
Pattern Hatching

Subject-Oriented Design
John Vlissides
C++ Report, February 1998

 1998 by John Vlissides. All rights reserved.

I’ve said it before and I’ll say it again: A hallmark—if not the hallmark—of good object-oriented design is
that you can modify and extend a system by adding code rather than by hacking it. In short, change is addi-
tive, not invasive. Additive change is potentially easier, more localized, less error-prone, and ultimately
more maintainable than invasive change. Indeed, a system that requires invasive change may not be
changeable at all when you don’t or can’t have the source.

Most of the patterns in Design Patterns1 can help make invasive change unnecessary, or at least less neces-
sary. STRATEGY, for example, lets you replace one algorithm with another. You can change the class that’s
instantiated by substituting one prototype for another (see PROTOTYPE). To express a grammar flexibly and
extensibly, use INTERPRETER. Table 1.2 in the book lists a design aspect you can change noninvasively for
each one of our 23 patterns.

You can’t always get what you want
All well and good, except for one big assumption—that the right patterns have been designed into the soft-
ware in the first place. If not, the going gets tough.

Some patterns— DECORATOR and ADAPTER come to mind—do support extension after the fact. But they
can’t work miracles. In particular, it’s devilishly hard to change a system’s behavior when you can’t control
which classes get instantiated. For a decorator or adapter to work, you must have something to decorate or
adapt, right? If that something lives deep in the bowels of a design, it may be difficult or impossible to get
at. Your only hope then is to trick the system into instantiating classes of your own makingclasses that
can adapt, decorate, or otherwise enhance existing ones.

Display

KeyPad
Dispenser

CoinChanger

AccessArea

produces:
CoinInsertedEvent

consumes:
CoinReleaseEvent,
ProductDispensedEvent

consumes:
CoinInsertedEvent,
CoinReleaseEvent,
KeyPressEvent,
ProductDispensedEvent

produces:
CoinReleaseEvent,
KeyPressEvent

consumes:
CoinInsertedEvent

produces:
ProductDispensedEvent,
InsufficientFundsEvent

consumes:
CoinInsertedEvent,
CoinReleaseEvent,
KeyPressEvent

produces:
ProductRemovedEvent

consumes:
ProductDispensedEvent

Figure 1

Consider again the vending machine example we’ve been looking at.2,3,4 Figure 1 shows the classes that
represent and control the various subsystems in the vending machine, along with their interconnections.

2 Subject-Oriented Design

“Pattern Hatching” C++ Report February 1998

Now assume that the system was designed naïvely, with no patterns in mind. All connections between sub-
system classes are hard-wired. That means, for example, that the Display class keeps explicit references to
producers of events it cares about (CoinInsertedEvent, CoinReleaseEvent, KeyPressEvent, and ProductDis-
pensedEvent). The implementation might look like this:

class Display {
public:
 virtual void show();
 virtual void clear();
 // ...
protected:
 virtual void beep(); // helper function called by show() and clear()
private:
 CoinChanger* _changer;
 Dispenser* _dispenser;
 KeyPad* _keyPad;
};

In such a hard-wired world, the CoinChanger, Dispenser, and KeyPad classes would in turn keep a refer-
ence to a Display so that they know whom to deliver events to. All other connections would have similar
implementations.

The trouble with this approach of course is the proliferation of connections that, once implemented, are not
easily changed. We’re forced to perform extensive surgery on the system to add, say, a BillChanger class.
Display would need modification to add a reference to a BillChanger object. One or more operations
would have to change, too. The same is true of any class that is currently interested in CoinInsertedEvents.

What if we get creative and effect these changes with a decorator?

class DisplayDecorator {
public:
 DisplayDecorator (Display* d) { _display = d; }

 virtual void show () {
 // enhanced or extended implementation
 }
 virtual void clear () { _display->clear(); }
 // ... (assume only show() needs to change)
 private:
 Display* _display;
 BillChanger* _billChanger;
};

Such a decorator might do the trick, provided we can decorate the Display instance(s) in the system. In a
perfect world, we could easily and noninvasively transform every constructor call new Display() into
new DisplayDecorator(new Display) and—shazam!—displays know about bill changers.

In reality, however, this transformation is likely to require edits to existing code. Like the interconnections,
the constructor call is almost certainly hard-wired, probably deep down in one or more method implemen-
tations. The type of display to create has to have been parameterized somehow, perhaps using C++
templates or a creational pattern like PROTOTYPE or FACTORY METHOD. Without some kind of parameter-
ization, there’s no way to control what gets created—and DECORATOR needs at least that much to work its
magic. The same is true of ADAPTER and any other pattern I can foresee applying to this problem.

Mightier magic
Suspend disbelief for a moment and suppose you could extend Display by first specifying the exten-
sions…

Subject-Oriented Design 3

“Pattern Hatching” C++ Report February 1998

class Extensions {
public:
 virtual void show () {
 // enhanced or extended implementation
 }
 private:
 BillChanger* _billChanger;
};

…and then expressing how the extensions affect the original Display class:

override (class Display, (Display, Extensions));

Here, override means, “Combine existing classes (in the inner parentheses) to form a new class named by
the first parameter.” In this case we’re combining the existing Display and Extensions classes to form a
new, “composed” class that happens to be called Display. This new class will contain all the members of
both Extensions and the original Display.

The second parameter denotes a list of classes, and the order in which they appear in the list is significant.
If two or more of the classes define a member with the same name, then the composed class will wind up
with the implementation of the class appearing latest in the list. In our example, the new Display will du-
plicate all of the original’s member functions except show(), which will come from Extensions. As for
the member variables, there’s no name conflict between Extensions and the original Display. Therefore
the composed class will incorporate every member of both classes—_changer, _dispenser, _keyPad,
and _billChanger—all declared private.

The semantics here are a lot like standard C++ multiple inheritance, with three important differences:

1. Any reference to Display outside these classes will refer to the composed Display class.

2. Anything accessible to Extensions or to the original Display is also accessible to the composed
Display, including private members.

3. override is just one of many possible ways to compose classes.

Subjectivity
Clearly this ain’t vanilla C++. So what is it?

It’s called “subject-oriented programming” (SOP), and it’s the brainchild of Bill Harrison and Harold
Ossher of IBM Research.5,6 Their idea is to augment object-oriented languages with facilities for packaging
code in interesting ways. Here are some of the problems SOP can address:

• A logically atomic object is implemented as a composition of objects, and the implementation
shows through in undesirable ways. A good example is the classic “self problem,” which crops up
in the implementation of several of our patterns. DECORATOR, for one, can be a fine alternative to
subclassing—as long as you realize that decorators work only for clients. Take the decorator code
for the vending machine. Extending beep() by overriding it in DisplayDecorator is an exer-
cise in futility. That’s because clients can’t call beep() (it’s protected), and Display
operations that call beep() will get Display::beep(), not DisplayDecorator::beep().
The “self problem” can rear its head when you use PROXY and ADAPTER, too.

• You want to avoid revealing concrete types to clients, preferring to have them deal with abstract
interfaces exclusively. You are using ABSTRACT FACTORY, for example, whose intent is to free
clients from specifying ConcreteProduct types. Or it’s BRIDGE you’re using, and you want to
avoid exposing the client to Implementor classes.

• You want to extend classes noninvasively, as in the vending machine example. Perhaps you want
to extend an interface without changing it, as is sometimes the case with the VISITOR pattern. Or

4 Subject-Oriented Design

“Pattern Hatching” C++ Report February 1998

you’ve applied SINGLETON, and now you want to subclass the Singleton class. How do you make
the static Instance operation instantiate this new subclass without changing the base class?

• There are several ways to partition your code depending on different needs. You might partition it
one way to spread the work among your development team. You’d do it another way to accurately
model your problem domain. Yet another partitioning would make the system more amenable to
tool support, say, for third-party extension or end-user customization.

The model
What exactly is SOP? Conceptually, it’s not much beyond what we already know and love about objects.
A subject-oriented program has two parts:

1. Two or more subjects, each nothing more than a collection of class declarations.

2. One or more composition rules, which describe how to combine the subjects into instantiable
classes or new subjects.

In the vending machine example, both the original Display class and the Extensions class are subjects.
The override composition rule combines them to form the Display class that clients will end up using.

Composition rules are arguably the key mechanism in SOP. There are two basic kinds:

1. Correspondence rules specify what names mean in the composed subject. For example, suppose
Extensions defines beep(). Does that mean all calls to beep() resolve to the Extensions
version, or only client calls? Correspondence rules let you specify either case with ease.

2. Combination rules specify how to implement members in the composed subject. The override
rule ensures that the composed Display subject gets its implementation of show() from the Ex-
tensions subject. Alternatively, you can say you want the new show() to be a sequential
combination of Extensions::show() and the original Display::show(). To do that with
DECORATOR, you’d have to code it explicitly.

The most useful composition semantics are achieved using a correspondence rule coupled with a combina-
tion rule. This has been institutionalized in a third set of composition rules called correspondence-
combination rules (an unfortunate name for the most prevalent rules).

Anyway, it turns out that override is in this third set, being a combination of the equate correspondence
rule and the replace combination rule. Once you equate classes, all calls to their operations will resolve
to the composed subject’s operations (thereby avoiding the “self problem” in the decorator example).
Meanwhile, replace makes it clear that the composed subject should adopt the implementations of the
latest subject in the rule’s composition list. The other common rule of this ilk is merge. That’s the same as
saying equate and join, where join is the combination rule that yields sequential combinations of op-
erations.

At minimum, a SOP-enabled programming environment will enforce these and other composition rule se-
mantics statically, much as conventional compilers enforce the static semantics of C++. A more advanced
environment would also support browsing, debugging, and revision control of subjects and composition
rules just like current environments do for classes.

Subjects in action
So much for the basics. Now let’s consider how SOP can help us avoid invasive change, either as a re-
placement for or an enhancement of a pattern-derived implementation.

We’ve already seen how we can enhance an existing class by combining two subjects to form a third with
the override rule. We’re about to use a similar technique in a subject-oriented implementation of
ABSTRACT FACTORY. Our goal is to avoid any mention of concrete factory or product classes in client
code.

Subject-Oriented Design 5

“Pattern Hatching” C++ Report February 1998

To implement ABSTRACT FACTORY conventionally, you define the AbstractFactory and AbstractProduct
interfaces…

class AbstractProductA;
class AbstractProductB;
// ...

class AbstractFactory {
public:
 virtual AbstractProductA* createProductA();
 virtual AbstractProductB* createProductB();
 // ...
};

…along with the families of ConcreteFactory and ConcreteProduct classes:

/**
 * Family #1
 */
class ConcreteProductA1 : public AbstractProductA { /* ... */ }
class ConcreteProductB1 : public AbstractProductB { /* ... */ }
// ...
class ConcreteFactory1 : public AbstractFactory {
public:
 virtual AbstractProductA* createProductA () {
 return new ConcreteProductA1();
 }
 virtual AbstractProductB* createProductB () {
 return new ConcreteProductB1();
 }
 // ...
};

/**
 * Family #2
 */
class ConcreteProductA2 : public AbstractProductA { /* ... */ }
class ConcreteProductB2 : public AbstractProductB { /* ... */ }
// ...
class ConcreteFactory2 : public AbstractFactory {
public:
 virtual AbstractProductA* createProductA () {
 return new ConcreteProductA2();
 }
 virtual AbstractProductB* createProductB () {
 return new ConcreteProductB2();
 }
 // ...
};

The challenge here is to keep client code from ever mentioning a class with a “1” or a “2” in its name. Oth-
erwise you expose a concrete class to the client. Then you’d have to change the client when you define a
new kind of concrete factory or product.

Hiding concrete products from the client is easy enough—the factory does it for us de facto. Clients deal
with abstract classes almost exclusively, since the AbstractFactory interface refers to nothing but ab-
stract products. The trouble lies in that little word, “almost.” There is one time when a concrete class needs
mentioning: when you instantiate the concrete factory. But you don’t want to put code like new Concre-
teFactory2() in the client.

6 Subject-Oriented Design

“Pattern Hatching” C++ Report February 1998

While there are any number of conventional workarounds to this problem (making the AbstractFactory class
an extensible Singleton, for example1), SOP offers a particularly simple alternative. To instantiate an ab-
stract factory, we’ll make it so that clients always write

AbstractFactory* factory = new AbstractFactory();

no matter which ConcreteFactory class they end up using. We specify that class at compile-time in a com-
position rule. For example, to make this code create instances of ConcreteFactory2, we tell our SOP-
enabled compiler to equate the concrete factory and the abstract factory:

equate (class AbstractFactory, (AbstractFactory, ConcreteFactory2));

Thus the compiler will ensure that every explicit call to the AbstractFactory constructor will be trans-
formed, type-safely, into a call to ConcreteFactory2::ConcreteFactory2(). Simple as that.

Interface extension
Now let’s see how subjectivity can address another common problem with ABSTRACT FACTORY, that of
extending the AbstractFactory interface to handle new kinds of products. I know of no statically type-safe
workaround to this problem using straight C++. SOP, however, makes it pretty easy.

Let’s assume the new category of product classes looks like this:

class ConcreteProductC1 : public AbstractProductC { /* ... */ }
class ConcreteProductC2 : public AbstractProductC { /* ... */ }

To extend the factory classes to handle these products, just merge each factory class with a subject that
extends its implementation and/or interface:

class ExtensionC { // extension for AbstractFactory
public:
 virtual AbstractProductC* createProductC();
};

class ExtensionC1 { // extension for ConcreteFactory1
public:
 virtual AbstractProductC* createProductC () {
 return new ConcreteProductC1();
 }
};

class ExtensionC2 { // extension for ConcreteFactory2
public:
 virtual AbstractProductC* createProductC () {
 return new ConcreteProductC2();
 }
};

/**
 * Composition rules
 */
merge (class AbstractFactory, (AbstractFactory, ExtensionC));
merge (class ConcreteFactory1, (ConcreteFactory1, ExtensionC1));
merge (class ConcreteFactory2, (ConcreteFactory2, ExtensionC2));

Spanning the gap
As a final example, consider how you might use subjects to address a code-partitioning problem. A while
back in these pages I presented a fairly fleshed-out pattern called GENERATION GAP.7 At issue was how to

Subject-Oriented Design 7

“Pattern Hatching” C++ Report February 1998

separate generated code from hand-modifications so that regenerating the code wouldn’t force you to reap-
ply the modifications.

The motivating example in that pattern described a GUI builder that generated the code for an alarm clock
widget. The builder implemented all the visual aspects of the widget but almost none of the behavioral as-
pects. Those had to be implemented by hand-modifying the generated code. GENERATION GAP offered an
effective if nontrivial way to insulate the changes from the generated code, making it unlikely that regen-
eration would require reimplementing anything. The old-timers among you will recall the artfulness needed
to treat this problem with standard OO techniques, including changes to the code generator to make it pat-
tern-aware. SOP allows a more mundane approach.

Going back to the motivating example, the builder is free to generate a class that implements the clock wid-
get without following any special conventions:

class Clock : public Widget {
public:
 Clock (const char*);

protected:
 Interactor* Interior();

 virtual void SetTime();
 virtual void SetAlarm();
 virtual void Snooze();

protected:
 Picture* _clock;
 SF_Polygon* _hour_hand;
 SF_Rect* _min_hand;
 Line* _sec_hand;
};

The programmer may then specify hand-modifications in a separate subject…

class HandModifications {
public:
 HandModifications();

 void Run();

 virtual void SetTime();
 virtual void SetAlarm();
 virtual void Snooze();

 virtual void Update();
private:
 void GetSystemTime(int& h, int& m, int& s);
 void SetSystemTime(int h, int m, int s);
 void Alarm();
private:
 float _time;
 float _alarm;
};

…and finally compose this subject with the generated subject using a composition rule—override in this
case:

override (class Clock, (Clock, HandModifications));

8 Subject-Oriented Design

“Pattern Hatching” C++ Report February 1998

Sometimes it may be more appropriate to use merge to compose the subjects. At other times you’ll want to
merge some operations and override others. You may find yourself reaching for the more esoteric compo-
sition rules on occasion.

The beginning
Whatever the need, subject-oriented programming facilities bring a whole new dimension to software de-
sign. There are potentially many problems that lend themselves to subject-oriented solutions. What’s
important to realize about SOP is that it’s just a mechanism, not a solution by itself. You must understand
how to apply it to the problems you face as a software designer. It’s a new mechanism too, one we’ve just
begun to explore. In time, SOP will probably engender idioms and patterns of its own. For now there’s
plenty to learn about how subjects can help us implement, enhance, and perhaps even obviate some of to-
day’s design patterns.

Acknowledgments
Peri Tarr and Harold Ossher schooled me ever so patiently in the ways of SOP. Thanks you two—and con-
gratulations to the team for making subjectivity real!

References
1 Gamma, E., R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, Reading, MA, 1995.
2 Vlissides, J. “Type Laundering,” C++ Report, February 1997.
3 Vlissides, J. “Latter-Day Events,” C++ Report, June 1997.
4 Vlissides, J. “Multicast,” C++ Report, September 1997.
5 Harrison, W. and H. Ossher. “Subject-Oriented Programming (A critique of Pure Objects),”
Conference Proceedings, published as ACM SIGPLAN Notices, 28(10):411–428, October 1993.
6 IBM. Subject-Oriented Programming. http://www.research.watson.ibm.com/sop.
7 Vlissides, J. “Generation Gap,” C++ Report, November/December 1996.

