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I’ve been itching to write a column about design notations for ages, but I couldn’t bring myself to do it.  I’m
not sure why.  Maybe the notation wars that the methodologists fought a few years back turned me off to the
whole issue.  Or maybe it didn’t seem worthy of an entire column, which would betray a certain chauvinism
on my part—that real men build systems; they don’t agonize over how to draw a class, or the semantic sub-
tleties of bubble-headed lines.  Maybe I was afraid of looking less than macho.

Still, I think the true reason is that I just didn’t appreciate the importance of the topic.  But that’s changed.
Writing columns and answering people’s questions have forced me to go back and examine tons old of e-
mail.  In the process I’ve noticed that a small but significant percentage of questions concern the notations
we use in Design Patterns—mostly misunderstandings about them.  A similar percentage ask how to make
patterns explicit in design documentation.  Yet another, larger percentage involve confusion about how, or
even if, certain patterns really differ from one another.

These percentages add up to a slim majority of the e-mail, so there’s no doubt the issues here are notewor-
thy. What’s particularly interesting, and something I realized only recently, is that the answers to all these
questions involve notation.  Meanwhile, Robert Martin has inaugurated a series of columns on UML, which
is destined to become the gold standard for object-oriented design notations. And Jim Coplien explored the
geometric nature of patterns in his last column1 and will delve even deeper in his next. Harmonic conver-
gence?  Beats me, but if I’m ever going to write about this stuff, now’s the time.

The whys and wherefores
What good are graphical notations anyway?  What are their benefits, and what do they cost?

I haven’t heard of an empirical study that proves anything about OO notations in particular.  But it is well
known that diagrammatic presentation can help people grasp information more quickly than straight text.
Edward Tufte drives this point home in his landmark book, The Visual Display of Quantitative Informa-
tion:2

Modern data graphics can do much more than simply substitute for
small statistical tables.  At their best, graphics are instruments for rea-
soning about quantitative information.  Often the most effective way to
describe, explore, and summarize a set of numbers—even a very large
set—is to look at pictures of those numbers.  Furthermore, of all meth-
ods for analyzing and communicating statistical information, well-
designed data graphics are usually the simplest and at the same time
the most powerful.

Tufte is talking about presenting statistical data, but his observations hold true for almost any information.
In fact, graphics are arguably more important for conveying object-oriented design.  The only alternatives
are code or pseudocode.  Both are fine for specifying an implementation, but they are pretty poor at com-
municating design.  While dedicated design languages exist, they have not proven popular; the ones I’ve
seen offer little expressiveness over code or prose.  They just don’t carry their weight.

It’s hard to argue against the general goodness of graphical notations.  What’s easier to refute is their suit-
ability for a particular purpose.  Code may be inferior to graphical notations for expressing design



2 Notation, Notation, Notation

“Pattern Hatching” C++ Report February 1998

information, but the flip side is that graphical notations have proven inferior to code for general-purpose
programming.

Research into what became known as “graphical programming” came into vogue about twenty years ago.
This coincided with the advent of relatively cheap semiconductor memory, which in turn made bitmapped
displays and their connection to minicomputers possible at places like SRI, Bell Labs, and Xerox PARC.
Once researchers had a viable graphical medium at their disposal, they began to dream in earnest of pro-
gramming by drawing pictures instead of typing.   There was widespread belief that a drawing metaphor
would bring programming to the masses by making it more natural.  Expert programmers too would benefit
from a greater expressiveness.

Alas, most efforts at graphical programming amounted to naïve transliterations of conventional program-
ming constructs.  Would-be graphical programmers metamorphosed into electricians of another color,
laboriously wiring up boxes labeled “function”, “if”, and “+”.  Had they the tenacity to create a complete
program that way, the resulting mass of lines and boxes was difficult to read, let alone debug and maintain.
The expressiveness of text proved hard to beat. I guess that’s one reason this article is written in Roman
characters and not hieroglyphics.

Not much has come of graphical programming research per se, but there have been successful offshoots.
What’s made them successful is catering to a more restricted domain than general-purpose programming.
Graphical user interface (GUI) builders are a good example; they let you assemble an application’s GUI by
manipulating its elements interactively.  This is a form of graphical programming, but it’s limited to ex-
pressing the user interface.  Developers revert to conventional programming to implement other parts of the
application.

The moral here is simple.  If you want to get nontrivial information across, you’ll want to use any and every
means to convey it accurately and in the smallest space.  To succeed is to achieve a delicate balance of
graphical depictions and descriptive text.  The two should act synergistically, neither overpowering the
other.  Readers should come away feeling informed without having worked at it.  They will be persuaded,
refreshed, even energized—and probably impressed too.

Notation in patterns
We purposed not to make a big deal about notation in Design Patterns. 3  We would stick to standard nota-
tions and would change them only if we had to.  Our motives were purely pragmatic.  We didn’t want to get
into the methodology business, with which notations seemed inextricably linked.  We also wanted to avoid
making notation an end in itself, for we had bigger fish to fry.

We ended up using three formal notations:

1. Class diagrams for specifying classes and their static relationships.

2. Object diagrams for depicting snapshots of objects and their interconnections.

3. Interaction diagrams for showing object interactions.

We went with OMT4 (with small modifications) for class and object diagrams, and OOSE’s notation5 for
interaction diagrams.  Had the UML standard6 been around in 1993, I’m sure we would have gone with that.

As indispensable as formal notations are, though, we found informal diagrams equally important, especially
in a pattern’s Motivation section.  By “informal” I mean pictures, sketches, screen shots, and anything else
that’s graphical but doesn’t conform to rigid conventions.  For example, DECORATOR’s Motivation talks
about adding a border and scrollbars to a text-editing component of a user interface.  The discussion in-
cludes a screen shot of the final product—a bordered and scrollable text component—alongside an
exploded view of its constituent components, including a border decorator, a scrollbar decorator, and the
original text component. Elsewhere, MEDIATOR’s Motivation section shows a dialog box with interdepend-
ent elements to make the argument for a mediator concrete.
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Informal diagrams are good in these contexts because they are non-threatening.  You don’t have to be com-
fortable with a formal notation to understand and appreciate them.  Informal diagrams ease the reader into
the pattern, while formal notations are best applied where precision is more important than accessibility.

And therein lies a rub, because formal notations can suggest a level of precision that isn’t there.  Com-
pounding the problem is their succinctness—they can say a lot in a small space.  Put the two together and
you’ve set the stage for “pattern legalism.”  The symptoms are obvious.  Someone asks whether a minor
deviation from a pattern’s Structure diagram means he’s “not following the pattern.”  Or an implementation
is contorted to reproduce a particular interaction diagram.  In the extreme, a design includes a class “Con-
creteClass” that defines PrimitiveMethod1 and PrimitiveMethod2 operations, in almost comical
adherence to the TEMPLATE METHOD pattern.

I guess such misunderstandings are our fault.  It seems you can’t overemphasize that a pattern’s Structure
diagram is just an example, not a specification.  It portrays the implementation we see most often.  As such
the Structure diagram will probably have a lot in common with your own implementation, but differences
are inevitable and actually desirable.  At very least you will rename the participants as appropriate for your
domain.  Vary the implementation trade-offs, and your implementation might start looking a lot different
from the Structure diagram.

As for whether one is following the pattern or not, who cares?  The pattern is a means to an end, not an end
itself.  Following it in any strict sense is immaterial.  If the pattern solves your problem directly, that’s great;
if you have to bend it a bit, that’s great too.  Even if the pattern merely inspires you toward an altogether
different solution, it has still proven useful.  The only potential problem here lies in the documentation
phase, when you’re describing your solution in terms of patterns.  You don’t want to mislead someone with
irrelevant patterns.  If you identify a set of classes as adhering to a pattern, make sure they fulfill the pat-
tern’s intent.  If the connection is tenuous, don’t mention the pattern; otherwise you’re sure to confuse more
than clarify.

There’s a related source of confusion that’s at least as prevalent.  It is the desire to deduce pattern differ-
ences solely by comparing Structure diagrams.  Compare STATE’s diagram to STRATEGY’s, for example,
and you’ll note few differences.  Indeed, both are of the form shown in Figure 1:  a Context class delegating
functionality to one of several subclasses of an AbstractClass.  The structures are virtually identical, right
down to the aggregation relationship between the two base classes.

AbstractClass

operation()

Context

operation()

ConcreteClass1

operation()

ConcreteClass2

operation()

Figure 1:  Common structure of STATE and STRATEGY

Does that mean there is no real difference between STATE and STRATEGY?  Of course not.  All it means is
that delegation is commonly used to implement both patterns.  Remember that the structure diagram defines
only static implementation relationships, and these are expressed in terms of a small set of OO language
mechanisms:  classes, inheritance, references, and polymorphic operations.  Thus the diagram tells only part
of the story.  It says little or nothing about dynamics—how and when objects get created, how they commu-
nicate, and when they go away.  Implementations of similar Structure diagrams may produce widely varying
object structures at run-time.  Even object structures that look similar can exhibit radically different behav-
iors.  If you’re looking to distinguish a pattern from others, look first to its intent, the most concise
differentiator.
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STATE’s intent is to let an object alter its behavior when its internal state changes, making the object act as if
it can change its class.  The pattern accomplishes this by encapsulating state-specific behavior in Con-
creteState classes and replacing their instances at run-time.  Clients are oblivious to state transitions and the
rules by which they occur.

In contrast, STRATEGY’s intent is to encapsulate algorithms and let them vary independently of clients. The
pattern focuses not on modeling state and transitions but on issues of encapsulation. The treatment of tran-
sitions that STATE spends so much time on is not relevant to STRATEGY.  Moreover, STRATEGY explicitly
charges clients with providing the strategy to use up-front. If a different strategy were needed, the client
would have to supply it.  Thus the replacement frequency for strategies is usually much lower than that of
states.

The Structure diagrams, by the way, reflect none of this.  They are each just a part of a broader exposition.
Every pattern is peppered with insights that distinguish it from others.  You have to study the whole pattern
to master it.

Notation for patterns
The last topic I’ll touch on is also the one I find most interesting.  It’s about making patterns explicit in de-
sign documentation.  Specifically, how do you identify patterns in a design graphically?

We didn’t talk about this topic in Design Patterns, and now I’m wondering why.  We appreciated the need
for graphical notation at the class and object level; why didn’t we use it at the pattern level?  Maybe we just
hadn’t gotten that far.  OMT et al. were still rather new at the time, and we found it necessary to augment
them to express basic design relationships, never mind patterns.  We had also recognized the need for mod-
est cues to a pattern’s presence in code, such as prefixing primitive operations of template methods with
“Do-”.3  But we stopped short of recommending naming conventions that identify patterns in code, even
though I for one had used such conventions on occasion.  For example, I’ve written quite a few Strategy
classes with “Strategy” in their name to identify them as such.  The problem with such conventions is that
they don’t scale well.  If a class happens to participate in more than one or two patterns, the name that re-
sults gets unwieldy fast—”AbstractFlyweightFactorySingleton” being not the worst example I’ve seen.

While the jury is still out on a good way to identify patterns in code, there are several viable notations for
identifying patterns in design diagrams.  The one I adopted early on had Venn diagrams as its inspiration.  I
used it in one of my early columns7 to show how the PROXY and COMPOSITE patterns manifested themselves
in the design of a simple OO file system. Figure 2 is the diagram from that column.  It shows that the Node,
File, and Directory classes participate in the COMPOSITE pattern, while Link and Node are participants in
the PROXY pattern.
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Node

getName()

getProtection()

streamIn(istream)

streamOut(ostream)

getChild(int)

adopt(Node)

orphan(Node)

Link

streamIn(istream)

streamOut(ostream)

getSubject()

File

streamIn(istream)

streamOut(ostream)

Directory

streamIn(istream)

streamOut(ostream)

getChild(int)

adopt(Node)

orphan(Node)

subject
children

from Proxy pattern from Composite pattern

Figure 2:  Venn diagram-style pattern annotations

While this notation works okay when there are few patterns per class, it too suffers from scalability prob-
lems.  The more patterns a class participates in, the more overlapping regions you get, and the more
gerrymandering you have to do to cover them.  It’s also hard to identify precisely the participant roles a
class plays.  Did you realize that the Link class in Figure 2 plays the role of a Proxy?  You’re pretty astute if
you did, because it’s not explicit.  You have to know the pattern well to deduce which classes play which
roles from the class structure alone.

UML offers an alternative notation that addresses these problems.  UML’s collaboration diagrams can
depict design pattern structure by identifying patterns and their participants in a class diagram.  Figure 3
shows how.  Pattern names appear in dashed ellipses, and dashed lines labeled with participant names asso-
ciate the patterns with the appropriate classes.  This is a marked improvement over the Venn diagram
approach, since you no longer have to guess about the role(s) of each class.
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subject
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Proxy Composite

Figure 3:  UML collaboration notation

There’s still room for improvement, however, because the dashed lines clutter the presentation significantly.
The pattern information competes with the class structure, making both harder to see.  Figure 4 shows an-
other approach that Erich came up with a couple of years ago.  He calls it “pattern:role annotations.”  It tags
classes with shaded boxes containing the pattern and/or participant name(s) associated with a given class.
For brevity, only the participant name is shown if there’s no ambiguity.  By avoiding added lines and by
using boxes with a contrasting background, clutter and interference are minimized—pattern-related annota-
tions appear to occupy a different plane from the class structure.  I’ve found this approach highly readable,
informative, and scalable.  The only drawback I’ve noticed is that the gray backgrounds don’t fax too well.
Caveat scannor!
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Proxy:Subject
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Composite:Component

Proxy

Composite:Leaf
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Figure 4:  Pattern:Role annotations
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Notation beyond patterns
Having come this far in applying notations to patterns, it’s natural to wonder what’s next.  There’s a clear
trend toward packing more and more meaning into design notations.  At present, UML defines seven major
notations for just about every aspect of object-oriented design you can think of.  The notations we settled on
back in 1993 are but a fraction of what can be expressed diagrammatically today.  Additional notation could
make many of our expositions clearer or more precise, or both.  But it’s easy to get carried away.  We
mustn’t forget that text is a powerful medium, too.

In fact, I find prose far more difficult to perfect than any diagram.  Perhaps it’s just me, but I doubt it.
There’s something very deep about human communication.  Sometimes I view it as the ultimate program-
ming language.  That analogy probably does violence to natural languages, but it’s fun to think about
anyway.  Consider English.  It’s rich, it’s expressive, and it’s widely understood.  Development tools are
ubiquitous and cheap, but debugging support remains primitive, limited almost entirely to syntax checking.
Moreover, the idiosyncrasies of English make C++ look minimalist.  And it’s really, really hard to predict
what you’ll get from a “compiler” (or “interpreter”?), because no two (people) are alike.  Heck, anybody
can do diagrams; writing is the real challenge!

Could I have written the wrong column?
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