVarView
CanvasVarView
ShapeVarView
ClassNameVarView

PreorderView CodeView BorderCode
ButtonCode
GlueCode
MessageCode
ScrollerCode
StrEditCode
FBrowserCode
BoxCode
TrayCode

Command CodeCmd InfoCmd
NewViewCmd
PlaceCmd
BrushCmd GlueVisibilityCmd
GroupCmd SceneCmd

BasicDialog InfoDialog
Tool ExamineTool
Manipulator PopupManip
Creator UICreator

Table 25: UI class hierarchy
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code (lines)

classes interface implem.

components 24 500 1870

commands 7 140 360

tools/manipulators 2 60 180

ext. representations 10 170 460

state vars./transf. fns. 7 160 520

editors 1 70 670

creator 1 20 90

toolkit-derived classes 12 230 740

globals 0 100 70

totals 64 1450 4960

Table 26: UI code breakdown

depend. Resize notifies the interactor that its canvas is defined; the interactor may in turn

initialize internal state based on the size of the canvas.

Scene Components

The SceneComp subclass of InteractorComp provides an abstract base class for scene

components. SceneComp subclasses include BoxComp and TrayComp. Subclasses of

BoxComp implement the tiling semantics of horizontal and vertical boxes with the same

algorithms that InterViews boxes use, while TrayComp uses connectors to determine the

placement of its children. While there is a SceneView class for SceneComp, box and tray

components have no corresponding SceneView subclass. No view subclasses are necessary

because the boxes and trays have no appearance or special direct manipulation semantics

of their own, so the SceneView base class can assemble child views for both of them.

Figure 23 shows the connector construction that a tray component creates for each of

its children. The tray builds these constructions in its Reconfig operation after it calls

Reconfig on its children. The connectors are pins, floating initially, and the glue parameters
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interactor

G2

G1

P3

P2

P1

Figure 23: Connector construction for tray children

are based on the child’s shape variable, which defines its natural size, stretchability, and

shrinkability (in the interactor sense). InterViews makes no distinction between elasticity

and deformation limits; they are effectively collapsed into a single parameter per dimension

per mode (tension or compression). Therefore, for either G1 or G2,

" = � = �=2

where � denotes the interactor’s horizontal/vertical stretchability/shrinkability, depending

on the subscript and superscript we apply to each term.

The tray maintains alignments between its children by establishing connections between

the pins in the respective connector constructions. For example, to left-align two children,

the tray connects their P1 connectors together with a piece of connector glue having the

following parameters:

h = v = "h = �h = 0

"v = �v = 1

(The elasticity and deformation limits are the same in both modes.) These parameters

ensure that the children remain left-aligned while remaining able to move freely in the

vertical direction.
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GV

GH

P1

P3

P1

I1 I2

Figure 24: Connections for a two-dimensional tray alignment

Two-dimensional alignments require two connections. For example, a bottom-right

to bottom-left alignment between interactors I1 and I2 in Figure 24 requires a connection

between their P1 pins and a connection between P3 of I1 and P1 of I2. The P1-P1

connection fixes the relative positions vertically, interposing glue GV that is rigid vertically

but infinitely flexible horizontally. The P3-P1 connection fixes the components’ relative

positions horizontally with glue GH that is rigid horizontally but infinitely flexible vertically.

Once the tray establishes these connections, it must determine its shape. The tray

computes its natural size by calling Update on the unidraw object to solve the network and

then determining the pins’ bounding box. Calculating its stretchability and shrinkability

is more difficult, because there is no way to query the Unidraw library for the network

equivalent. The tray must ascertain this information from the dynamics of the network.

First the tray fixes the bottom-leftmost pin in the network. To find the shrinkability,

the tray connects a fixed pin (call it P�) to the top-rightmost pin. P� is centered at

(�1;�1), that is, a large distance below and to the left of the bottom-leftmost pin. Then

the tray calls Update again to solve the network. The tray’s shrinkability is reflected in

the distance the top-rightmost pin moved to maintain its connection with P�. Similarly,

the tray computes its stretchability by connecting the top-rightmost pin to a fixed pin P+

centered at (+1;+1) and re-solving the network; the stretchability is the amount the

top-rightmost pin moved to remain connected to P+.
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With all shape information calculated, the tray can set its shape state variable and return

from Reconfig. When the tray is later resized, it translates the top-rightmost pin so that

the bounding box of the tray’s pins matches the size of the canvas. The tray then solves

the network and translates and resizes its children to reflect the positions of the pins in its

constructions.

State Variables

UI defines state variables for interactor attributes that a user can examine, specify, or modify.

These include its canvas, shape, class name, and possibly a button state. The views of these

state variables are assembled into a dialog box when the user examines the interactor.

CanvasVar stores the width and height of an interactor component’s canvas. Can-

vasVarView displays this information in an InterViews Message object (an interactor that

displays a non-editable string of text).

ShapeVar defines an interactor component’s shape. The shape information can be

editable or read-only, depending on whether the interactor’s programming interface allows

the programmer to specify or change the interactor’s shape. ShapeVarView presents

this information in a tabular format incorporating string editors (interactors that display

an editable string of text) if the subject is editable; otherwise it incorporates messages

exclusively.

ButtonStateVar stores a name, an initial value, and a setting value. All button state

variables with a given name share the same initial value. The external representation for

an interface will contain an instantiation of a button state object for each unique name

among the button state variables. ButtonStateVarView provides an interface to changing

the subject’s name and values.

Finally, interactor components store their class name in a NameVar, a library-defined

state variable that stores a string. UI defines a ClassNameVarView state variable view that

simply presents this name in a message, since it is an unchanging attribute of an interactor.
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External Representation

The CodeView subclass of PreorderView is the base class for objects that generate UI’s ex-

ternal representation. Each interactor component has a corresponding CodeView subclass.

Figure 25 lists a sample UI external representation.

CodeView’s Emit operation first generates forward declarations for all button states in

the interface. The ButtonStateVar class defines a class operation that allows CodeView to

iterate through all the ButtonStateVar instances in the interface and produce the ButtonState

declarations at the top of Figure 25. CodeView subclasses for leaf interactor components

redefine the Definition operation to generate code of the form

new className ( parameters )

where the parameters reflect the component’s internal state. BoxCode, the CodeView

subclass for box components, generates these parameters by calling its children’s Definition

operations. The tray external representation must be handled specially, since its alignments

cannot be specified in-line.

To generate tray code, CodeView’s Emit operation performs two traversals of the

external view hierarchy. The CodeView class defines a class member variable boolean

trays. CodeView subclasses check this value before they produce code. If trays

is true, then only TrayCode instances generate output—a function returning an initialized

tray instance; otherwise, each CodeView subclass generates code as described above, and

TrayCode generates a function call.

A programmer uses the Interior function to produce an instance of the interactor com-

position. CodeView’s Emit operation generates the Interior declaration. The button state

initialization code is created by iterating through the ButtonStateVar instances as CodeView

did to generate the corresponding declarations. CodeView produces the Interior function’s

return value by calling its own Definition operation.

Commands and Tools

UI defines several commands. InfoCmd creates an instance of an InfoDialog, which

composes state variable views of an interactor component’s state variables. A user invokes
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static ButtonState* bs0;
static ButtonState* bs1;

static Tray* Tray0 () {
Tray* tray = new Tray;

Interactor* i1 = new CheckBox("check", bs0, 1, 0);
tray->Insert(i1);
Interactor* i2 = new HGlue(0, 0, hfil);
tray->Insert(i2);
Interactor* i3 = new PushButton("push", bs1, 1);
tray->Insert(i3);

tray->HBox(tray, i1, i2, i3, tray);
tray->Align(VertCenter, i1, i2, i3);

return tray;
}

static Interactor* Interior0 () {
bs0 = new ButtonState(0);
bs1 = new ButtonState(0);

return new Frame(
new VBox(

new VGlue(20, 20, vfil),
new StringEditor(bs0, "sample"),
new VGlue(20, 20, vfil),
Tray0(),
new VGlue(20, 20, vfil)

)
);

}

Figure 25: Sample UI external representation
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this command through the examine tool’s pop-up menu. Once the user has changed the

state variable values and dismissed the dialog, InfoCmd applies the changes to the selected

interactor component. UI’s NewViewCmd is analogous to Drawing’s: it creates a new

UIEditor instance for editing the same component as the current editor. The user directs

UI to produce an external representation with the CodeCmd. This command lets the user

specify a file name in which to store the external representation and then creates a CodeView

of the editor’s interactor component.

The InterViews scene class defines a Place operation that makes an interactor hierarchy

visible on the screen. This operation initiates two traversals of the interactor hierarchy: one

to determine its shape, and another to allocate screen space. InterViews calls Place when

an interactor is inserted into the top-level window; in UI this occurs when an interactor

component is created with a graphical component tool. The interactor view base class

creates a PlaceCmd in response to manipulation by a graphical component tool. The

interactor subject initiates the placement traversals when it interprets this command.

The GlueVisibilityCmd directs a glue component to make itself visible (by rendering

itself with horizontal or vertical bars) or invisible (by erasing the bars). Visible glue is easier

to manipulate, while invisible glue is less distracting. Lastly, SceneCmd is a subclass of

the library-defined GroupCmd, which removes selected components from their parent and

inserts them into another graphical component (the destination), which in UI will be a scene

component. SceneCmd extends the behavior of GroupCmd to make the destination interpret

a PlaceCmd after reparenting the components, allowing the destination to determine their

shape and allocate their screen space.

UI defines only one new tool, ExamineTool. Other tools in the interface are taken

from the library. In particular, the edit tool is actually an instance of the library’s Re-

shapeTool, which delegates manipulator creation and interpretation to the component(s)

being manipulated. Views of interactor components that can be edited with this tool sim-

ply redefine their CreateManipulator and InterpretManipulator operations to respond to it

appropriately—a new tool subclass is therefore unnecessary. Similarly, UI’s ResizeTool is

actually an instance of the library’s StretchTool.

ExamineTool produces an InterViews pop-up menu with two submenus containing con-

trols that execute InfoCmds and NewViewCmds, respectively. Each of these commands
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operates on a different level of the chosen interactor hierarchy. ExamineTool does not dele-

gate manipulator creation to the selected interactor view; instead, it creates a PopupManip

with the pop-up menu as an argument, and it relies on the pop-up menu’s submenus to

execute the desired command. The PopupManip does little more than forward events to

the pop-up menu to allow it to work within the viewer.

5.2.3 Experience

The user interface building domain is the least mature of the domains represented by our

three experimental applications. Graphical object editors for this domain did not arrive until

the mid-1980s, and little has been published relating experience with them in production

environments. There is a consensus, however, that they do not eliminate the need for

conventional programming, and UI is no exception in this regard. UI is best used to

describe the layout of an interface and for experimenting with the dynamics of interactor

compositions. UI does not help the user specify an interface’s input semantics, nor does it

let him define new interactors, but neither do current hand-crafted interface builders offer

such capabilities.

On the other hand, UI does support layout semantics as sophisticated as any user

interface builder. The composition abstractions that underlie existing builders are not as

general or powerful as those that InterViews provides, which include non-linear deformation

(independent stretchability and shrinkability) with two-way layout constraints (via boxes

and tray). UI can offer a better direct manipulation model because it is founded upon more

powerful InterViews abstractions.

In performance terms, interfaces as they appear and behave in UI actually outperform

real InterViews interfaces. Interactor components consume less memory than real inter-

actors, partly because interactor components do not handle input and partly because each

InterViews interactor contains its own X window. The smallest possible InterViews in-

teractor (not including information potentially shared with other interactors) uses about

100 bytes. This figure does not include the X window, which takes up space in both the

application and in the window server. In X11 Release 4 the library space is at least 75

bytes, while the server keeps at least an additional 150 bytes. Each InterViews interactor
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thus consumes at least 325 bytes. The smallest possible interactor component, including a

subject and a view, is 188 bytes.

Interactor components also compare favorably at run-time. Interactor views draw

themselves as quickly as real interactors do, and scene components compose and place

their children substantially faster than real scenes, since placement does not involve com-

munication with the X server. Tray components are even more efficient in comparison.

Tray subjects use connectors to determine the proper placement of their components, so

they work in time proportional to O(n2) at worst, where n is the number of alignments.

InterViews trays use a similar recursive substitution algorithm to compute placement, but

they do not incorporate any of the optimizations discussed in Section 4.6.5 to make the

search for primitive combinations run in linear time. For example, the search for parallel

connections is O(n2). Thus InterViews trays take O(n3) time at worst.

The upshot, then, is that interfaces in UI perform at least as well as the InterViews-based

interfaces they implement. However, the code that UI generates could be better. Usually

some modification is required to integrate the code into a larger implementation. The

generated interactor instance names are not mnemonic; the user should be able to specify

these names at run-time through a state variable view. The programmer will often want

the Interior function to be a member of a class rather than a static global. This is true for

the button states as well. Still, the external representation does encapsulate the trickiest

part of the implementation: specifying the composition hierarchy and interactor attributes

correctly.

5.3 Schematic Capture System

Schematic capture systems belong to a class of CAD tools that assist in the design and

analysis of electrical circuits. Most schematic capture systems support interactive specifi-

cation of digital circuits. These systems simplify the design process by letting engineers

create, view, and edit a schematic representation of the circuit, from which the system

generates a netlist representation. The netlist catalogs the interconnections between the

elements in the circuit, information that uniquely defines the circuit’s topology. With this

netlist information, the circuit can be simulated, analyzed, and ultimately realized in wire
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Figure 26: Schematic capture system

and silicon. The schematic capture system is the starting point of the entire circuit-making

process.

Our experimental schematic capture system is called Schem. It supports hierarchical

circuit specification and generates both hierarchical and flattened netlist external representa-

tions. In addition to these traditional schematic capture capabilities, Schem takes advantage

of Unidraw’s advanced features to provide a direct manipulation-oriented interface, con-

nectivity maintenance, full-featured 2-D graphics, and multi-view editing. Schem also uses

dataflow to support combinational logic simulation, a feature not normally associated with

schematic capture systems.

Schem is also the most extensible of the three experimental domain-specific editors

in that the user can extend its repertoire of components at run-time. He can create new

elements, as we normally refer to components in this domain, define their appearance,



CHAPTER 5. EXPERIMENTAL APPLICATIONS 122

connectivity semantics, and logical functions. Schem thus caters to at least four types of

users:

1. System administrators concerned with creating and maintaining a library of elements

for others’ use.

2. Circuit designers that are constrained to use only predefined elements.

3. Circuit designers that are free to create custom elements for use in their designs.

4. Students interested in learning about logic design in a simulated laboratory.

5.3.1 User Interface

Schem displays two windows initially, as shown in Figure 26. The larger of the two

contains a viewer in which to build schematics, while the smaller window contains a palette

of tools for creating and manipulating schematic elements. We will refer to these windows

as the Schem editor and tool palette, respectively. Like the other experimental editors, the

Schem editor provides a set of state variable views and pull-down menus above its viewer.

The tool palette has controls for engaging graphical component tools along its right side

and tools for manipulating components along the left. Unlike Drawing and UI, Schem

maintains a single, global selection; selecting a component in one editor will unselect a

previously selected component in another.

Elements and Nodes

Schem defines two basic types of components: elements and nodes. An element corre-

sponds to an electronic part, while a node is a point of connection in the circuit. Elements

usually have at least one node and may contain subelements, while a node is an atomic

entity. Both elements and nodes are named to identify themselves in the netlist. For each

element, the netlist records its name and the names of its nodes; for each node in the element

the netlist lists the names of nodes connected to it (if any) and the elements to which they

belong. A netlist organized in this way is element-based; netlists in which the connections

are listed by node rather than element are node-based.
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In addition to a name, nodes have an associated logic level: either zero, one, or don’t

care, and they can serve in an input, output, or bi-directional capacity. These attributes

allow nodes to represent the terminals of logic elements. Elements can define a truth table

relating the logic levels of their input nodes to those of their output nodes, thus enabling

combinational logic simulation.

Schem defines a special element called an alias to support hierarchical circuit specifi-

cation. An alias is an alternate representation for another element, which we call the alias’

definition. One can use an alias to replace a complex circuit with a “black box” representa-

tion, thereby abstracting the circuit. By default, an alias inherits copies of any independent

nodes in the definition, and it maintains a link to the definition, but its appearance is defined

by the user. Once created, an alias can be used as any other element; it can even serve

as part of the definition of another alias. An alias thus represents an interior node in a

hierarchically structured circuit.

Tool Palette

Schem incorporates the Select, Move, and Connect tools from the Unidraw library. Select

and Move have been discussed previously. The Connect tool provides a direct manipulation

interface to connecting connectors. For example, clicking on a pin with the Connect tool

engaged allows the user to drag the pin around. If the user drags the pin near another

pin (the target), the pin being dragged will jump towards the target so that their centers

coincide; if the user then releases the mouse button, the Connect tool will connect the two

pins. If instead the user continues to drag the pin a certain distance beyond the target, it

will snap away from the target and resume following the mouse position. In Schem, the

user relies on the Connect tool to connect nodes, which are derived from pins.

Schem defines two other tools: Manipulate and Examine. The Manipulate tool lets the

user manipulate components in a life-like manner. Currently only the switch component

(described below) responds to this tool. Schem’s Examine tool is similar to UI’s in that it

lets a user examine attributes of a particular component.

Clicking on a component with the Examine tool engaged produces a pop-up menu of

options, as shown in Figure 27. The “Create Alias” entry creates a new Schem editor

containing an alias of the chosen element. The user may then edit the alias and store it for
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Figure 27: Using the Examine tool on an inverter element

later use. If the chosen component is an alias, then invoking the “Definition” entry creates

a new Schem editor containing the alias’s definition. The “Info...” entry creates a dialog

box for editing the component’s internal state. If the component is a node, then the dialog

box lets the user change its name and transmission semantics (whether it is an input, output,

or bidirectional node); if the component is an element, the dialog lets the user edit its name

and the names and transmission semantics of its nodes. The “Truth Table...” entry posts a

dialog box that lets the user specify the output logic level values for every combination of

input levels. Finally, the “View” entry creates a new Schem editor with a new view of the

chosen component, provided it is an element.

Initially, Schem includes graphical component tools for creating four components it

predefines:

1. The node component represents an attachment point as described above.
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2. The wire component connects two nodes visually. Wires can be manhattan or sloped

and can have any number of discontinuities.

3. The bulb component simulates a light bulb. When connected to a node with logic

level zero, the bulb appears dark; when the logic level is one, the bulb lights up.

4. The switch component will affect the logic level of any nodes to which it is connected.

When the switch is in its down position, it sets the logic level to zero; when it is up,

it sets the logic level to one. The user can toggle the switch up and down with the

Manipulate tool.

None of these components are elements. The schematic that a user creates in a Schem

editor is an element, as are aliases. With these default components and tools for creating

them, the user can wire up nodes, bulbs, and switches, but nothing more. To create practical

schematics, the user must define new elements.

Defining a New Element

Creating a new element involves three steps:

1. Define its appearance.

2. Define its semantics.

3. Store it for later use.

We should also make it easy for users to insert copies of the element into their semantics.

Therefore we need a graphical component tool with the element as its prototype and a

control in the tool palette for engaging the tool.

Figures 28 through 33 depict the procedure for creating a prototypical NAND gate

component, a corresponding graphical component tool, and a control for engaging the

tool. The first step, shown in Figure 28, is to define the element’s appearance. Schem

provides a full complement of components, commands, and tools for producing graphics.

These features are accessed through a window called the drawing tool palette, which is

not normally visible. To make this palette visible, the user issues the “Drawing Tools...”
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command from the Options menu. Schem provides drawing facilities almost as powerful

as Drawing’s, since the components, commands, and tools for basic drawing are predefined

by the Unidraw library. A closed B-spline is used for the AND symbol, a circle for the

inversion bubble, and three lines for the gate’s input and output leads.

The next step is to define the gate’s semantics, which involve connectivity, netlist

generation, and combinational logic simulation. We want to connect wires to the ends of

the gate’s leads and have them stay connected when the gate is moved. To accomplish

this we place node components at the ends of each lead (Figure 29). As connectors, the

nodes will enforce the connectivity semantics we desire. Next we give the element the

name it will use in the netlist, identify its nodes with mutually-unique names, and set the

transmission semantics for each node (Figure 30). Schem assigns each element in the netlist

a unique integer value and appends it to the user-specified name to form the element’s full

netlist name. The integer value is unique across element instances, thereby ensuring that

all elements in the netlist can be identified even though some may share a user-specified

name. Whenever an element references another element’s node, the reference appears in

the netlist as the concatenation of the name of the enclosing element followed by the node’s

name. Finally, we define the truth table for the element (Figure 31).

Having specified the NAND gate’s semantics, we now store it for later use using the

“Save As...” command in the Schem editor’s File menu. A dialog box prompts for the name

of a file in which to store the gate; we will use the name “nand.proto” in this example. Now

if we want to easily incorporate copies of the NAND gate into schematics, we will need a

graphical component tool. The “New Tool...” command in the File menu lets us choose

an element to use as the prototype for a new graphical component tool (Figure 32). We

simply type in the name we used to save the gate (“nand.proto”) and press the “OK” button.

Schem then creates a graphical component tool with the specified element as its prototype,

creates a control for engaging the tool, saves the tool under the name “nand.proto.tool,”

and installs the control in the tool palette. Now we can create NAND gates just as easily as

any other component (Figure 33).

We can also remove and re-install graphical component tools at run-time. The “Tools...”

command in the File menu posts a dialog box listing the names of all installed graphical

component tools, and it allows us to type in the name of existing but uninstalled tools.
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Selecting an installed tool and pressing the “Install/Remove” button removes the control

associated with the tool from the tool palette, while typing in the name of a presently

uninstalled tool will install a control for engaging it. This level of customizability contrasts

with the less dynamic but more flexible capabilities of Drawing. Schem stores the names

of the installed tools in a special file so that the same tools are installed when the system is

restarted.

5.3.2 Implementation

Table 27 lists the classes that Schem implements. As before, class names in boldface

type are defined by the Unidraw library, and names in italics are defined by the InterViews

library. Table 28 presents a breakdown of the Schem implementation in classes and lines

of source code.

Editors

Schem defines three subclasses of editor: SchemEditor, ToolPalette, and DrawingPalette.

SchemEditor implements the Schem editor windows in which the user creates schematics.

The SchemEditor incorporates a viewer and commands but no tools. The current tool

is defined by the ToolPalette, which is a degenerate editor in that it contains no viewer.

The drawing tool palette is implemented by the DrawingPalette editor, which is similarly

degenerate. Schem produces a single instance of ToolPalette and DrawingPalette and

at least one instance of SchemEditor. The tool palette is created first, for it defines the

current tool and the common selection object. The DrawingPalette constructor takes the

tool palette instance as an argument, and SchemEditor instances require both the tool and

drawing palette instances as arguments. Thus all editors have the same notion of the current

tool and selection.

Components and their Semantics

ElementComp and ElementView define the subject and view protocols for all netlist-

generating and user-defined elements. ElementComps maintains an ElementVar, a state

variable that identifies the element by name in the netlist. ElementVarView defines a
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Editor SchemEditor
ToolPalette
DrawingPalette

GraphicComps ElementComp AliasComp
GraphicViews ElementView AliasView
PinComp NodeComp
PinView NodeView
NameVar ElementVar

NodeVar
StateVarView ElementVarView

NodeVarView
TruthTable
TransferFunct TF TruthTable
TextEditor TruthTableEditor
GraphicComp WireComp

LogicComp BulbComp
SwitchComp

GraphicView WireView
LogicView BulbView

SwitchView
PreorderView NetlistView NLNode

NLGraphicComps
NLElement NLAlias

Command AliasCmd
DefinitionCmd
NewViewCmd
ToggleDwgPaletteCmd
ToolsCmd
NetlistCmd
InfoCmd
TruthTableCmd
ViewCompCmd NewToolCmd

FileChooser NetlistDialog
BasicDialog InfoDialog

TruthTableDialog
Tool ExamineTool

ManipulateTool
Manipulator PopupManip

WireManip
GrowingVertices RubberWire
Creator SchemCreator

Table 27: Schem class hierarchy
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Figure 28: Specifying a NAND gate’s appearance

code (lines)

classes interface implem.

components 14 270 1100

commands 9 190 540

tools/manipulators 5 90 230

ext. representations 5 120 380

state vars./transf. fns. 5 140 300

editors 3 170 1140

creator 1 20 60

toolkit-derived classes 6 170 810

globals 0 200 130

totals 48 1370 4690

Table 28: Schem code breakdown
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view that displays the subject’s unique name. Aliases are instances of the AliasComp and

AliasView classes, which are derived from ElementComp and ElementView, respectively.

AliasComps keep a pointer to their definition, which is an ElementComp.

Nodes are represented by instances of NodeComp and NodeView, which are subclasses

of PinComp and PinView, respectively. When instantiated, a NodeComp creates an instance

of a NodeVar state variable and binds it to itself. The NodeVar stores a name (being derived

from NameVar) and a logic level value. A NodeVarView presents an interface for editing

the name and for choosing the node’s transmission method (see Figure 30).

ElementComps also define a TF TruthTable transfer function that specifies the com-

binational logic relationships between its nodes. TF TruthTable stores the truth table itself

in a separate TruthTable object, and it defines dependencies between the node variables

based on the TruthTable object’s contents. The user edits an element’s truth table using

a TruthTableEditor, a specialization of the InterViews TextEditor object. Any change

in the truth table object affects the element’s transfer function, since the transfer function

relies on the information in the truth table.

Wires, switches, and bulbs are not derived from ElementComp and ElementView be-

cause they are not represented in the netlist. The wire component subject WireComp and

view WireView are derived directly from GraphicComp and GraphicView. A WireComp

contains two NodeComps to define its endpoints, and it uses a MultiLine structured graphic

object to represent the path between them. It relates the two nodes’ state variables with

a TF Direct transfer function. The bulb and switch component subjects and views are

derived from LogicComp and LogicView, which are in turn derived from GraphicComp

and GraphicView. LogicComps include a NodeComp to define a logic value and connec-

tivity semantics. SwitchComp changes the value of its node’s NodeVar to reflect the switch

position, while BulbComp bases its appearance on the NodeVar’s value.

Schem defines a NetlistView that generates its netlist external representation. Netlist-

Views take a parameter that specifies whether the netlist should be flattened or not. The

NLNode, NLElement, and NLAlias subclasses generate the information appropriate for

nodes, elements, and aliases, respectively. The NLGraphicComps subclass acts as a

placeholder for elements that have been grouped to simplify their graphical manipulation;

the netlist should not reflect such grouping.



CHAPTER 5. EXPERIMENTAL APPLICATIONS 131

Commands

Schem’s AliasCmd instantiates an alias for a given ElementComp and creates a new

SchemEditor for editing it, while the DefinitionCmd creates a new SchemEditor for editing

the definition of a given component. The DefinitionCmd reports an error via a dialog box

if the component is not an alias and therefore has no definition. ToggleDwgPaletteCmd

either shows or hides the drawing palette.

ToolsCmd posts a dialog box giving the names of all the installed tools as reported

by the catalog, letting the user add new tools or remove existing ones. NetlistCmd posts

a NetlistDialog, which prompts the user for a netlist name for the current schematic and

whether the netlist should be flattened or not. It then creates the corresponding netlist

view and emits the netlist. Given a component, InfoCmd creates an instance of an Info-

Dialog, which provides element and node variable views for changing the corresponding

attributes of the subject, if any; otherwise the command posts a dialog box reporting that

the component has no schematic information. TruthTableCmd posts a TruthTableDialog

containing a TruthTableEditor for the given component, if it defines a truth table transfer

function. Finally, NewToolCmd prompts the user for a component name, and it uses the

corresponding component to create a graphic component tool. It then inserts a control into

the tool palette for engaging the tool.

Tools

The next five classes in the table support Schem’s direct manipulation semantics. The

ExamineTool uses a PopupManip in the same way as the corresponding UI classes,

except the pop-up menu produced by Schem’s ExamineTool does not have submenus for

specifying the level in the hierarchy to be examined.

The ManipulateTool delegates manipulator creation to the component view. The

only component that responds accordingly is the switch, but it does not actually produce

a manipulator. Instead it responds by toggling the logic level of its subject’s node state

variable. Thus the switch throws immediately when the user clicks on it with the manipulate

tool, and the operation is not undoable. An alternative interface could have the switch view

generate a manipulator that animates the switch’s sliding action, from which the view
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generates a command that changes the state variable. Apart from making the switch work

more realistically, this implementation would also make the action undoable.

Two classes support the special creation semantics of wire components. The user can

create wires with any number of discontinuities, and each segment can be either sloped or

manhattan depending on whether the Shift key is held down. The rubberbanding effect

during the wire’s creation is unique as well; the wire deforms dynamically as jogs are

added. The WireManip implements these manipulation semantics, and it uses a special

rubberband, a RubberWire to perform the animation.

5.3.3 Experience

By definition, all schematic capture systems support graphical circuit specification and

netlist generation. Most allow designers to specify circuits hierarchically. Some systems

maintain graphical connectivity automatically; others store connectivity information but do

not enforce it in the graphical representation.

Schem provides these features and adds combinational logic simulation, multiple views,

and nearly all the features of dedicated drawing editors, while most schematic capture

systems have limited drawing capabilities, if any. Some schematic capture systems offer

features that we have omitted from Schem, such as iterative circuit specification, element

instancing, a bus component abstraction, and the ability to read an externally modified

netlist. The first three capabilities are straightforward to add; however, Unidraw does not

currently support internalization of external representations. Providing such a capability in

general will take further study, but Unidraw does not prevent an application from reading a

particular external representation. In fact, we have successfully extended Drawing to read

the PostScript external representation it generates.

It is easier to compare functionality than implementation effort, because we cannot

examine the source code or development history of commercial systems. But we do know

that idraw requires nearly three times the code in Schem, and idraw’s code does not include

its graphics capabilities, which InterViews supplies. Factoring out the graphics code in this

manner, a schematic capture system’s capabilities become roughly a superset of a drawing
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editor’s. Hence we expect that a conventional schematic capture system would require at

least as much code as idraw.

Schem’s graphics performance is identical to Drawing’s, but Schem’s schematic com-

ponents are significantly larger than those of many other schematic capture systems. The

premium arises partly out of the subject/view split, where both contain a graphic. Inter-

Views structured graphics have a minimum size of 24 bytes and average around 40, so

each schematic component consumes about 80 bytes for graphics alone. This overhead is a

consequence of the way we designed Schem and the predefined components, and it could

be reduced by optimization or by foregoing multiple views. Another expensive feature is

Schem’s support for run-time component specification. Each user-defined element has an

appearance made up of graphical components, each comprising a subject and a view. Thus

even elements with simple graphical designs become bulky. Again, this expense could be

mitigated by eliminating the run-time extension feature or by optimization. For example, the

graphical component composition that makes up an alias’s appearance could be discarded

after the alias is defined, retaining only the composite graphic. An instancing component

could lessen the impact of expensive components by amortizing the cost of a prototype

over many instances. Such techniques would make Schem more space-competitive with

conventional systems.

5.4 Summary

Drawing, UI, and Schem demonstrate how Unidraw facilitates the design and implementa-

tion of domain-specific editors. Each of these experimental applications reflects a significant

reduction in development effort by almost any measure, and all approach or exceed the

functionality and performance of their custom-built counterparts.

Each application has features that set it apart from the others, thereby offering different

perspectives of Unidraw’s capabilities. Drawing is an example of a simple Unidraw-based

graphical object editor, demonstrating the power of the predefined library components.

Drawing also shows how a Unidraw-based application can give the user considerable

control over the application’s user interface. UI’s components have the most complex
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semantics; its tray component in particular shows how Unidraw’s connector model can sup-

port sophisticated connectivity. UI also takes greatest advantage of multiple views. Schem

demonstrates dataflow and shows how new components can be defined dynamically. To-

gether, these applications attest to Unidraw’s effectiveness in simplifying the development

of practical graphical object editors.
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Figure 29: Using nodes to define connectivity, logic simulation, and netlist semantics
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Figure 30: Specifying element and node names and transmission methods



CHAPTER 5. EXPERIMENTAL APPLICATIONS 137

Figure 31: Defining the truth table for the NAND operation
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Figure 32: Creating a graphical component tool for instantiating new NAND gates
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Figure 33: Creating NAND gates with the newly defined tool



Chapter 6

Conclusion

We began this work by identifying an important class of applications, graphical object

editors, that had remained difficult to design and build despite advances in user interface

technology. This problem prompted our hypothesis that a tool embodying the right abstrac-

tions would simplify graphical object editor development. The hypothesis in turn gave rise

to an experiment, in which we formulated and specified such a tool, implemented it, and

tested it to verify our reasoning.

6.1 Summary of Work and Contributions

Unidraw is first and foremost an architecture for graphical object editing. We designed the

architecture to fulfill the needs—unforeseen and anticipated—of graphical object editors.

Our design distills the common aspects of these applications into a set of abstractions that

give us leverage on the problem. Components encapsulate the appearance and semantics

of objects the user manipulates. Commands define operations on components and other

objects. Tools support direct manipulation of components. External representations define

the mapping between components and the information an editor generates for external con-

sumption. The architecture also defines abstractions for specifying common component

semantics: connectors support connectivity and confinement between components and, to-

gether with state variables and transfer functions, support dataflow between them. Finally,

140



CHAPTER 6. CONCLUSION 141

the architecture defines a framework for assembling these elements into a complete appli-

cation. This architecture is grounded on prior experience with real applications, systematic

analysis of the problem, and extensive experimentation.

Unidraw is also a prototype implementation of the architecture that demonstrates the

efficacy of the design. With few exceptions, the prototype implements the architecture as

specified, and it furnishes a variety of predefined elements with which programmers can

build applications. The prototype has established that the architecture is realizable.

Finally, Unidraw is a test of the concept of generalized graphical object editing. We

used the prototype implementation to build three experimental domain-specific editors,

applications complex and different enough to demonstrate the architecture’s applicability,

flexibility, and power. All seemed daunting to implement at the outset of this work; in the

end their development seemed simple and almost routine. The drawing editor provided

the most dramatic example of how much code is saved when one exploits the predefined

components. The user interface builder and the schematic capture system showed that more

specialized editors require less code by virtue of Unidraw’s architectural abstractions, even

when few of their features are predefined.

In summary, the contributions of this work are:

1. Identification and characterization of graphical object editors.

2. An original architecture for graphical object editing.

3. A prototype implementation that demonstrates the architecture’s realizability.

4. Experimental evidence that the architecture simplifies the implementation of practical

graphical object editors.

6.2 Observations

One problem with object-oriented design is that it takes considerable experience, fore-

thought, and experimentation to factor a system into a good set of objects and protocols.

Programmers new to object-oriented programming in particular have a difficult time just
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knowing where to start in a design task. And even with such experience, building a graphical

object editor still involves a major design and implementation effort.

The Unidraw architecture simplifies the design task by reducing the number of decisions

a programmer must make. The architecture has settled many design issues before the

programmer starts. A potential drawback of such an architecture is that it may place

restrictions on what the programmer or application can do; however, we did not find this to

be a problem as we built our experimental applications. The architecture let us do what we

wanted to do in these applications, and we never found ourselves changing the architecture

to suit an application. This result has reassured us that the basic Unidraw model is sound.

Moreover, the prototype Unidraw library simplified the implementation task by pro-

viding reusable functionality. Basic geometric components and their PostScript external

representations, commands for carrying out catalog operations and graphical transforma-

tions, tools for creating and selecting components—these and many of the other predefined

objects proved useful in all three applications. A welcome side-effect of predefined objects

is that debugging time is reduced, both because we wrote less new code and because the

library was robust enough that we could limit bug searches to application code.

6.3 Future Work

Several aspects of this work merit further investigation.

6.3.1 Stricter Adherence to the Architectural Specification

The prototype implementation does not support two aspects of the architectural specifica-

tion: non-orthonormal slots and pads and truly non-linear glue. Both limitations stem from

the csolver model, in which horizontal and vertical placement constraints are solved inde-

pendently and connection networks are solved by recursive substitution, which presumes a

linear system. While these simplifications have been adequate, exploring how to efficiently

support the more general capabilities should prove worthwhile.
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6.3.2 Library Optimizations

Two library optimizations could improve the performance of applications in which users

routinely edit several thousand components or more. The first is to reduce the size of

graphical components. A substantial savings would accrue just by shrinking InterViews

structured graphics objects. The second optimization would reduce csolver’s running time

to expedite connector network solution in applications that produce few disjoint networks.

Reducing the algorithm from O(n2) to O(n log n) could yield a noticeable speedup in

networks with hundreds of mutually-dependent connections.

6.3.3 Architectural Extensions

The architecture only addresses external representation generation. We would like to go

beyond the current predefined external view traversals to develop a more powerful model

that supports external representation interpretation. While Unidraw currently does not

preclude such interpretation, neither does it aid its implementation. This capability would

let a domain-specific editor read existing representations, including those not generated by

the editor itself. For example, a schematic editor could read an existing netlist, allow the

user to edit it graphically, and generate a new netlist. A logic simulator could then give

the user feedback about the modified circuit’s behavior, which might prompt him to edit

the circuit again. Reading and writing external representations permits iterative design by

closing the loop between specification and analysis.

Another useful architectural extension would support automatic component layout.

Often in applications such as tree or graph editors the user is not interested in arranging

components by hand; instead he would rather specify rules for their placement and let the

system enforce them. Later he might tidy up the system’s layout via direct manipulation, but

the bulk of the work will have already been done. The architecture could include an object

that, like csolver, positions components according to a specification. Such an object could

use established layout algorithms and heuristics to produce pleasing component layouts.
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6.3.4 Additional Experiments

Metrics based on the experiences of other Unidraw programmers would shed more light

on the system’s benefits. We envision an experiment in which experienced programmers

with no background in user interface development are assigned to implement a graphical

object editor chosen at random with different user interface tools, one of which is Unidraw.

The results of this experiment would be interpreted from the time required to produce the

editors and their quality. Other experiments could pit experienced user interface developers

and their favorite tools against experienced Unidraw developers; explore Unidraw’s limits

by building editors for many more domains; or benchmark the prototype’s performance in

different applications.

6.3.5 Graphical Object Editor Builders

Just as the concept of assembling user interface components by direct manipulation came

into its own when toolkits furnished the underlying abstractions for user interface builders,

so too does Unidraw provide the foundation for a direct manipulation approach to building

graphical object editors. A graphical object editor builder would offer direct manipulation

analogs of Unidraw architectural features and generate Unidraw code to implement them.

We see the beginnings of such capabilities in our experimental schematic capture system,

where new components can be defined at run-time. A graphical object editor builder

(itself a graphical object editor) would take the metaphor a step further to let a user

specify commands, tools, and external representations dynamically and assemble them into

domain-specific editors.
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