
Pattern Hatching

To Code or Not to Code, Part II
John Vlissides and Andrei Alexandrescu
C++ Report, June 2000

 2000 by John Vlissides and Andrei Alexandrescu. All rights reserved.

We’ve got a lot to ground to cover, so we’ll cut right to the chase. If you haven’t read Part I,1 then run,
don’t walk, to your March issue and do so now. If you’re missing that issue due to extenuating circum-
stances—your homeland only recently legalized C++ Report, for example—just drop John a note and he’ll
see what he can do.

One aspect of Andrei’s Generic Pattern Implementations (GPI) that bears emphasis, or at least more empha-
sis than we gave it last time, is that GPI templates aren’t patterns themselves; they’re implementations of
patterns. If that’s obvious to you, consider yourself enlightened. Many respectable people, however, mistak-
enly view patterns as cookie-cutter solutions to the coding problem du jour. To them, the distinction is not
so obvious.

Make no mistake: patterns have to be tailored to each problem by the sweat of one’s brow and the firing of
one’s neurons. Customization is a big part of the pattern concept, and it has a big say in a pattern’s effec-
tiveness. It also makes patterns different from conventional tools of the programming trade—a difference
that’s lost on many folks. That explains why patterns are so often compared to components, data structures,
frameworks, and other familiar fare.

So when we say, “GPI uses templates and generic programming techniques to capture common design pat-
tern implementations,” doubtless some readers will gloss over “implementations” and leap to the conclusion
that GPI is patterns incarnate. It’s not; it merely offers a way of expressing design pattern implementations a
bit more succinctly and explicitly than bare C++. And because GPI works within C++ rather than without,
you can use the full power of the language to tailor GPI to your needs. That’s a crucial property given the
power patterns derive from customization.

Typelists
Last time we availed ourselves of things called typelists without explaining how they work. All we said was
they let you manipulate collections of types at compile-time much like you manipulate collections of values
at run-time. Typelists debuted in the declaration of :LGJHW)DFWRU\, an example of an AbstractFactory
class:2

FODVV %XWWRQ�

FODVV 6FUROO%DU�

FODVV 0HQX�

W\SHGHI $EVWUDFW)DFWRU\ �

7<3(/,67B��%XWWRQ� 6FUROO%DU� 0HQX�

! :LGJHW)DFWRU\�

As you’ve probably guessed, a typelist of n types is declared using a macro of the form 7<3(/,67Bn. But
there’s more going on here than meets the eye.

Typelists are founded on this simple template:

2 To Code or Not to Code, Part II

Pattern Hatching C++ Report June 2000

WHPSODWH �W\SHQDPH +� W\SHQDPH 7!

VWUXFW 7\SHOLVW ^

W\SHGHI + +HDG�

W\SHGHI 7 7DLO�

`�

Although the template takes only two types, it’s really open-ended because you can pass a 7\SHOLVW as an
argument. Hence the type

7\SHOLVW� FKDU� 7\SHOLVW�VLJQHG FKDU� XQVLJQHG FKDU! !

is effectively a typelist of three elements: FKDU, VLJQHG FKDU, and XQVLJQHG FKDU.

By convention, typelists are tail recursive. While it’s certainly possible to write

7\SHOLVW�7\SHOLVW�FKDU� XQVLJQHG FKDU!� FKDU!

the GPI library stipulates that “well-formed” typelists never have a 7\SHOLVW as their first argument. LISP-
ers will recognize this as the difference between well-formed lists and arbitrary S-expressions. The rest of
us will be content knowing only that this assumption makes the GPI implementer’s life a whole lot easier.

If these typelist declarations look ugly to you, you’re not alone. And they get uglier with each additional
parameter. Consider a typelist of integral types:

W\SHGHI 7\SHOLVW �

VLJQHG FKDU�

7\SHOLVW� VKRUW LQW� 7\SHOLVW�LQW� ORQJ LQW! !

! 6LJQHG,QWHJUDOV�

Not terribly readable. So GPI encourages you to transform the recursive structure into simple enumeration.
This comes at the expense of some seriously tedious code—not your own, but GPI’s. That is, the library
supplies dozens of macros of the form we saw before, 7<3(/,67Bn:

�GHILQH 7<3(/,67B��7�� 7�� 7\SHOLVW�7�� 7�!

�GHILQH 7<3(/,67B��7�� 7�� 7�� 7\SHOLVW�7�� 7<3(/,67B��7�� 7��!

�� HWF�

Each macro uses the previous one, making it easy to extend the upper limit should you be unlucky enough
to require more than several dozen types in a single list.

Now 6LJQHG,QWHJUDOV can be expressed more clearly and sweetly:

W\SHGHI 7<3(/,67B� �

VLJQHG FKDU� VKRUW LQW� LQW� ORQJ LQW

� 6LJQHG,QWHJUDOV�

Operations on typelists
What can you do with a typelist? Lots of things, including

• computing its length

• removing an element, either by type or by position

• finding a type

• fetching the type at a given index (indexed access)

• removing duplicates—that is, transforming 7<3(/,67B��LQW� FKDU� LQW� into
7<3(/,67B��LQW� FKDU�

To Code or Not to Code, Part II 3

Pattern Hatching C++ Report June 2000

• sorting by inheritance relationship—for example, transforming
7<3(/,67B��0RUH'HULYHG� %DVH� 'HULYHG� into
7<3(/,67B��%DVH� 'HULYHG� 0RUH'HULYHG�

Let’s look at the simplest of these: calculating the length of a typelist. First off, assume that a single type is a
typelist of length one. The length of a bigger typelist can then be defined recursively as 1 plus the length of
the tail of that typelist. We say that in C++ like so:

WHPSODWH �FODVV 7! VWUXFW /HQJWK ^

HQXP ^ 9DOXH �� `

`�

WHPSODWH �FODVV 7� FODVV 8!

VWUXFW /HQJWK � 7\SHOLVW�7� 8! ! ^

HQXP ^ 9DOXH � � /HQJWK�8!��9DOXH� `

`�

Now watch /HQJWK in action as it’s applied to the 6LJQHG,QWHJUDOV typelist defined earlier:

LQW OHQ /HQJWK�6LJQHG,QWHJUDOV!��9DOXH�

The template argument here is a typelist, so the compiler will use the second definition of /HQJWK. Then the
compiler will evaluate 9DOXH, which will require instantiating the tail of the typelist,
7<3(/,67B��VKRUW LQW� LQW� ORQJ LQW�. But this too is a typelist, so the second /HQJWK template
gets instantiated again.

The compiler continues this recursive instantiation process until the list is reduced to a single type,
ORQJ LQW in this case. That’s when the first version of /HQJWK finally kicks in to provide the initial value
of 1. The number of recursion levels corresponds to the number of types in the typelist. As the recursion
unwinds, 1 gets added to the value for each level of recursion, the resulting sum being the length of the
typelist.

Clever? Perhaps, but nothing compared to other typelist operations in GPI. Modesty and space don’t allow
for their treatment here, but be not dismayed: Andrei covers them thoroughly in his upcoming book.3 These
operations and the type manipulations they allow are key to the magic of GPI.

Typelists in action
ABSTRACT FACTORY prescribes an $EVWUDFW)DFWRU\��FUHDWH��� operation (e.g., FUHDWH6FUROO%DU,
FUHDWH%XWWRQ) for each ConcreteProduct type. Unfortunately, there’s no way to produce such a slew of
operation names with C++ templates directly. So GPI gets creative—very creative.

Again, the approach is recursive:

• For a single type 7, the $EVWUDFW)DFWRU\ class template declares one GR&UHDWH�7� member
function.

• For a typelist of 7 and 8, $EVWUDFW)DFWRU\ generates one GR&UHDWH�7� member function,
plus it declares all that an $EVWUDFW)DFWRU\ for 8 would declare.

The second bullet introduces the recursion.

C++ does make it easy to have one class declare all that another class declares; it’s called inheritance.
Here’s the gist of how inheritance and typelists are combined to templatize the AbstractFactory participant:*

* These and following template declarations exclude constructors, destructors, and other details that aren’t
germane to the discussion.

4 To Code or Not to Code, Part II

Pattern Hatching C++ Report June 2000

WHPSODWH �FODVV 7!

FODVV $EVWUDFW)DFWRU\ ^

SURWHFWHG�

YLUWXDO 7 GR&UHDWH�7� ��

W\SHGHI 7 3URGXFW/LVW�

`�

WHPSODWH �FODVV 7�� FODVV 7�!

FODVV $EVWUDFW)DFWRU\� 7\SHOLVW�7�� 7�! ! �

SXEOLF $EVWUDFW)DFWRU\�7�!�

SXEOLF $EVWUDFW)DFWRU\�7�! ^

SURWHFWHG�

XVLQJ $EVWUDFW)DFWRU\�7�!��GR&UHDWH�

XVLQJ $EVWUDFW)DFWRU\�7�!��GR&UHDWH�

W\SHGHI 7\SHOLVW�7�� 7�! 3URGXFW/LVW�

`�

This echoes the recursive approach to calculating a typelist’s length. Figure 1 shows the hierarchy that re-
sults from the declaration

W\SHGHI $EVWUDFW)DFWRU\ �

7<3(/,67B��%XWWRQ� 6FUROO%DU� 0HQX�

! :LGJHW)DFWRU\�

AbstractFactory<Button> AbstractFactory< Typelist<ScrollBar, Menu> >

WidgetFactory

AbstractFactory<Menu>AbstractFactory<ScrollBar>

Figure 1: :LGJHW)DFWRU\ interface hierarchy

:LGJHW)DFWRU\ inherits directly from $EVWUDFW)DFWRU\�%XWWRQ! and indirectly from both $E�
VWUDFW)DFWRU\�6FUROO%DU! and $EVWUDFW)DFWRU\�0HQX! through a node class, namely
$EVWUDFW)DFWRU\� 7\SHOLVW�6FUROO%DU� 0HQX! !. The node class acts like a funnel, collecting
and propagating operations down the hierarchy. In the end, an $EVWUDFW)DFWRU\ instantiated with a type-
list will inherit from an instantiation of $EVWUDFW)DFWRU\ for every type in that typelist—the point of the
exercise.

Now to implement this :LGJHW)DFWRU\ interface for a given ConcreteFactory name. Last time we defined
0DF:LGJHW)DFWRU\ like this:

W\SHGHI &RQFUHWH)DFWRU\ �

:LGJHW)DFWRU\�

7<3(/,67B��0DF%XWWRQ� 0DF6FUROO%DU� 0DF0HQX�

! 0DF:LGJHW)DFWRU\�

The :LGJHW)DFWRU\ operations get implemented one at a time, again using template recursion. There are
two specializations of &RQFUHWH)DFWRU\: one for a single ConcreteProduct type, and one for a typelist of
ConcreteProduct types. The former looks like this:

To Code or Not to Code, Part II 5

Pattern Hatching C++ Report June 2000

WHPSODWH �FODVV $EVW)DFW� FODVV &RQF3URG!

FODVV &RQFUHWH)DFWRU\ � SXEOLF $EVW)DFW ^

W\SHGHI $EVW)DFW��3URGXFW/LVW 3URGXFW/LVW�

W\SHGHI /DVW7\SH�3URGXFW/LVW!��7\SH 3URGXFW�

SURWHFWHG�

XVLQJ $EVW)DFW��GR&UHDWH�

YLUWXDO 3URGXFW GR&UHDWH �3URGXFW� ^

UHWXUQ QHZ &RQF3URG�

`

`�

This template implements GR&UHDWH for the last element in $EVW)DFW’s product list. That element, ob-
tained with GPI’s /DVW7\SH operation, becomes GR&UHDWH’s return type (corresponding to the
AbstractProduct participant in the pattern). Of course, what GR&UHDWH actually returns is a new Concrete-
Product of type &RQF3URG.

Now let’s see how the other &RQFUHWH)DFWRU\ template works, the one specialized for a typelist of Con-
creteProducts. Basically it implements GR&UHDWH for the head of the list and recurses to its tail through
inheritance.

WHPSODWH �

FODVV $EVW)DFW�

FODVV &RQF3URG�

FODVV 2WKHU&RQF3URGV

! FODVV &RQFUHWH)DFWRU\ �

$EVW)DFW�

7<3(/,67B��&RQF3URG� 2WKHU&RQF3URGV�

! � SXEOLF &RQFUHWH)DFWRU\�$EVW)DFW� 2WKHU&RQF3URGV! ^

SURWHFWHG�

W\SHGHI W\SHQDPH $EVW)DFW��3URGXFW/LVW 3URGXFW/LVW�

HQXP ^

LQGH[/HQJWK�3URGXFW/LVW!��9DOXH ²

/HQJWK�2WKHU&RQF3URGV!��9DOXH ² �

`�

W\SHGHI W\SHQDPH 7\SH$W�3URGXFW/LVW� LQGH[!��7\SH 3URGXFW�

XVLQJ &RQFUHWH)DFWRU\�$EVW)DFW� 2WKHU&RQF3URGV!��GR&UHDWH�

YLUWXDO 3URGXFW GR&UHDWH �3URGXFW� ^

UHWXUQ QHZ &RQF3URG�

`

`�

Don’t get excited—this is simpler than it looks. On each recursion, the HQXP gets evaluated first, computing
the index of the next product in the $EVWUDFW)DFWRU\’s typelist. Then the 3URGXFW W\SHGHI gets
evaluated, identifying the AbstractProduct at that index using GPI’s 7\SH$W operation. With the
AbstractProduct type in hand, the compiler implements GR&UHDWH for it like before.

When the dust settles, we’re left with a simple, linear inheritance structure: each class in Figure 2 contrib-
utes one GR&UHDWH operation as the hierarchy is built up and the typelist consumed.

6 To Code or Not to Code, Part II

Pattern Hatching C++ Report June 2000

ConcreteFactory<WidgetFactory, MacMenu>

#doCreate(Menu*) : Menu*

ConcreteFactory< WidgetFactory, Typelist<MacScrollBar, MacMenu> >

#doCreate(ScrollBar*) : ScrollBar*

<<interface>>
WidgetFactory

MacWidgetFactory

#doCreate(Button*) : Button*

Figure 2: 0DF:LGJHW)DFWRU\ implementation hierarchy

All we need now is a decent interface for clients, one that hides GR&UHDWH behind something akin to the
factory methods in a standard AbstractFactory. Why isn’t GR&UHDWH decent to begin with? Apart from its
intentionally arcane name, it’s saddled with an argument that’s never used. The argument’s sole purpose is
to let the compiler differentiate between all the overloaded versions of GR&UHDWH. If there were no such
parameter, each subclass would override the same parameterless GR&UHDWH. 0DF:LGJHW)DFWRU\ would
wind up with just one GR&UHDWH rather than one for each AbstractProduct (in this case %XWWRQ, 6FUROO�
%DU, and 0HQX).

Recall that clients use a function template to create a button,

%XWWRQ EWQ ZLGJHW)DFWRU\�!FUHDWH�%XWWRQ!���

rather than the usual hard-wired function:

%XWWRQ EWQ ZLGJHW)DFWRU\�!FUHDWH%XWWRQ���

Here’s the template that does the trick:

WHPSODWH �FODVV 7! 7 &RQFUHWH)DFWRU\��FUHDWH �� ^

UHWXUQ GR&UHDWH�VWDWLFBFDVW�7!�����

`

Template parameters as design choices
GPI employs template parameters to let you choose among a pattern’s variant implementations and trade-
offs. Last time you saw how HQXPs lend flexibility to the 6LQJOHWRQ template:

HQXP $OORFDWLRQ ^ VWDWLF6WRUDJH� G\QDPLF6WRUDJH `�

HQXP /LIHWLPH ^

VWG/LIHWLPH� SKRHQL[� YDU/LIHWLPH� LPPRUWDO

`�

HQXP 7KUHDGLQJ0RGHO ^ VLQJOH7KUHDGHG� PXOWL7KUHDGHG `�

To Code or Not to Code, Part II 7

Pattern Hatching C++ Report June 2000

WHPSODWH �

FODVV 7�

$OORFDWLRQ VWDWLF6WRUDJH�

/LIHWLPH VWG/LIHWLPH�

7KUHDGLQJ0RGHO VLQJOH7KUHDGHG

! FODVV 6LQJOHWRQ�

How are these values interpreted? Ideally there would be no run-time overhead for handling different cases,
and clients could add their own choices noninvasively. That pretty much rules out a brute-force approach
using conditionals:

WHPSODWH � ��� ! 7 6LQJOHWRQ� ��� !��LQVWDQFH�� ^

LI �WKUHDGLQJ0RGHO VLQJOH7KUHDGHG�^

�� VLQJOH�WKUHDGHG EHKDYLRU

` HOVH ^

�� PXOWL�WKUHDGHG EHKDYLRU

`

`

GPI has a better idea. Consider:

FODVV $Q\'HVLJQ&KRLFH ^`�

WHPSODWH �ORQJ &KRLFH,'!

FODVV 'HVLJQ&KRLFH � SXEOLF $Q\'HVLJQ&KRLFH ^`�

A 'HVLJQ&KRLFH instantiated with any integral value is an $Q\'HVLJQ&KRLFH. 'HVLJQ&KRLFH instantia-
tions with different values will be distinct types.

Now add a dash of overloading. The 6LQJOHWRQ template should use different allocation strategies based
on the value of the $OORFDWLRQ template parameter. GPI defines private GR&UHDWH helper functions† to
encapsulate different allocation strategies at compile-time.

WHPSODWH �

FODVV 7�

$OORFDWLRQ DOORF VWDWLF6WRUDJH�

/LIHWLPH OLIHWLPH VWG/LIHWLPH�

7KUHDGLQJ0RGHO WKUHDGLQJ0RGHO VLQJOH7KUHDGHG

! FODVV 6LQJOHWRQ ^

�� ���

SULYDWH�

VWDWLF 7 GR&UHDWH �'HVLJQ&KRLFH�VWDWLF6WRUDJH!� ^

VWDWLF 7 LQVWDQFH�

UHWXUQ 	LQVWDQFH�

`

VWDWLF 7 GR&UHDWH �$Q\'HVLJQ&KRLFH� ^

UHWXUQ QHZ 7�

`

`�

No rocket science here. If a 6LQJOHWRQ operation calls GR&UHDWH with
'HVLJQ&KRLFH�VWDWLF6WRUDJH!�� as a parameter, it’ll get the address of a statically allocated object.
Any other parameter (as long as it’s type-compatible with $Q\'HVLJQ&KRLFH) Zill produce a dynamically

† Not to be confused with the &RQFUHWH)DFWRU\ templates’ GR&UHDWH operations. Same name, different
pattern.

8 To Code or Not to Code, Part II

Pattern Hatching C++ Report June 2000

allocated object. If an operation calls GR&UHDWH�'HVLJQ&KRLFH�DOORF!���, then what you get depends
on the value of DOORF, the $OORFDWLRQ template parameter.

Think of this as compile-time dispatch. The actual parameters are not used when the program runs; the code
for creating them and passing them around will be optimized away by any reasonable compiler. They exist
solely to choose between overloaded operations at compile-time, statically mapping an enumerated value to
a behavior.

We’ve got a lot of flexibility here. An overloaded function that takes an $Q\'HVLJQ&KRLFH acts as a catch-
all for default behavior. That’s useful when the number of specialized behaviors is small compared to the
common case. Consider /LIHWLPH, which defines four distinct behaviors. The designer may specialize one
or two of them and let the catch-all do the rest.

6LQJOHWRQ defines four primitive operations in support of the $OORFDWLRQ, /LIHWLPH, and 7KUHDGLQJ�
0RGHO design choices:

• GR&UHDWH tracks the $OORFDWLRQ strategy. Its sole purpose is to create an object. You can spe-
cialize this function to use a custom allocator or to create an object of a derived class. Here’s an
example:

W\SHGHI 6LQJOHWRQ�)RR� ���!)RR6LQJOHWRQ�

WHPSODWH �!

)RR)RR6LQJOHWRQ��GR&UHDWH �$Q\'HVLJQ&KRLFH� ^

�� FXVWRP DOORFDWRU LPSOHPHQWDWLRQ

`

• DWRPLF&UHDWH focuses on threading issues, tracking the 7KUHDGLQJ0RGHO parameter. It tests to
see if the singleton is allocated, employing the DOUBLE-CHECKED LOCKING pattern4 in the multi-
threaded case. After the test, DWRPLF&UHDWH delegates to
GR&UHDWH�'HVLJQ&KRLFH�DOORF!���.

• VFKHGXOH'HVWUXFWLRQ schedules the object’s destruction according to the /LIHWLPH parame-
ter.

• RQ'HDG5HIHUHQFH governs the behavior of LQVWDQFH�� after the singleton has been destroyed.
There are just two specializations: the SKRHQL[case, which recreates the singleton, and all other
cases, which throw an exception.

The LQVWDQFH�� operation orchestrates these primitives, calling them with the appropriate 'HV�

LJQ&KRLFH template parameters. The compiler will instantiate and dispatch to the corresponding
specializations. The result is both flexible and minimalist, extensible yet efficient, with the compiler doing
most of the work.

Inheritance versus templates
One last thing before we turn you loose to try GPI yourself. If you’re prepared to believe that SINGLETON is
worth implementing in a reusable fashion (and shame on you if you’re not), then you’ve got a problem. Be-
fore you can decouple SINGLETON functionality from clients that act like Singletons, you must decide how
that functionality will cooperate with the clients.

C++ offers two relevant decoupling mechanisms: inheritance and templates. You can apply them in at least
four ways to get a plausibly reusable implementation of SINGLETON. Let’s assume a 6LQJOHWRQ class en-
capsulates SINGLETON pattern functionality, and 0\&ODVV should play the Singleton role. Then the four
possibilities are:

1. A straight inheritance relationship: 0\&ODVV derives from 6LQJOHWRQ.

2. A templatized 6LQJOHWRQ�0\&ODVV! deriving from 0\&ODVV.

To Code or Not to Code, Part II 9

Pattern Hatching C++ Report June 2000

3. 0\&ODVV derives from 6LQJOHWRQ�0\&ODVV! (in other words, apply Coplien’s CURIOUSLY RE-

CURRING TEMPLATE pattern5).

4. 6LQJOHWRQ�0\&ODVV! is a stand-alone class with a reference to the lone 0\&ODVV instance.

All four require coding 0\&ODVV to prevent direct instantiation by clients; none of the four offers an advan-
tage in that respect. However, all but one has a distinct disadvantage: interference with the client class
hierarchy. Introducing a 6LQJOHWRQ (template) class complicates the hierarchy, tightly coupling the pattern
implementation to the client type structure.

Only one alternative avoids that outcome—number 4, which turns client classes into Singletons with tem-
plates rather than inheritance. It exemplifies favoring composition over inheritance, but not exactly as
Design Patterns exhorts,6 because we’re composing types, not objects. Yet the rationale and benefits are
much the same. Avoiding encapsulation-busting inheritance makes the pure-template approach the best-
decoupled of the lot. Needless to say, GPI’s 6LQJOHWRQ is an independent template class.

Tip of the GPIceberg
There’s a lot more to GPI than we’ve been able to present in two short columns. But we won’t leave you
high and dry. Andrei will take up these and other marvels of GPI now that he has a column of his own. Be
sure to follow it every other month right here in C++ Report. Tell him John sent ya.

Acknowledgments
Thanks to Jim Coplien, Ralph Johnson, Scott Meyers, and Dirk Riehle for their sage advice.

References

1 Vlissides, J. and A. Alexandrescu. To Code or Not to Code, Part I. C++ Report, March 2000, pp. ??–??.
2 Gamma, et al. Design Patterns, Addison–Wesley, Reading, MA, 1995, pp. 87–95.
3 Alexandrescu, A. Design with C++ (tentative title), Addison–Wesley, Reading, MA, in preparation.
4 Schmidt, D., et al. Double-Checked Locking. In Pattern Languages of Program Design 3, Addison–
Wesley, Reading, MA, 1998, pp. 363–375.
5 Coplien, J. Curiously Recurring Template Patterns. C++ Report, February 1995, pp. 24–27.
6 Design Patterns, p. 20.

